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ABSTRACT

In this second part of the study, ideal shock theory in two-layer stratified flow is extended to
include a third passive layer (i.e., a two and a half layer system). With the presence of a passive
layer, two linear wave modes and ‘‘viscous tail modes’’ exist, complicating the solubility condi-
tions and uniqueness proofs for two layer shocks. It is found however, that shocks can be
unambiguously classified as external or internal based on the states of criticality that they
connect. The steepening condition, while still necessary, provides a less restrictive constraint
than it did with a rigid lid. Thus, we have to rely more on solutions to the full viscous shock
equations to establish shock existence. The detailed structure, momentum exchange, and
Bernoulli loss in a viscous shock are examined using an analytical weak shock solution and a
set of numerical solutions for shocks with finite amplitudes. A shock regime diagram (F1 by F2 )
is constructed based on the numerical integration of the full viscous shock equations. For strong
external jumps, a cusp region (i.e., in the sense of catastrophe theory) is identified on the regime
diagram. For pre-shock states within the cusp, three end states are possible and two of these
are realizable. The cusp has several physical implications. It indicates that an equal distribution
of dissipation between the two layers in shocks is mathematically possible but physically inac-
cessible. It also allows hysteresis in time varying flows, and promotes the occurrence of double
shocks (i.e., closely spaced shocks of different character). The results are compared with classical
shock solutions and a set of time dependent numerical experiments.

1. Introduction the sloping interface can be expressed as the
product of a ‘mean’ pressure and lower layer depth
change. The YG theory has a nice form, and givesHydraulic jumps or ‘‘shocks’’ are commonly

seen in layer-like density-stratified flows in a grav- reasonable results in some cases, but it contains a
number of physical inconsistencies such as a pre-ity field. A theoretical understanding of jumps has

been sought by meteorologists, oceanographers diction of energy gain in the contracting layer

(Baines, 1995).and engineers. Previous two-layer shock theories
can be classified into three categories. One cat- Another category of theory was built on an

assumed energy loss across the jump such as Chuegory was built on an assumed formula for

momentum exchange between two layers (Yih and Baddour (1977), Wood and Simpson (1984),
Armi (1986), Armi and Williams (1993), andand Guha, 1955, hereafter YG55). Yih and Guha

assumed that interfacial mixing was negligible and Klemp et al. (1997). These theories are simple to
that the momentum exchange due to pressure on evaluate and depending on which energy loss

assumption is used, they compare well with vari-
ous types of experimental data. A problem with* Corresponding author.

e-mail: ronald.smith@yale.edu this type of theory is that it is unclear how to
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apply them to new situations, without guidance shallow water simulations is given in Section 5. A
summary is given in Section 6.from experimental data or numerical simulations.

For example, if the assumption of energy conserva-

tion in one expanding layer is selected, how does
2. The two-and-a-half layer flow systemone handle situations where both layers expand?

It would be better to have a theory that would
2.1. Hydrostatic equations for a two and a halfpredict energy loss, instead of assuming it.

layer flowThe third category of two-layer shock theory

was developed in part I (i.e., Jiang and Smith, For a two-layer density stratified fluid under a
2001). In this new approach, a set of viscous third passive layer (Fig. 1), the hydrostatic equa-
model equations are formulated with three a priori tions take on the form (Houghton, 1964):
assumptions: (a) no mixing of mass or momentum

between layers; (b) nearly hydrostatic flow in the DV1
Dt

+g
r1−r3

r1
V (h1+h)+g

r2−r3
r1

Vh2=0,
shocks; (c) dissipation occurs according to a vis-

(1)cous model. Shocks which satisfy these assump-

tions are called ‘‘ideal’’ in our terminology. With

the assumption of a rigid lid, the analysis in Part I
DV2
Dt

+g
r2−r3

r2
V (h1+h2+h)=0, (2)

showed that these model equations could be used

to establish shock existence and uniqueness and Dh
i

Dt
+h

i
VΩV

i
=0, (3)to predict the energy loss in each layer. While

these predictions do not agree with some datasets,
where V

i
= (u

i
, v
i
) is the horizontal velocity, g is(e.g., those cases where assumption (a) is invalid;

the gravity, h
i
are layer depths, and h(x, y) referssee Klemp et al., 1997) the general method could

to the elevation of the bottom topography, r
i
arebe extended with a less restrictive mixing formula-

fluid densities, and the index i=1, 2, 3 refers totion. A feature of the new theory is that its
the lower layer, the upper layer, and a third passive

assumptions are consistent with earlier theoretical
layer respectively. The uppermost fluid layer is

treatments of shocks in complex flows such as
assumed to be either indefinitely deep or with zero

Houghton and Isaacson (1968), Schär and Smith
velocity, preventing it from supporting a pressure

(1993, hereafter SS93), and Smith and Smith (1995,
gradient, i.e., it is passive. In the Boussinesq limit,

hereafter SS95) and thus it can be used to diagnose
i.e., assuming the density difference is small, i.e.

those results.

In this paper, we seek to extend the ‘‘ideal’’

shock theory from the rigid lid case to the case

with a passive layer aloft. This modest generaliza-

tion is quite challenging as the second interface

introduces a second wave mode, a second wave

speed and a second Froude Number. In spite of

these difficulties, we are able to derive shock

existence and uniqueness conditions, classify all

shocks, display a shock regime diagram and obtain

an analytical solution for weak shocks.

The outline of this paper is as follows. The

governing equations for a two and a half layer

hydrostatic flow and the inviscid linear wave

modes are discussed in Section 2. A viscous shock

theory is developed in Section 3. It includes formu-

lation, weak shock solutions and a discussion of

viscous tail modes. A shock regime diagram is Fig. 1. Definition sketch of two and a half layer flow:
constructed in Section 4. A comparison among r1 , r2 , r3 are densities; h1 and h2 are flow depths; U1

and U2 are flow speeds. The third layer is passive.viscous shock solutions, YG shock solutions and
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(r1−r3 )Hr1 , the above equations can be written as
in a more compact form: A ∂∂t+U1

∂
∂xB u1+g∞(g1+rg2 )=0, (10)

DV1
Dt

+g∞(h+h1+rh2 )=0, (4)

A ∂∂t+U2
∂
∂xB u2+rg∞(g1+g2 )=0, (11)

DV2
Dt

+rg∞V (h1+h2+h)=0, (5) A ∂∂t+U1
∂
∂xB g1+H1

∂u1
∂x

=0, (12)

Dh
i

Dt
+h

i
VΩV

i
=0, (6) A ∂∂t+U2

∂
∂xB g2+H2

∂u2
∂x

=0. (13)

where g∞=g(r1−r3 )/r1 is the reduced gravity and
The basic state is defined by flow speed U1 (in ther= (r2−r3 )/(r1−r3 ) is the density step ratio.
lower layer) and U2 (in the upper layer), and flowIt is interesting to compare eqs. (4–6) to the
depth H1 (of the lower layer) and H2 (of the upperequations governing two layer hydrostatic
layer), and density difference ratio r. u1 and u2 areBoussinesq flow under a free surface. With r3=0
small perturbations in velocity, and g1 and g2 areand r2/r1~1 in eqs. (1) and (2), the continuity
small displacements of the lower and upperequations and the momentum equations can be
interface.written in nondimensional form as

Defining a=g2/g1 , from eqs. (10–13), we
obtain:DV1

Dt
+g∞V (h+h1+rh2 )=0, (7)

a=
rg∞H2

(c+U2 )2−rg∞H2
=

(c+U1 )2−g∞H1
rg∞H1

. (14)

DV2
Dt

+g∞V (h1+h2+h)=0, (8) Using the normal mode method, the dispersion

relation can be obtained:

Dh
i

Dt
+h

i
VΩV

i
=0, (9) A(U1−c)2

g∞H1
−1B A(U2−c)2

g∞H2
−rB−r2=0, (15)

where r=r2/r1 and g∞=g(1−r2/r1 ). Notice that where c is the complex phase speed of gravity
eqs. (4) and (6) are identical with (7) and (9). The waves.
only difference between eqs. (5) and (2) is that Eq. (15) admits 4 real roots for c, corresponding
there is an extra r in eq. (5). Therefore, in the to two wave modes. Considering the existence of
Boussinesq limit, two layer flow and two and a the third layer, both modes are internal. For
half layer flow have the same solutions if only the convenience, in this article, the faster wave mode
upper layer velocity V2 in a two layer flow is is referred to as the external mode, and the slower
replaced by V2/r. wave mode is termed the internal mode.

