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ABSTRACT

Nonlinear principal component analysis (NLPCA) can be performed by a neural network model
which nonlinearly generalizes the classical principal component analysis (PCA) method. The
presence of local minima in the cost function renders the NLPCA somewhat unstable, as
optimizations started from different initial parameters often converge to different minima.
Regularization by adding weight penalty terms to the cost function is shown to improve the
stability of the NLPCA. With the linear approach, there is a dichotomy between PCA and
rotated PCA methods, as it is generally impossible to have a solution simultaneously
(a) explaining maximum global variance of the data, and (b) approaching local data clusters.
With the NLPCA, both objectives (a) and (b) can be attained together, thus the nonlinearity
in NLPCA unifies the PCA and rotated PCA approaches. With a circular node at the network
bottleneck, the NLPCA is able to extract periodic or wave modes. The Lorenz (1963)
3-component chaotic system and the monthly tropical Pacific sea surface temperatures
(1950-1999) are used to illustrated the NLPCA approach.

1. Introduction of neural network (NN) models, a class of powerful
nonlinear empirical modelling methods originat-

Having to analyze large fields of data, from ing from the field of artificial intelligence, raises
satellite images to numerical model output, met- the hope that the linear restriction in our analysis
eorologists and oceanographers have embraced of environmental datasets may finally be lifted
classical multivariate statistical methods, such as (Hsieh and Tang, 1998).
principal component analysis (PCA) and canon- Various NN methods have been developed for
ical correlation analysis (CCA) (Von Storch and performing PCA (Oja, 1982; Diamantaras and
Zwiers, 1999). PCA (also known as empirical Kung, 1996). Nonlinear principal component ana-
orthogonal function analysis) extracts the modes lysis (NLPCA) using NN was first introduced by
in a set of variables {x

i
}. It is commonly used for Kramer (1991) in the chemical engineering literat-

two purposes: (i) to reduce the dimensionality of ure, and is now used by researchers in many fields.
the dataset by retaining only the first few modes, Due to the presence of multiple minima in the
and (ii) to extract features (or recognize patterns) cost function, the NLPCA is generally less stable
from {x

i
} — a task at which it is challenged by than its linear counterpart. The first objective of

rotated PCA (RPCA) methods (Richman, 1986). this paper is to illustrate how the stability of the
While much has been learned through the use NLPCA can be improved by adding weight pen-

of PCA and related methods, the fact that they alty terms to the cost function.
are linear methods implies a potential oversimpl- The tropical Pacific sea surface temperature
ification of the datasets being analyzed. The advent (SST) and sea level pressure fields have recently

been analyzed by the NLPCA (Monahan, 2001).

* e-mail: whsieh@eos.ubc.ca Although comparisons have been made between

Tellus 53A (2001), 5



. . 600

the NLPCA and PCA methods in Monahan linear mapping. To perform NLPCA, the NN in
Fig. 1 contains 3 ‘‘hidden’’ layers of variables (or(2001), the second objective of this paper is to

examine the role of NLPCA in a broader context, ‘‘neurons’’) between the input and output layers
of variables. (For the reader not familiar with NNin particular its relation to the RPCA methods,

as well as to the PCA method, and show why the models, see Hsieh and Tang, 1998). A transfer
function f1 maps from x, the input column vectordichotomy between PCA and RPCA resolves

automatically with the introduction of nonlinear- of length l, to the first hidden layer (the encoding
layer), represented by h(x), a column vector ofity in NLPCA.

PCA and RPCA are known to handle data length m, with elements
containing periodic phenomena or waves rather

h(x)
k
= f1[(W (x)x+b(x) )

k
], (3)

poorly. The third objective of this paper is to
show that NLPCA with a circular node in the where (with the capital bold font reserved for

matrices and the small bold font for vectors), W (x)network bottleneck (Kirby and Miranda, 1996)
generalizes the NLPCA to handle periodic or is an m× l weight matrix, b(x), a column vector of

length m containing the bias parameters, and k=wave phenomena as well.
This paper is organized as follows: The theory 1, . . . , m. Similarly, a second transfer function f2

maps from the encoding layer to the bottleneckof the NLPCA is given in Section 2. In Section 3,
weight penalty terms are used to improve the layer containing a single neuron, which represents

the nonlinear principal component u,stability of the NLPCA. A 3-way comparison
between NLPCA, RPCA and PCA is performed

u= f2 (w(x)Ωh(x)+b: (x) ) . (4)
on the tropical Pacific SST field in Section 4. The
circular-noded NLPCA is presented and applied The transfer function f1 is generally nonlinear

(usually the hyperbolic tangent or the sigmoidalto the tropical Pacific SST in Section 5.
function, though the exact form is not critical ),
while f2 is usually taken to be the identity function.