Hence, the results and conclusions in this Letting c=0, we obtain the critical condition
study can be directly applied to both two layer to have one of the wave modes be stationary
Boussinesq flow under a third passive layer and relative to the laboratory coordinate (Benton,
two layer Boussinesq flow with no medium above. 1954):
This correspondence would fail if mixing across

(F21−1)(F22−r)−r2=0, (16)
the upper interface occurred.

where F1=U1/
Eg∞H1 and F2=U2/

Eg∞H2 are
Froude number for the lower and upper layer.

On a Froude number diagram, eq. (16) describes
2.2 L inear waves

a two branch curve (Fig. 2). The lower left branch
corresponds to a stationary internal wave mode,For a two layer Boussinesq flow under a third

passive layer, using eqs. (4–6), the linearized one- and the upper-right branch corresponds to a sta-
tionary external wave mode. These two branchesdimensional governing equations can be written
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viscous shock take the following form (SS93, SS95
and JS00b):

dM1
dx

= f
1x
+ (P2+P3 )

dh1
dx

, (17)

dM2
dx

= f
2x
− (P2+P3 )

dh1
dx

+P3 Adh1
dx

+
dh2
dxB ,

(18)

where M1 is the generalized momentum in the

lower layer,

M1=r1
Q21
h1

+
1

2
gh1

× (r1h1+2r2h2+2r3D−2r3h1−2r3h2 ) .

(19)

M2 is the generalized momentum in the upper
layer,Fig. 2. Weak shock solutions. The bold curves represent

the critical condition (1), which divides the diagram into
three states of critcality, namely, BB regime, BP regime, M2=r2

Q22
h2

+
1

2
gh2and PP regime. The regions where weak shock solutions

are valid are shaded. Point A is the singular point × (r2h2+2r3D−2r3h1−2r3h2 ) . (20)
(F1s , F2s ). Possible shocks are schematically shown as
arrows pointing from allowable pre-shock states to pos- The other variables are as follows. P2=r2gh2 is
sible post-shock states. 5 types of shocks are shown. the hydrostatic pressure on the lower interface,

P3=r3gD−r3gh1−r3gh2 is the hydrostatic pres-

sure on the upper interface, (h1 , h2 ) are the flowdivide the diagram into three states of criticality:
depths of the lower and upper layers, D is thethe BB, BP, and PP regimes. The notations can
height of an arbitrary reference level within thebe found in Table 1. The symbols B and P are
passive layer, (r1 , r2 , r3 ) are densities of the first,taken from the terms suBcritical and suPercritical.
second, and third layer, Q1=U1h1 and Q2=U2h2For example, in BP, the flow is subcritical to one
are mass fluxes in the lower and upper layer, andmode and supercritical to the other. From (14),
f
1x

and f
2x

are viscous forces in flux form.for a stationary internal wave a<0, and for a
According to SS95,stationary external wave a>0.

f
1x
=

∂
∂x Cv1h1 AQ1

h1BxD , (21)
3. Viscous shock theory

f
2x
=

∂
∂x Cv2h2 AQ2

h2BxD , (22)3.1. Formulation
3.1.1. Momentum balance in a two-layer shock.

For a two layer Boussinesq flow under a passive where v1 and v2 are viscous coefficients in the
lower and upper layer, respectively. Forthird layer, the steady momentum equations in a

Table 1. Shock regimes and eigenvalues

BB subcritical to both internal and external modes lext<lint<0
BP internally supercritical and externally subcritical (-j= jump, -d=drop, -n=no shock) lext<0 and lint>0
PP supercritical to both internal and external modes lint>lext>0

(-1=unique conjugate state, -3=three conjugate states,
-2= infinity of conjugate states)
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Newtonian fluids, v1 and v2 are constants. The 3.1.3. Governing equations. Substituting (21)
and (22) into eqs. (17) and (18), we obtaindifferent behavior of Newtonian and Non-

Newtonian fluids and its effect on the Bernoulli

change was addressed in Part I. In this part, we A−Q2
1

h2
1
+g∞h1B h

1x
+rg∞h1h2x=v

∂
∂x Ch1 AQ1

h1BxD ,
confine the analysis to Newtonian fluids and

(28)further assume that v1=v2=v.

rg∞h2h1x+A−Q2
2

h2
2
+rg∞h2B h

2x
3.1.2. T M conservation across a two-layer shock.

Noticing that the viscous terms are in flux form,
=v

∂
∂x Ch2 AQ2

h2BxD , (29)integrating (17) and (18) across the shock gives
expressions relating the upstream and downstream

or(primed) variables:

G(h1 , h2 , Q1 , Q2 , r)h1xM1=M∞1+M12+r2gD(h∞1−h1 )
=−

v

h1 AQ2
2

h3
2
−rB ∂

∂x Ch1 AQ1
h1BxD−Dr2g(h∞21 −h21 ) , (23)

M2=M∞2−M12+r3gD(h∞2−h2 ) −
rv

h2

∂
∂x Ch2 AQ2

h2
B
x
D , (30)

Dr3g(h∞22 −h22 )−r3g(h∞1 h∞2−h1h2 ) , (24)

G(h1 , h2 , Q1 , Q2 , r)h1xwhere

=−
v

h2 AQ2
1

h3
1
−1B ∂

∂x Ch2 AQ2
h2BxDM12= (r2−r3 )g P d

u
h2 dh1 . (25)

−
rv

h1

∂
∂x Ch1 AQ1

h1BxD , (31)

One can cancel out M12 by adding eqs. (23)
whereand (24). Using Boussinesq approximation, we

obtain:
G(h1 , h2 , Q1 , Q2 , r)=AQ2

1
h3
1
−g∞B AQ2

2
h3
2
−rg∞B−r2 ,

Q2
1

h1
+

Q2
2

h2
+

1

2
g∞(h2

1
+rh2

2
)+rg∞h1h2 (32)

and g∞=g(r1−r3 )/r1 is the reduced gravity.

Noticing that F2
1
=Q2

1
/g∞h3

1
and F2

2
=Q2

2
/g∞h3

2
,=

Q2
1

h∞
1
+

Q2
2

h∞
2
+

1

2
g∞(h2∞

1
+rh∞

2
)+rg∞h∞

1
h∞
2
, (26)

G=0 is the critical condition (16) for inviscid
waves to be stationary in a two and a half layer

where g∞=g(r1−r3 )/r1 is the reduced gravity, system. It can be shown that G>0 for BB flow
and r= (r1−r2 )/(r1−r3 ) is the density step ratio. or PP flow, and G<0 for BP flow.

Based on eq. (26), one can define a nondimen- Scaling (28) and (29) with the following scales:
sional total momentum TM h1a for vertical length scale, Eg∞h1a for velocity

scale, and v/Eg∞h1a for the horizontal length scale,
the non-dimensional set of equations can be writ-TM=

Q2
1

h1
+

Q2
2

h2
+

1

2
(h2
1
+rh2

2
)+rh1h2 , (27)

ten as

where (h1 , h2 ) are scaled with the lower layer A−Q2
1

h2
1
+h1B h

1x
+rh1h2x=

∂
∂x Ch1 Q1

h1BxD , (33)
upstream depth h1a , TM is scaled with g∞h21a , and

(Q1 , Q2 ) are scaled with g∞1/2h3/21a . The quantity TM
rh2h1x+A−Q2

2
h2
2
+rh2B h

2x
=

∂
∂x Ch2 AQ2

h2BxD .is a conserved quantity across a shock in a two
and a half layer flow. Potential post-shock states

(34)
must have the same TM value as the pre-shock
state (Benton, 1954). The boundary conditions at the leading edge of a
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shock are two small parameters: shock amplitude and shock
width (SS95).

h1 (x=−2)=1; h2 (x=−2)=h2a , (35)
In eqs. (39) and (40), the left-hand sides are

h
1x

(x=−2)=0; h
2x

(x=−2)=0, (36) quadratic terms and the right-hand sides are vis-
cous terms with second order derivatives.

where h2a is the upper layer upstream depth scaled
Therefore, eqs. (39) and (40) represent a local

with h1a , the lower layer depth upstream of a
balance between the non-linear steepening tend-

shock. At the trailing edge of a shock, one expects
ency and the viscous diffusion of momentum.

that both interfaces become flat, i.e.,
Assuming g= ĝ tanh(x/L ), and j= ĵ tanh (x/L ),

h
1x

(x=2)=0, h
2x

(x=2)=0, (37) where −ĝ and −ĵ are upstream values of the
perturbation depth in the lower and upper layer,

but the final depths h1 (x=2 ) and h2 (x=2) are
from eqs. (39–40), we obtain

unknown. A steady shock in a two and a half-
layer flow is specified by the pair of second order

3 CAQ22
h32c

−rB Q21 ĝ

h41c
+AQ21

h31c
−1B Q22 ĵ

)h42c
D ĝnon-linear ordinary differential equations (33, 34)

and corresponding boundary conditions (35–37).
The viscosity coefficient v does not appear in eqs. =

2

L CQ1
h21c AQ22

h32c
−rB ĝ+r

Q2
h22c

ĵD , (41)
(33) and (34), which suggests that a two layer
shock is pseudoinviscid in nature, i.e., that only
the shock width is influenced by the magnitude of 3 CAQ22

h32c
−rB Q21 ĝ

h41c
+AQ21

h31c
−1B Q22 ĵ

h42c D ĵ (42)
the viscosity.

The analytical solution for weak shocks and
=

2

L Cr Q1
h21c

ĝ+
Q2
h22c AQ21

h31c
−1B ĵD .numerical solutions for shocks with finite ampli-

tude will be discussed in the remaining parts of
this section. From eqs. (41) and (42), one obtains formulae for

the shock width

3.2. Weak shock solutions
L =

2

3ĝ

Q1/(Q22/h32c−r)2/h21c+r2Q2/h22c
Q21 (Q22/h32c−r)2/h41c+rQ22 (Q21/h31c−1)/h42cFor a weak shock, i.e., a shock with conjugate

(43)states near one of the branches of the critical

curve, using h1=h1c+g and h2=h2c+j, one can and the displacement ratio
expand eqs. (33) and (34) about the critical depths

h1c and h2c , which are defined by
ĝ

ĵ
=

Q22/h32c−r

r
. (44)

G(h1c , h2c , Q1 , Q2 , r)=0. (38)
Some important information can be learned

To the lowest order, we obtain from this weak shock solution. Using (44), and
setting the denominator in eq. (43) equal to zero,

−3 CAQ22
h32c

−rB Q21g

h41c
+AQ21

h31c
−1B Q22j

h42c
D g

x Q22
h32c

=r C1−AQ22h41c
Q21h42cB1/3D (45)

=
Q1
h21c AQ22

h32c
−rB g

xx
+

rQ2
h22c

j
xx

, (39)
or

F22s=r C1−AF22sh1cF21sh2cB1/3D , (46)−3 CAQ22
h32c

−rB Q21g

h41c
+AQ21

h31c
−1B Q22j

h42c D j
x

where (F1s , F2s ) is a special point on the internal
=

rQ1
h21c

g
xx
+

Q2
h22c AQ21

h31c
−1B j

xx
. (40) branch of the critical curve. At this point L =2,

so that a weak shock solution does not exist.
Above this point (F2>F2s or F1<F1s ), the denom-Note that the above equations are coupled second

order differential equations with some quadratic inator in (43) is negative and to have a positive

length scale, g must be negative (i.e., a drop ofnon-linear terms. A balance of linear and non-
linear terms arises because our expansion involves lower interface). Similarly, below this singular
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point, we require g>0 (i.e., a rise of lower inter- Using (44), (47), and (48),
face). The significance of the singular point is clear
in eqs. (41), (42). At the singular point, the second DB1=−

3Q1
ĝL A ĝ

h1cB3 , (49)
order non-linear terms become zero, which means
non-linear steepening is absent. Therefore, no

DB2=−
3Q2
ĵL A ĵ

h2c
B3 . (50)shock can form.

For an internal shock, r>Q22/h32c>0. Therefore,

eq. (44) indicates that across an internal shock, As in the rigid lid case, eqs. (49) and (50) verify
the magnitude of the depth change in the lower that Bernoulli changes in both layers are negative
layer is always smaller than that in the upper across a 2-layer shock.
layer, and they are of opposite sign. Using (49) and (50), the ratio of Bernoulli

For an external shock, the depth changes have changes in the lower and upper layer can be
the same sign and the amplitude ratio (44) can be expressed as
less than 1 or greater than 1, depending on its

position on the diagram (Fig. 2). Along the lower- DB1
DB2

=
Q1
Q2 Aĝ

ĵB2 Ah2ch1cB3 . (51)
right part of the external branch, Q22/h32c−r<r,

the expansion of the lower layer dominates. Along Using (44), eq. (51) can be written in Froude
the upper-left part of the external branch, numbers as
Q22/h32c−r>r, the expansion of the upper layer is

more pronounced. In the middle part, DB1
DB2

=SF1c
F2c
AF22c−r

r B2 Ah2ch1c
B1.5 , (52)Q22/h32c−r~r, the expansions of the 2 layers are

comparable.
where F1c=Q1/h1.51 and F2c=Q2/h1.52 .In summary, the weak shock solution suggests

For an internal shock, [(F2
2c
−r)/r]2~1, so thethat there are five types of two layer shocks:

Bernoulli change ratio is determined mostly by(a) internal jump, (b) internal drop, (c) external
the Froude number ratio and the depth ratio. Itlower layer jump, (d) external two layer jump, and
will be shown that typically, for an internal jump,(e) external upper layer jump. The boundaries

between weak type ‘‘c’’, ‘‘d’’, or ‘‘e’’ shocks are

gradual. Notice that the weak shock solution is SF1c
F2c
Ah2ch1c

B1.5I1
only valid near the critical curve. The regions with
valid weak shock solutions and the 5 different and for an internal drop,
types of weak shocks are schematically shown

on Fig. 2. SF1c
F2c Ah2ch1cB1.5H1,If one tries to compute the Bernoulli change in

each layer directly from the end state using the
so that the Bernoulli drop is strongly concentratedfirst order solutions, zero Bernoulli change will be
in the expanding layer.obtained. This is not a surprise, because Bernoulli

For an external shock, the 3 factors in (52) canchanges across a shock are higher order terms
be equally important. As an example, for two layer(SS95). Bernoulli losses across a two layer shock
flow with equal depth, if F1c=1.5 and F2c=0.7817,can be derived however from a ‘process integra-
we have DB1/DB2=0.07H1, i.e., viscous dissipa-tion’ based on the weak shock solution (43) and
tion in the upper layer is dominant; but if F1c=(44). Similar to the rigid lid case (Part I), to the
1.05 and F2c=1.71, we have DB1/DB2=18.7I1,lowest order, the Bernoulli losses can be expressed
i.e., viscous dissipation in the lower layer isas
much stronger.

DB1=
Q1
h3
1c
P b
a

(g
x
)2 dx, (47)

3.3. T ail modes in finite amplitude shocks

In a finite amplitude shock, eqs. (28) and (29)

are non-linear. However, at the two edges of aDB2=
Q2
h3
2c
P b
a

(j
x
)2 dx. (48)

shock, assuming that the slopes of the interfaces
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are very gentle, one can linearize these equations values as x�−2, and a negative l indicates that
the flow depths diverge (Fig. 3). Therefore, at thearound the initial or final states. We define

h1 (x)=H10+h∞
1
(x) and h2 (x)=H20+h∞

2
(x) with leading edge of a shock, we refer to modes with

l>0 as convergent tail modes, and modes withh∞
1
HH10 and h∞

2
HH20 , where H10 and H20 are the

upstream/downstream depths of the lower and l<0 as divergent tail modes. Similarly, at the
trailing edge, the tail modes with positive ls areupper layers.

The linearized equations can be written as divergent, and those with negative ls are conver-
gent. We assume that only convergent modes are
active modes at each edge. The coefficients of theA− Q2

1
H3
10
+1B h∞

1x
+rh∞

2x
=−

Q1
H2
10

h∞
1xx

, (53)
divergent modes must be set to zero.