Next, a transfer function f3 maps from u to the2. Theory of NLPCA

In most meteorological/oceanographic appli-
cations, the data can be expressed in the form
x(t)=[x1 , . . . , xl], where each variable x

i
, (i=

1, . . . , l), is a time series containing n observations.
PCA looks for u, a linear combination of the x

i
,

and an associated vector a, with

u(t)=aΩx(t) , (1)

so that


dx(t)−au(t)d2� is minimized, (2)
Fig. 1. The NN model for calculating nonlinear PCA
(NLPCA). There are 3 ‘‘hidden’’ layers of variables orwhere 
 · · ·� denotes a sample or time mean. Here
‘‘neurons’’ (denoted by circles) sandwiched between theu, called the first principal component (PC), is a
input layer x on the left and the output layer x∞ on thetime series, while a, the first eigenvector of the
right. Next to the input layer is the encoding layer,

data covariance matrix, (also called an empirical
followed by the ‘‘bottleneck’’ layer (with a single neuron

orthogonal function, EOF), often describes a spat- u), which is then followed by the decoding layer. A
ial pattern. From the residual, x−au, the second nonlinear function maps from the higher dimension

input space to the lower dimension bottleneck space,PCA mode can similarly be extracted, and so on
followed by an inverse transform mapping from thefor the higher modes. In practice, the common
bottleneck space back to the original space representedalgorithms for PCA extract all modes simultan-
by the outputs, which are to be as close to the inputs

eously (Jollife, 1986; Preisendorfer, 1988).
as possible by minimizing the cost function J=

The fundamental difference between NLPCA 
dx−x∞d2�. Data compression is achieved by the
and PCA is that NLPCA allows a nonlinear bottleneck, with the bottleneck neuron giving u, the non-

linear principal component.mapping from x to u whereas PCA only allows a
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final hidden layer (the decoding layer) h(u), the MATLAB function ‘‘fminu’’, a quasi-Newton
algorithm. Because of local minima in the cost

h(u)
k
= f3[(w(u)u+b(u) )

k
], (5)

function, there is no guarantee that the optimiza-
(k=1, . . . , m); followed by f4 mapping from h(u) to tion algorithm reaches the global minimum. Hence
x∞, the output column vector of length l, with an ensemble of 30 NNs with random initial

weights and bias parameters was run. Also, 20%x∞
i
= f4[(W (u)h(u)+b: (u) )

i
]. (6)

of the data was randomly selected as test data
The cost function J=
dx−x∞d2� is minimized and withheld from the training of the NNs. Runs

by finding the optimal values of W (x), b(x), w(x), where the MSE was larger for the test dataset
b: (x), w(u), b(u), W (u) and b: (u). The MSE (mean square than for the training dataset were rejected to avoid
error) between the NN output x∞ and the original overfitted solutions. Then the NN with the small-
data x is thus minimized. The NLPCA was imple- est MSE was selected as the solution.
mented using the hyperbolic tangent function for For the nonlinear optimization to work well,
f1 and f3 , and the identity function for f2 and f4 , appropriate scaling of the x variables is needed.
so that Suppose an NLPCA model has been successfully

developed for the data x, yielding output x∞. Weu=w(x)Ωh(x)+b: (x) , (7)
now want to test the effect of scaling all the input

x∞
i
= (W (u)h(u)+b: (u) )

i
,. (8) variables by a factor a, i.e., x is replaced by ax.

To get ax∞ as the output, only W (x) needs to beWithout loss of generality, we impose the con-
replaced by W (x)/a in (3), and W (u) by aW (u) instraint 
u�=0, hence
(8), with all other parameters and hidden neurons

b: (x)=−
w(x)Ωh(x)� . (9) unchanged. Suppose the elements of W (x) and
W (u) are of the same order of magnitude, if a isThe total number of free (weight and bias) para-
quite different from order 1, then the elements ofmeters used by the NLPCA is then 2lm+4m+ l.
W (x)/a and aW (u) will have very different magni-Furthermore, we adopt the normalization condi-
tudes. The nonlinear optimization algorithm doestion that 
u2�=1. This condition is approximately
not work well if the parameters to be determinedsatisfied by modifying the cost function to
have a wide range of magnitudes. One possibility