It is instructive to compare the viscous tail
rh∞
1x
+A− Q2

2
H3
20
+rB h∞

2x
=−

Q2
H2
20

h∞
2xx

. (54) mode equations (53) and (54) with the inviscid

linear wave eqs. (10), (11). They have a similar
form except the time dependent terms in the linearUsing h∞1 (x)= ĥ1elx and h∞2 (x)= ĥ2elx in eqs.
wave equations are replaced by viscous terms. The(53) and (53), one can obtain the eigenvalues:
linear wave equations indicate a balance among
propagation, advection, and pressure gradientlint=

b+√b2−4aG

2a
, (55)

forces. Similarly, the viscous equations indicate a

balance among viscous forces, advection, and pres-
sure gradient forces. The importance of the viscouslext=

b−√b2−4aG

2a
, (56)

force in the balance is evident. Without a viscous
force, propagating wave modes would be sweptwhere
into the shock from upstream or downstream. No

a=Q1Q2/H2
10

H2
20

, (57) inviscid steady solutions are possible except for
flow precisely at the critical state.

b=
Q2
H2
20
A Q2

1
H3
10
−1B+ Q1

H2
10
AQ2

2
H3
20
−rB , (58) The dual role of G in defining criticality (16 or

32) and in controlling the decay of tail modes (32,
55 and 56) gives rise to the following rules: A two

G=A Q2
1

H3
10
−1B A Q2

2
H3
20
−rB−r2 . (59) layer shock can neither start from the BB regime

and nor end in the PP regime, as convergent tail
For a given initial state, there are two l’s. Each modes are not available to meet the boundary

l corresponds to a viscous normal mode. We refer
to lext as the external tail mode eigenvalue, and
lint as the internal tail mode eigenvalue.

The ratio of depth departures can be solved for
a specified l. Using (54),

ĥ2
ĥ1

=
Q2
1

H3
10
−1−

lQ1
H2
10

. (60)

For a given mode, the sign of ĥ2/ĥ1 , indicates the
phase relations between 2 layers.

After algebraic manipulation, it can be shown
that b2−4aG>0, i.e., l is always real. The signs
of the eigenvalues are listed in Table 1. Real ls

indicate that the viscous tail modes are either
Fig. 3. Sketch of the tail modes. The arrow indicates thegrowing or decaying. Taking the flow direction as
positive x direction and the flow direction. The solidthe positive direction of the x coordinate, we have
curves are for decaying modes and the dot–dashed curves

x<0 towards the leading edge, and x>0 towards
are for growing tail modes. At the leading edge l>0 is

the trailing edge. a decaying tail mode and l<0 is a growing tail mode,
At the leading edge, x<0, a positive l indicates and at the trailing edge, l>0 is a growing mode and

l<0 is a decaying mode.that the flow depths converge to their upstream
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condition at infinity. Based on the critical curves layer flow under a rigid lid was discussed by
Mehrotra (1973), and such a diagram was createdcrossed by a shock trajectory, two layer shocks

can be classified into three categories: Internal in Part I based first on a wave steepening condition

and then refined with a viscous model (JS00b).shocks, from BP to BB, cross the internal critical
curve. They have one active tail mode at the The steepening condition in Part I was the require-

ment that a shock start with supercritical condi-leading edge and two active tail modes at the

trailing edge. External shocks, from PP to BP, tions and have a range of mass-conserving total-
depth-conserving subcritical end-states available.cross the external critical curve. They have 2 active

tail modes at the leading edge and one active tail In two-layer flow with a passive third layer,

things are more complex. TM conservation playsat the trailing edge. Two-mode shocks, from PP
to BB, cross both critical curves. They have two the rôle of total-depth conservation and the tail-

mode ‘‘rules’’ play the role of the super- to sub-active modes at both edges. It will be demonstrated

later that although two-mode shocks are mathem- critical condition. These 2 conditions together
comprise a ‘‘steepening condition’’. The TM con-atical solutions of the viscous shock model, they

are physically inaccessible. servation tells us which end states may be possible

from a specified pre-shock state and the tail-modeBased on the nature of the tail modes, we can
also conclude that it is impossible to have a ‘‘rules’’ tell us whether these end states allow

shock solutions with convergent tail modes to bemonotonic shock from BP to BP, although there

is a convergent tail mode at each end. At the constructed.
As with the rigid lid case, we must rememberleading edge, an internal tail mode is the conver-

gent mode and at the trailing edge, an external that the steepening condition is a necessary but
not sufficient condition for shock existence. Wetail mode is a convergent mode. However, an

internal tail mode has an opposite phase relation shall see that the steepening condition is not as

useful here as it was in Part I as it is toobetween the two interface perturbations while an
external tail mode has an in-phase relation. To ‘‘generous’’. For example, it predicts the existence

of internal shocks from large portions of BP,match both tail modes then, one of the interfaces

would have to change slope in the middle of the whereas only a small portion of BP actually allows
such shocks. Because of the weakness of theshock. Thus, the matching between an internal

tail mode and an external tail mode is impossible steepening constraint, we will put more emphasis

on using the full viscous equations to determinein a monotonic shock.
These shock ‘‘rules’’ prohibit six of the nine shock existence. A shock-allowable state defined

in this context is a state for which a steady shockpossible transitions between the three states of

criticality (BB, BP and PP). Only 2 types of solution can be obtained based on the viscous
model.transition remain; the internal and external shock.

The former crosses the internal critical curve while The shock diagram for a two and a half layer

flow is shown on Fig. 4 (notations are listed inthe latter crosses the external critical curve. The
2-mode shock is impossible for other reasons. Table 1). The critical curves divide this diagram

into a BB regime, BP regime, and PP regime.The terms ‘‘internal shock’’ or ‘‘external shock’’

do not relate simply to the internal or external According to the ‘‘rules’’, flow in the BB regime is
not allowed to have shocks. Thus, we require nolinear waves or tail modes. As indicated by the

tail modes at the two ends, none of these shocks further investigation of this region. The subdivi-

sion of the BP and PP regimes, numerical strat-are purely ‘‘internal’’ or ‘‘external’’ in a linear
sense, because both types of tail modes are egies, and shock features will be addressed in the

subsequent parts of this section.involved in each type of shock.

4.1. Subdividing the BP regime
4. Shock regime diagram

2 methods can be used to subdivide the BP
regime: the TM constraint on steepening andUsing the rules developed above, we can

attempt to classify two layer shocks on a shock numerical calculation. According to viscous tail
mode theory, if the pre-shock flow is in the BPregime diagram. A shock regime diagram for two
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theory discussed in the last section. With the
upstream flow in the BP regime, only the internal
viscous tail mode is convergent at the leading

edge. Therefore, near the leading edge, we have

h1 (x)=1+ ĥ1elintx, (61)

h2 (x)=h2a+ ĥ2elintx, (62)

where lint can be solved from eq. (55), and the

relation between ĥ1 and ĥ2 can be solved from
eq. (60).

Instead of integrating from x=−2, we start

the integration from x=0. Using (61) and (62),
we obtain the boundary conditions at x=0:

h1=1+ ĥ1 , h2=h2a+ĥ2 ,

h
1x
=lint ĥ1 , h

2x
=lint ĥ2 .

(63)

The only free parameter in the above equations is
ĥ1 , which can be arbitrarily specified, as long as
it is small enough to satisfy the linear assumptionsFig. 4. Froude number regime diagram for two-layer
(e.g., ±0.001 has been used in this study). Basedshocks. The internal and external branches of the critical
on these boundary conditions, eqs. (33–34) cancurve (in bold-solid) divide the diagram into BB, BP,

and PP regimes. The marginal curve (in bold-dashed) be integrated using finite difference methods. The
for K=1 and r=0.5 divides the BP regime into three integration continues until a new equilibrium state
subregimes: BP-j regime, BP-d regime, and BP-n regime; is nearly reached. The end point must satisfy the
The PP regime is divided into three sub-regimes: PP-1,

following criteria:PP-3, and PP-2. The closed curve (dashed) is the TMM
curve (for K=1), outside of which the TM curve of each
point has a BB portion.

h
1x

(x=xb)=h
2x

(x=xb)=O(e) ,

|TM
a
−TM

b
|=O(e) ,

(64)

regime, the post-shock flow must be in the BB where e is a small number. A upstream state is
regime. A dashed closed curve (TMM) is shown classified as unacceptable if the solution diverges
on the regime diagram (Fig. 4). This is a marginal downstream.
curve representing flow states with their TM curve Based on the numerical solutions for a given
tangential with the internal critical curve (at the pre-shock depth ratio K=1/h2b , a marginal curve
point F10 , F20 ). For simplicity, we refer to it as the can be derived which is tangential to the internal
TMM curve. TM curves cannot cross the TMM branch of the critical curve at the point (F1s , F2s ).
curve. The portion of BP inside the TMM curve This singular point is given by weak shock theory
cannot have a BB conjugate state, which means (46). Flow in the BP regime can be divided into
that a shock is impossible. If one draws a TM three sub-regimes by this marginal curve, namely,
curve from a flow state lying in BP outside the BP-j regime, BP-d regime, and BP-n regime. As
TMM curve, there must be a portion of the TM for the rigid lid case (Jiang and Smith, 2001), for
curve lying in the BB regime. This is a necessary a given depth ratio, this marginal curve represents
condition for shock existence. The actual existence a shock bifurcation. For any point on the curve,
of shocks starting in this subregime must be its conjugate state lies on the far side of the
determined using numerical integration. internal critical curve. This marginal curve shows

strong dependence on the depth ratio K. The
4.1.1. Numerical integration. In order to apply marginal curve for K=1 is shown in Fig. 4.

boundary conditions (35–37) to the numerical
integration, a method is needed to bring the 4.1.2. BP-j: the jump regime. In the BP-j regime,

flow in the lower layer is more active, i.e., eitherboundary points from infinity to some finite dis-
tance. One approach is to use the normal mode faster, or thinner, or both. An internal jump occurs
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with a rise of the lower interface and a slight drop Fig. 6. The Bernoulli loss in the upper layer is
much larger than in the lower layer. The post-of the upper interface. An example is shown in

Fig. 5. The ‘‘TM’’ value is decreased in the first shock flow is in the BB regime.

Solutions for the internal jump and drop arehalf of the shock due to the upstream pointing
total viscous force, and recovers its initial value qualitatively similar to the weak shock solutions

described in the last section. While some previousby the end of the shock due to the reversal of the

internal viscous force in the trailing half of the shock theories predicted multiple conjugate states
for internal shocks (e.g., YG55), the uniqueness ofshock. The Bernoulli variations in two layers are

initially of opposite sign similar to the the vari- an internal shock is clear from the point of view

of the viscous shock theory. There is only oneation of ‘‘TM’’. The final Bernoulli changes across
the shock in both layers are negative with the convergent tail mode at the leading edge, which

makes the boundary condition (at x=0) unique.Bernoulli loss in the lower layer dominant. The

variation of viscous forces in the two layers is Thus, the shock is unique.
consistent with the variations of TM and
Bernoulli changes. 4.1.4. BP-n: the no-shock regime. As for the rigid

lid case (Mehrotra, 1973; Jiang and Smith, 2001),
a large portion of the BP regime is found to not4.1.3. BP-d: the drop regime. The internal drop

regime is characterized by F1<F2 , i.e., a more allow shocks. In this BP-n subregime, a finite

amplitude perturbation riding on the basic flow isactive upper layer. An internal shock occurs with
a drop of the lower interface and a slight rise of unable to steepen and form a steady shock. For

pre-shock states inside TMM, TM trajectoriesthe upper free surface. An example is shown in
cannot even enter BB. For the other pre-shock
states in BP-n, trajectories enter BB but pass out

Fig. 5. An internal jump solution with F1=0.8, F2=0.1,
K=1, r=0.5; (a) flow depths; (b) % of total momen-
tum (TM) change, i.e., 100× (TM−TMa)/TMa ; (c) %

Fig. 6. An internal drop solution. The same quantitiesof Bernoulli changes, i.e., 100× (B1−B1a )/B1a and
100× (B2−B2a )/B2a ; (d) viscous forces. The values for are plotted as in Fig. 5 except F2=0.8, F1=0.1, K=1,

r=0.5.the upper layer are dashed.
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the other side into BP again before reaching an
end state. In either case, no shock exists.

4.2. Subdividing the PP regime
4.2.1. Reverse integration. The strategy for sub-

dividing the regime diagram becomes more com-
plicated for regime PP. With two convergent tail
modes at the leading edge, a proper combination

of the two modes has to be found, i.e.,

h1 (x)=1+ĥ1 (elintx+bel
ext
x ) , (65)

h2 (x)=h2a+ ĥ1 (c1elintx+c2bel
ext
x ) , (66)

where b is a unknown coefficient. The coefficients

c1 and c2 are ratios between the departures from
the upstream depths for internal and external
modes, respectively, and can be derived from linear

eqs. (53) and (54).
One can obtain a set of boundary conditions at

Fig. 7. Definition sketch for the reverse integration
x=0: method. DA is the distance from point A and positive

along clockwise direction. Dc is the distance from point
C along the TM curve. Arrows point from post-shock
states to pre-shock states.

h1=1+ ĥ1 (1+b) ,

h2=h2a+ ĥ1 (c1+c2b) ,

h
1x
= ĥ1 (lint+blext ) ,

h
2x
= ĥ1 (c1lint+bc2lext) .

(67)

the PP portion of the TM curve. The advantage
of reverse integration is that the downstream

convergent tail mode of BP flow is unique. For aNotice that b is the only free parameter to be
determined. One straightforward approach is the given pre-shock state ‘‘A’’, the integration gives a

point along the PP portion of the TM curve. Weso called shooting method: try every possible b,

until the right one is found, that is, until a final define the distance of the end-state equilibrium
point from ‘‘A’’ as DA , positive clockwise andequilibrium state can be reached. The primary

assumption of the shooting method is that solu- negative counterclockwise. The conjugate state(s)

of ‘‘A’’ will be those points in BP having DA=0tions are well behaved, which means that correc-
tions to b can be made based on previous end- as equilibrium states. On Fig. 7, point C is a

interception of the critical curve and TM curve,state estimations. Unfortunately, due to the highly

non-linear nature of the governing eqs. (33–34) we define the distance of a point on the BP portion
of TM curve from C as DC . For point A and pointand the special end-state boundary condition (at

infinity), it is often found that a fairly accurate B, the results of this reverse integration are plotted

on Fig. 8. Obviously, for point A, the curve passesestimate of b is required for a successful conver-
gent iteration. over zero once, which indicates that point A has

a unique conjugate state and for point B, theFortunately, there is a better way to find the

conjugate states and verify their uniqueness. For curve passes over zero three times, which suggests
that point B has three conjugate states. Based ona given point in PP with a specified depth ratio,

its TM conservation curve is a closed curve which the numbers of conjugate states, flow in the PP

regime can be divided into three sub-regimes: PP-1spans BP and PP (Fig. 7). Any point on the PP
portion of the curve must have its conjugate (unique conjugate state), PP-3 (three conjugate

states), and PP-2 (infinity of conjugate states).state(s) on the BP portion of the curve. Therefore,
instead of starting the integration from the PP
portion, one can start from the BP portion and 4.2.2. T he PP-1 regime; unique conjugate states.

As shown in Fig. 4, the PP-1 regime covers mostdo the integration in reverse. The equilibrium state
for this type of integration will be a point along of PP. Flow in this regime has a unique conjugate
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Fig. 8. Examples of reverse integration. Case A: F1=1.8,
F2=1.8, K=1; Case B: F1=3.0, F2=2.5, K=1.

state in BP. Solutions in PP-1 are qualitatively

similar to weak external shock solutions.
Therefore, three types of shocks can be expected.