J=
dx−x∞d2�+ (
u2�−1)2 . (10)
is to standardize all the input variables, i.e., for
each variable, remove its mean and divide by itsThe choice of m, the number of hidden neurons

in both the encoding and decoding layers, follows standard deviation. If the input variables are them-
selves the leading PCs (i.e., PCA has been used toa general principle of parsimony. A larger m

increases the nonlinear modelling capability of the compact the dataset), then standardization would
exaggerate the importance of the higher PCAnetwork, but could also lead to overfitted solutions

(i.e., wiggly solutions which fit to the noise in the modes. In this situation, it would be appropriate
to normalize each input variable by subtractingdata). If f4 is the identity function, and m=1,

then (8) implies that all x∞
i
are linearly related to its mean and dividing by the standard deviation

of the first PC.a single hidden neuron, hence there can only be a
linear relation between the x∞

i
variables. For non- That the classical PCA is indeed a linear version

of this NLPCA can be readily seen by replacinglinear solutions, we need to look at m�2.
In effect, the linear relation (1) is now general- all the transfer functions with the identity function,

thereby removing the nonlinear modelling capabil-ized to u= f (x), where f can be any nonlinear
function representable by a feed-forward NN map- ity of the NLPCA. Then the forward map to u

involves only a linear combination of the originalping from the input layer to the bottleneck layer;
and instead of (2), 
dx−g(u)d2� is minimized, variables as in the PCA.

In Fig. 1, only a single hidden layer is used inwhere g is the generally nonlinear function map-
ping from the bottleneck to the output layer. The the mapping from the input layer to the bottleneck,

and also in the mapping from the bottleneck toresidual, x−g(u), can be input into the same
network to extract the second NLPCA mode, and the output layer, since given enough hidden neu-

rons, any continuous function can be approxi-so on for the higher modes.
The nonlinear optimization was carried out by mated to arbitrary accuracy by one hidden layer
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(Cybenko, 1989). The NLPCA here generalizes system is invariant to the transformation
easily to more than one hidden layer mappings, (x1 , x2 , x3 )� (−x1 , −x2 , x3 ) . (12)
as two hidden-layer mappings may outperform

If one applies this transformation to the solutionsingle hidden layer mappings in modelling com-
in Fig. 2, one will find a Z-shaped solution in Figs.plicated nonlinear functions.
2b, c. Of course, with a finite dataset, one doesIt is possible to have more than one neuron at
not have the perfect symmetry of the differentialthe bottleneck layer. For instance, with two
equations, so either the minimum associated withbottleneck neurons, the mode extracted will span
the Z-shape or that with the mirror Z-shapea 2-D surface instead of a 1-D curve. Such higher-
will be the deeper minimum. This means thatdimensional modes are generally more difficult to
depending on the sample, or the training datasetsvisualize and will not be pursued here.
selected, one can get either the Z solution or the
mirror Z solution — a very unstable and undesir-

3. Weight penalty able outcome.
The U-shaped solution is not only esthetically

In general, the most serious problem with more pleasant than the Z or mirror Z-shaped
NLPCA is the presence of local minima in the solutions, but is also invariant with respect to the
cost function. As a result, optimizations started transformation (12). How does one arrive at the
from different initial parameters often converge to U-shaped solution without worrying about
different minima, rendering the method unstable. whether the initial random weights were small
As an example, consider the famous Lorenz enough and whether the number of iterations used
‘‘butterfly’’-shaped attractor from chaos theory was small enough? Regularization of the cost
(Lorenz, 1963). Describing idealized atmospheric function by adding weight penalty terms is an
convection, the Lorenz system is governed by 3 answer.
(nondimensionalized) differential equations: The purpose of the weight penalty terms is to

limit the nonlinear power of the NLPCA, which
came from the nonlinear transfer functions in the

ẋ1=−ax1+ax2 , ẋ2=−x1x3+bx1−x2 ,

ẋ3=x1x2−cx3 , network. The transfer function tanh has the prop-
(11) erty that given x in the interval [−L , L ], one

can find a small enough weight w, so thatwhere the overhead dot denotes a time derivative,
tanh (wx)#wx, i.e., the transfer function is almostand a, b and c are 3 parameters. A chaotic system
linear. Similarly, one can choose a large enoughis generated by choosing a=10, b=28, and c=
w, so that tanh approaches a step function, thus8/3. Fig. 2 illustrates the butterfly-shaped attractor
yielding Z-shaped solutions. If we can penalizeproduced by a dataset containing 1000 data points.
the use of excessive weights, we can limit theWith x1 , x2 and x3 as inputs to the NLPCA
degree of nonlinearity in the NLPCA solution.network, the first mode extracted has a Z-shaped
This is achieved with a modified cost functionappearance (Fig. 2), in sharp contrast to the