Fig. 9. Solution for an external type c shock. The sameFor those flows with F1IF2 , there will be an
quantities are plotted as in Fig. 5 except F1=1.5, F2=external upper layer shock, which makes the flow
2, K=1, r=0.5.

even more asymmetric. With the lower interface
almost unchanged, this type of shock is somewhat

similar to a single layer shock above a passive
lower layer. For those flows with F1HF2 , the to one isolated conjugate state and a doubly

degenerate conjugate state. At the tip of the cusp,shock will be an external lower layer type, which

makes F1 even smaller. In this type of shocks, the it has a triply degenerate conjugate state. For K=
1 and r=0.5, the location of the tip is (F1 , F2 )=upper layer is almost passive: changing its mean

elevation but only slightly its thickness. For flows (2.22±0.01, 1.82±0.01). This location varies with

both K and r. For example, the location of the tipwith F1~F2 , there will be an external two layer
shock with comparable expansions of two layers. moves to (F1 , F2 )= (2.54±0.01, 1.54±0.01) for

K=0.5, and moves to (F1 , F2 )= (1.87±0.01,Examples for these three types of shocks are

shown in Figs. 9–11. Notice that the x coordinate 2.04±0.01) for K=2. To understand the structure
of the cusp and physical features of conjugateis negative due to the reverse integration. As the

upstream flow is changed from backward shear to states, a set of solutions has been computed for

pre-jump points on a circle centered at (F1=0,forward shear, the shock changes from type ‘‘c’’,
to type ‘‘d’’, and finally to type ‘‘e’’. F2=0) and a radius of EF21+F22=4, which cuts

through the PP-3 regime. Three types of solutions

are illustrated in Fig. 12. One natural question is4.2.3. T he PP-3 regime; three conjugate states.
In the small V-shaped regime (Fig. 4), a cata- how to access the middle branch of solutions. In

Section 5, we will show that if one slowlystrophe or cusp (Gilmore, 1981) is identified. In
this regime, for each specified flow state, there are approaches the cusp from either side, the conjugate

state will stick to either the lower layer jump orthree conjugate states corresponding to type ‘‘c’’,

type ‘‘d’’, and type ‘‘e’’ shock, respectively. Each upper layer jump solution. Therefore, the only
possible way to access the type ‘‘d’’ shock is bypoint on the boundaries of the cusp corresponds
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Fig. 10. Solution for an external type d shock. The same
Fig. 11. Solution for an external type e shock. The samequantities are plotted as in Fig. 5 except F1=1.8, F2= quantities are plotted as in Fig. 5 except F1=2.0, F2=1.5, K=1, r=0.5.
1.5, K=1, r=0.5.

real pre-shock states in PP-2 will give rise toentering the cusp precisely through the peak of
the cusp region, which is practically impossible. type ‘‘c’’ or ‘‘e’’ shocks with end states in BP.

4.2.4. T he PP-2 regime; an infinity of conjugate
states. The viscous calculation shows that in a 5. Model comparisons
subregion external to the TMM curve, but within
PP-3, type ‘‘d’’ shocks exist with end states in BB. 5.1. Comparison with shallow water simulations

5.1.1. T wo and a half layer shallow water model.As these shocks cross two critical curves, we call

them two-mode shocks. Each pre-shock state To further understand two layer shock dynamics
and explore the proper way to simulate non-linearin this subregion has an infinite number of

end-states. We thus call this subregion, PP-2. hydraulic phenomena, we compare steady 1-D

viscous shock solutions with shock simulations inThe mathematical reason for the infinity of end
states is that all four tail modes are convergent a time dependent 2-D shallow water model

(SWM). We particularly focus on bow shocks in(Subsection 3.3); giving one extra adjustable

amplitude coefficient to satisfy the boundary front of isolated hills. As is well known, as super-
critical flow approaches a 2-D obstacle of finiteconditions. All but one of these shocks is non-

monotonic however. height, a bow shock may appear in front of the
obstacle (Baines, 1995; Jiang and Smith, 2000a).This curious subregion lies on the ‘‘d’’ branch

of PP-3, and is therefore inaccessible. For this Although the simulation of 2-D flow requires more

computing resources than 1-D flow, it allows thereason, we have not carried out more detailed
investigations of this subregion. We expect that lateral dispersion of perturbations and a steady
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imum height, (x, y) is horizontal dimensions scaled
by the half width of the obstacle. The domain size
is 80×40 with a spatial resolution of DX=DX=
0.1. Temporal resolutions, ranging from 0.005 to
0.025, are chosen to satisfy the numerical stability
criterion. A typical run to a steady state lasts 40

nondimensional time units.
In order to obtain steady state solutions, we

start the flow from rest, and integrate with ‘zero

gradient’ boundary conditions along at the edges
of the domain. The integration is carried out until
a steady state is reached. The sensitivity of the

steady state solutions to different boundary condi-
tions has been tested, verifying that for such a
large domain. the shock structures and other

interior patterns are not influenced by the bound-
ary conditions.

The control parameters for our simulations are:

two Froude numbers F1 and F2 , the nondimen-
sional mountain height M, the flow depth ratio KFig. 12. A set of shock solutions for pre-shock conditions
(=h1/h2 ), and the density step ratio r.arrayed across the cusp. Three types of solutions are

apparent, i.e., type c, type d, and type e. Points in the
cusp have three conjugate states corresponding to three 5.1.2. Steady state solutions. A few examples of
types of shocks. bow shocks are shown in Fig. 13. For different

cases, different Froude numbers and mountain
height M have been chosen to generate the desiredstate can be reached with stationary shocks loc-

ated near the obstacle. Along the centerline, a bow bow shocks. The upstream depth ratio and density
step ratio were kept constant for all cases.shock is a normal shock, with pre-shock condi-

tions approximately the same as the specified Case ‘‘a’’ shows that as an upstream flow in the

BP-j regime approaches the hill, a steady bowinflow conditions. The shock thickness is much
less than the radius of curvature so the bow shock shock appears, taking the form of an internal

jump. The lower interface rises and the uppercan be considered 1-D.

Two-layer flow with a free surface has been interface drops slightly. Case ‘‘b’’ shows a bow
shock in the form of an internal drop with a dropinvestigated in one dimension by Houghton and

Isaacson (1968). They explicitly used YG’s shock of the lower interface and a rise of the upper

interface. The upstream flow is in the BP-d regime.condition in their numerical formulation. With
only one horizontal dimension in their study, no Case ‘‘c’’ shows an external lower layer bow

shock. The upstream flow is in the PP-1 regimestationary shock was found upstream of the ridge.

The shallow water model used for this study and forward shear promotes the expansion of the
lower layer dh1=1.2, while the upper layer depthhas been described in Part I. A set of time depend-

ent shallow water eqs. (4–6) are integrated in flux is almost unchanged dh2<0.05. Case ‘‘d’’ shows

an external two layer jump. The upstream flow isform. A flux-corrected transport (FCT) technique
has been used to ensure that momentum and mass in the PP-1 regime and the two layers are equally

active. The expansion of two layers are comparableare conserved simultaneously. Further details can

be found in SS93 and Schär and Smolarkiewicz (dh1=0.75 and dh2=0.65). Case ‘‘e’’ shows that
with backward shear, an external upper layer(1996).

In this study, we use a bell shaped obstacle, jump forms in front of the obstacle. Most of the
expansion occurs in the upper layer (dh1=0.3 andspecified by
dh2=1.5).

h(x, y)=M/(1+x2+y2)3/2 , (68)
Fig. 13 ‘‘f ’’ and ‘‘g’’ show two runs with

upstream flow in the cusp region. The upstreamwhere the M=h
m
/h0 is the nondimensional max-
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Fig. 13. Shallow water simulations along the center streamline. The obstacle and the lower and upper interfaces are
shown as solid curves. Flow is from left to right. Only part of the upstream domain is shown. For all the cases, K=
1 and r=0.5. (a) Internal jump: F1=0.8 and F2=0.1; (b) Internal drop: F1=0.1 and F2=0.8; (c) External lower-
layer jump: F1=2.0 and F2=2.0; (d) External two-layer jump: F1=1.8 and F2=1.5; (e) External upper-layer jump:
F1=2.0 and F2=1.5; (f ) Jump-drop pair: F1=4 cos 37.5° and F2=4 sin 37.5°; (g) Jump-jump pair: F1=4 cos 40°
and F2=4 sin 40°.

state of case ‘‘f ’’ is of roughly equal distance from were performed with a slowly changing upstream

flow. By changing the upstream boundary condi-the two cusp boundaries. A lower layer jump
occurs first with a transition from PP-3 to BP-n. tion, we allow the ambient flow to slowly change

along a circle in Fig. 14, with the origin at (0, 0)The strong dissipation in the lower layer puts the

post-shock flow close to the BP-d regime. After a and a radius EF21+F22=4. In the first case, the
pre-shock state is modified to move counter-short distance of adjustment, a second shock

occurs which brings the flow into the BB regime. clockwise. It begins at point A, reaches the cusp
boundary at point D, the cusp center at C, the farWith flow in the upper layer more active, the

second shock is an internal drop. cusp boundary at E and finally ends at B. In the

second case, the pre-shock state begins at B andThe upstream flow of case ‘‘g’’ is close to the
lower boundary of the cusp. An upper layer jump moves clockwise to A.

The rate of change can be measured by a timeoccurs first with the lower layer almost unchanged.

The post-jump flow is in the BP-n regime and scale defined as T=U/(dU/dt). Some other time
scales can be constructed from control parametersclose to the BP-j regime. An internal jump occurs

after a short distance of adjustment. are T1=L /U, T2=a/U, T3=L /(U−C), where L

is the domain length, a is the half width of the
5.1.3. Cusp and hysteresis. To investigate flow obstacle, and C is the external wave speed. In our

simulation, T =600, T1<40, T2<5, T3<80.behavior around the cusp region, two special runs
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Fig. 14. A sequence of strong external shocks with pre-
shock states lying on a circle with its origin at (0, 0) and Fig. 15. A sequence of strong external bow shocks
a radius of EF21+F22=4. This circle intercepts the cusp formed in the shallow water model as the shear in the
boundary at point D and E. Angle a defines a radial to upstream flow is slowly varied from reverse to forward.
the pre-shock state. Angle b is the angle between the line On the figure, the pre-shock state moves in a counter-
passing from point C and origin (0, 0), and the line clockwise fashion. The arrows point from pre-shock
passing through the post-shock state and point C. Angle states to post-shock states. Note the abrupt change in
b is positive in counterclockwise direction. post-shock state as the pre-shock state crosses the cusp

boundary. Reference curves are as in Fig. 4.

Therefore, we believe that the change is slow
enough to allow the flow to evolve through a

sequence of near steady states.
The results are shown in Figs. 15, 16. Fig. 15

shows a run with flow speed changing along the

circle in counterclockwise direction (i.e., from for-
ward shear to backward shear). The arrows point
from the pre-shock to post-shock state. Note that

due to the slight slope of the underlying topo-
graphy, the pre-shock flow states are slightly
different than the specified upstream flow states,

which are precisely on the circle. Initially, the
shock is type ‘‘e’’, and it remains type ‘‘e’’ while
the ambient flow goes into the cusp. Upon crossing

the second boundary of the cusp, a sudden change
occurs with the bow shock switching from type
‘‘e’’ to type ‘‘c’’.

To describe to the hysteresis, we define two
angles a and b (Fig. 14). For both clockwise and

counterclockwise runs, the results are plotted in
Fig. 16. The solid curve represents viscous model

Fig. 16. Viscous shock solutions (in solid), clockwise
predictions for initial states along the circle. SWM run (circles), and counterclockwise run (triangles).

The viscous shock theory predicts a 3-branch For the clockwise run, a decreases and b increases. For
the counterclockwise run, a increases and b decreases.solution. For the clockwise run (a decrease), the
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bow shock evolves along the lower branch, and where K=h1/h2 is the pre-shock layer depth ratio.
An measure of the energy budget in a steady flowjumps to the upper branch after point E, which is

the end of the lower branch solution. For the is the Bernoulli function along the interfaces. For

a two and a half layer flow, the nondimensionalcounterclockwise run (a increases), the bow shock
remains on the upper branch until point D and (scaled with g∞h0 ) Bernoulli functions are defined

asthen jumps to the lower branch. In both cases,

the middle branch was never accessed.
B1=DU21+h1+rh2 , (72)These simulations agree with viscous shock

theory predictions concerning the existence and B2=DU22+rh1+rh2 . (73)
position of the PP-3 regime. They also confirm

Using (70–73), one can obtainour suspicion concerning the inaccessibility of type
‘‘d’’ solutions and the existence of hysteresis in the

cusp region. dB1=−
h1F21e31

2(e1+1)2(e1+2)
, (74)

The good quantitative agreement between 1-D
steady viscous shock theory and the 2-D time-

dB2=−
h2F22e32

2r(e2+1)2(e2+2)
, (75)dependent shallow water model (SWM) comes as

a surprise. Unlike the viscous model, the SWM
has no explicit viscosity and this allows shocks to where dB1 and dB2 are Bernoulli changes in

the lower layer, upper layer respectively, andsteepen into jagged structures spanning only a few
grid points. Numerical dissipation and diffusion e1= (h∞1−h1 )/h1 and e2= (h∞2−h2 )/h2 are propor-

tional depth changes.must dominate in SWM shocks, constrained only
by its flux-formulation (Schär and Smolarkiewicz, It can be demonstrated from YG’s theory that

for an internal jump, e1>0 and e2<0 and for an1996). This agreement builds confidence that our

results are robust, i.e., not overly sensitive to internal drop, e1<0 and e2>0. Therefore, from
eqs. (74–75), there is an energy gain in the uppermodel formulation.
( lower) layer after an internal jump (drop) for a

two and a half layer flow. Apparently the assumed
5.2. Comparison with YG theory

momentum exchange formula (69) in YG’s theory
As discussed in Section 1, classical shock theor- is problematic.

ies close the two layer shock problem by either To compare YG and viscous theory, we revisit
assuming a certain momentum exchange formula five of the examples shown in the last section.
or energy conservation in one layer. We compare YG’s predictions and the viscous shock theory
our results with the former scheme by looking at predictions are listed in Table 2. The YG post-
YG’s shock condition (YG55). YG assumed a shock state were obtained by numerically solv-
special form of M12 , i.e., ing eqs. (70) and (71). Also listed in Table 2 is

M12 , the momentum exchange computed from
M12=Dr2g∞(h∞1−h1 ) (h∞2+h2 ) . (69)

viscous shock theory (25) and scaled with
Substituting (69) into eqs. (23–24), we obtain the g∞(h∞1−h1 ) (h2+h∞2 ), which is the YG’s assumption
classical shock condition for a two and a half of interfacial momentum exchange.
layer Boussinesq flow, For flow in the BP-j (case (a) regime and BP-d

(case (b) regime, YG theory predicts three end

states. Only two of them are shown in the table.2F21
h∞1−h1

h1
=A1+ h∞1−h1

h1 B A2+ h∞1−h1
h1 B

The third one represents an internal two-layer
jump with Bernoulli gain in both layers, which is

×Ah∞1−h1
h1

+r
h∞2−h2

h2
NKB , (70) physically impossible. The second conjugate state

represents a shock from the BP regime to the BP

regime with comparable energy gain in the con-
2F22

h∞2−h2
h2

=r A1+ h∞2−h2
h2 B A2+ h∞2−h2

h2 B tracting layer and energy loss in the expanding
layer. This too, we believe, is not a physical

conjugate state although it is included in Table 2.×AK h∞1−h1
h1

+
h∞2−h2

h2
B , (71)

We can focus primarily on the comparison
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Table 2. Comparison between YG and viscous theory (scaled values for K=1)

Viscous model Yih and Guha
Parameters Layer

Case F1 ; F2 1/2 Dh DB (10−2 ) Dh DB (10−2 ) M12

a F1=0.8 1 0.1990 −0.11 0.1990 −0.066 1.003
F2=0.1 2 −0.2050 −0.028 −0.2045 0.015
F1=0.8 1 — — 0.6250 −1.2 —
F2=0.1 2 — — −0.876 19.0

b F1=0.1 1 −0.4513 −0.44 −0.4312 0.080 −1.01
F2=0.8 2 0.8720 −1.9 0.8431 −2.0
F1=0.1 1 — — −0.929 24.3 —
F2=0.8 2 — — 1.370 −43.0

c F1=1.5 1 0.611 −4.0 0.598 −3.6 1.004
F2=2.0 2 0.110 −0.27 0.101 −0.09

d F1=1.8 1 0.681 −5.6 0.701 −7.2 1.09
F2=1.5 2 0.620 −4.6 0.575 −3.4

e F1=2.0 1 0.421 −3.3 0.411 −2.9 0.971
F2=1.5 2 1.110 −11.0 1.11 −11.0

between the first conjugate state and viscous model

prediction.
For both case a and case b, the end states

predicted by two theories are quite similar. Viscous

theory predicts a slightly weaker contraction of
the lower layer for case a and a slightly weaker
contraction of the upper layer for case b. The

Bernoulli losses are qualitatively different. Viscous
theory predicts Bernoulli losses in both layers.
YG’s theory predicts a Bernoulli loss in the

expanding layer and a small Bernoulli gain in the
contracting layer.

In case a, M12>1, indicating that for an inter-

nal jump, YG’s formulation underestimates the
momentum transport from the upper layer to the
lower layer. In case b, M12<−1, indicating that

for an internal drop, YG’s formulation underesti-
mates the momentum transport from the lower
layer to the upper layer. The underestimate of
momentum exchange is physically equivalent to Fig. 17. Comparison of three shock models. Shock solu-

tions from the viscous theory (solid line) and YG’s theorymixing some momentum into the contracting
(dashed line) for two points in the cusp region, i.e., pointlayer, which might cause the Bernoulli value to
A (F1=4 cos 37.5°, F2=4 sin 37.5°) and point B (F1=increase in the contracting layer.
4 cos 40°, F2=4 sin 40°). The lines connect between the

For case c, d, and e, both YG theory and viscous initial and end-states. The two lines in bold represent
shock theory predict a unique conjugate state and shallow water model solutions with initial states in the
Bernoulli losses in both layers. The momentum vicinity of A and B.

exchange rate (M12 ) can be greater or less than

unity.
YG’s theory also predicts the existence of a cusp slightly larger than that predicted by viscous

theory. The two tips are fairly close to each other.for strong external jumps. For K=1, the cusp

boundaries predicted by YG’s theory is shown on In Fig. 17, two points in the cusp, A and B, are
taken as examples. For all three branches ofFig. 17. The cusp region predicted by YG is
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solutions, the agreement between the two theories BP to BB (i.e., an internal shock), from PP to BP
(i.e., an external shock) or PP to BB (i.e., two-is satisfactory.

The 2 bold lines in Fig. 17 are centerline shock mode shock). The ‘‘two-mode shock’’ satisfies the

steepening condition but can be ruled out on othersolutions from the shallow water model runs. The
specified upstream flow states are A and B respect- grounds. The steepening condition can be

extended, using the Total Momentum (TM) con-ively. The upstream adjustment due to the under-

lying topographic forcing account for the straint, to prohibit pre-shock states in part of BP.
The steepening condition is a necessary but notdeparture of the pre-shock states from the specified

upstream states. Nevertheless, a general agreement sufficient condition for shock existence and, it

does not specify uniqueness. For example, largeis obvious. The shallow water runs gives no middle
branch solution. regions of parameter space BP satisfy the

steepening condition, but in fact, do not supportIn summary, at least for relatively weak shocks

(shown in Table 2), there is a quantitative agree- shocks. Furthermore, some parts of PP have
shocks with multiple end states. Therefore, toment between the YG and viscous shock theories

in regard to the end-state prediction. In fact, to construct a useful pre-shock state regime diagram,

it is necessary to subdivide both PP and BP withthe lowest order (i.e., weak shock solutions),
M12=1, and the two theories predict precisely the respect to shock existence and uniqueness using a

series of numerical solutions to the viscous modelsame end state.

There is no doubt that YG’s formulation (i.e., equations. The final result is shown in Fig. 4.
Regime BP is divided into 3 regions: internaltwo coupled third order algebraic equations) is

much simpler than viscous shock theory (i.e., 2 jumps and drops and a no-shock subregime
(BP-n). Some pre-shock states in BP-n have nocoupled non-linear differential equations). The

improved physical consistency of and the added shock solutions because their TM curves do not

enter BB. Other states in BP-n would give shocksinformation about shock existence and uniqueness
from the viscous shock theory may make it more that are so strong that they ‘‘overshoot’’ BB,

ending up in BP again so that the steepeninguseful as a foundation for future research.

tendency is absent.
Regime PP is also divided into three regions.

First is a large subregime (PP-1) composed of6. Summary
weak and moderate strength shocks of three types:
lower layer, two-layer and upper layer jumps.In this paper, we have developed a theory of

shocks in two-layer flow with a passive layer Each pre-shock state in PP-1 has a unique end

state. Second is a cusp-shaped region (PP-3)above, using a pair of viscous model equations. It
is convenient to describe the theory in two parts: with strong shocks where each pre-shock state

has three distinct end states, corresponding tothe steepening condition and numerical solution.

The steepening condition arises mathematically lower layer, two-layer, and upper layer jumps.
Topologically, the cusp is a folding over of thein this problem from the need to find solutions

which converge properly at upstream and down- three shock type domains found in PP-1. We

argue that the middle-branch, corresponding tostream infinity. The three possible states of critical-
ity of two layer flow (BB, BP and PP) are relevant two-layer jumps, is inaccessible. Third is PP-2,

where each pre-shock state has an infinity of endto this issue. Critical curves, describing the condi-

tion of zero wave speed, mark the boundaries of states. This subregime is inaccessible however, as
it lies on the middle branch of PP-3.these states. The discussion of linearized viscous

‘‘tail modes’’ leads to a set of rules concerning the The cusp in PP has several physical implica-

tions. It indicates that an equal distribution ofcritical curves that must be crossed during a shock
transition. These rules in turn suggest a shock dissipation between the two layers is mathematic-

ally possible but physically inaccessible. Thus,classification system. Shocks cannot start in BB
nor end in PP. Monotonic shocks cannot both external jumps tend to concentrate their dissipa-

tion in one of the layers. It also allows a non-begin and end in BP. These rules eliminate 6 of

the 9 possible transitions between the 3 states of uniqueness in the final state of the jump and
promotes hysteresis in time varying flows. Incriticality. The remaining 3 transitions are from
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practice, the concentration of dissipation and PV able. The Bernoulli curve drops strongly and only
slightly recovers giving a large net Bernoulli loss.generation in the upper or lower layer becomes
Bernoulli loss is strongly concentrated in the layervery sensitive to upstream shear. A striking con-
with the larger relative depth change.sequence of the cusp character of strong external

An objective of this work is to evaluate howjumps is that even if the initial state is unsheared,
existing numerical shallow water models handlethe end state is so rapidly sheared that the condi-
shocks. All five types of shocks found in the theorytions for an internal shock may then be nearly
have been simulated as bow shocks by a timemet. Thus, a strong external jump may be followed
dependent shallow water model. Shocks formingby an internal shock.
on the lee side of the obstacle are not included inIt is interesting that internal shocks must start
this comparison as it is much more difficult towith asymmetric flow and have a tendency to
control their pre-shock states. A reasonable agree-make a 2-layer flow more symmetric. On the other
ment between viscous model solutions and shallowhand, external shocks can start with either sym-
water simulations has been found with respect tometric or slightly asymmetric flow, but, always
shock existence, uniqueness and end statemake a 2-layer flow more asymmetric.
properties.The model equations give a mechanistic picture

The predictions of YG theory approximatelyof how Bernoulli loss occurs in a shock. The
agree with viscous theory, but YG has two prob-viscous force in an ideal shock can be decomposed
lems: no existence/uniqueness theorem and, dueinto two parts: normal viscous force and unbal-
to a small error in the momentum exchangeanced viscous force (SS95). The normal viscous
formulation, an unphysical Bernoulli rise in theforce can locally increase or decrease the Bernoulli
contracting layer.constant but the sum of its contributions across a

shock is zero. The unbalanced viscous force gener-

ated at the sloping interface always has the tend- 7. Acknowledgments
ency to destroy energy and reduce the Bernoulli

constant. For a weak shock, the unbalanced vis- Christoph Schär kindly allowed us to use his
cous force is only a small portion of the total shallow water code. The paper benefited from
viscous force. Therefore, the variation of Bernoulli the recommendations of two reviewers. This
function within a shock is much larger than the research was supported by the National Science
net Bernoulli loss after a shock. For a strong Foundation, Division of Atmospheric Sciences

(ATM-9711076).external shock, these two components are compar-
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