smooth U-shaped solution (Fig. 3) found by J=
dx−x∞d2�+ (
u2�−1)2+p ∑
ki

(W (x)
ki

)2 ,
Monahan (2000). Why is there such a drastic

(13)difference? If one starts with small random initial
parameters, and terminate the optimization algo- where p is the weight penalty parameter. A large

p increases the concavity of the cost function, andrithm after a relative small number of iterations,
one arrives at the U-shaped solution of Monahan. forces the weights W (x) to be small in magnitude,

thereby yielding smoother and less nonlinear solu-However, with larger random initial weights
and/or more iterations, the deeper minimum is tions than when p is small or zero. With a large

enough p, the danger of overfitting is greatlyreached, which gives the Z-shaped solution. For
comparison, the first PCA mode is the straight reduced, hence the optimization can proceed until

convergence to the global minimum. Of course, ifline shown in Figs. 2, 3.
More precisely, the shape in Figs. 2b,c is a p is too large, one gets only the linear solution —

and ultimately the trivial solution (where allmirror image of Z — in fact, the solution can be
either Z-shaped or mirror Z-shaped. The Lorenz weights are zero).
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Fig. 2. The first NLPCA mode for data from the Lorenz (1963) system. The NLPCA mode is indicated by the
(overlapping) circles, with the data shown as dots. Panel (a) displays the x1–x2 plane, (b) the x1–x3 plane and (c) the
x2–x3 plane, and (d) gives a 3-D view. The butterfly-shaped attractor is most visible in panel (b). The NLPCA had
m=2, i.e., 2 hidden neurons in both the encoding and decoding layers. The dashed line shows the first PCA mode.

We have not penalized other weights in the generate two theoretical modes (Hsieh, 2000), with
the first described bynetwork. In principle, w(u) also controls the nonlin-

earity in the inverse mapping from u to x∞.
X1=t−0.3t2, X2=t+0.3t3, X3=t2,

However if the nonlinearity in the forward map- (14)
ping from x to u is already limited, then there is

where t is a random number uniformly distributedno need to further limit the weights in the inverse
in the interval [−1, 1]. The 2nd theoretical modemapping. The NLPCA is not very sensitive to the
is described byvalue of p; a value around 1 appears to work well

here. The NLPCA with p=1 applied to the X∞
1
=−s−0.3s2, X∞

2
=s−0.3s3,

X∞
3
=−s4,

(15)Lorenz data yielded the U-shaped curve (Fig. 3),

similar to that found by Monahan (2000).

Another example will shed more light on the with random number s uniformly distributed in
[−1, 1].advantage of using weight penalty terms. Let us
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Fig. 3. The first NLPCA mode for the same Lorenz data, but with the weight penalty parameter p=1. The NLPCA
had m=2.

To lowest order, X describes a quadratic curve used ( p=1), then even with m=4, the MSE is
0.717, and a solution resembling the theoreticaland X∞ a quartic. A dataset of 500 points was

generated by adding the second mode to the first first mode is found (Fig. 6). Thus weight penalty
has prevented the mixing of the two theoreticalmode, with the variance of the second mode being

1/3 that of the first mode. A small amount of modes.
If we then extract the second NLPCA modeGaussian random noise, with standard deviation

equal to 10% of the signal standard deviation, from the residual left behind by the 1st NLPCA
mode, the 2nd theoretical mode was successfullywas also added to the dataset. The variables were

then standardized (Fig. 4). found for the p=1 case, but not for the p=0 case
(not shown), as the first NLPCA had alreadyThe NLPCA solution with m=2 and no penalty

( p=0) extracted a solution resembling the first mixed up the 1st and 2nd theoretical modes when
p=0. The MSE for the p=1 case was only abouttheoretical mode X (not shown). The MSE

decreased from 0.667 for m=2, to 0.636 for m= 1/3 that for the p=0 case (0.046 versus 0.140).
The lesson is that even though a smaller MSE3, and 0.599 for m=4. At m=4, the first NLPCA

mode (Fig. 5) is a mixture of the 1st and 2nd of the first NLPCA mode can be attained with
p=0 than with p>0, it can be costly down thetheoretical modes. In contrast, if weight penalty is
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Fig. 4. The curve made up of circles shows the first theoretical mode (X), and the solid curve, the second theoretical
mode (X∞). The actual data set of 500 points (shown as dots) is generated by adding mode 2 to mode 1 (with mode
2 having 1/3 the variance of mode 1) and adding a small amount of Gaussian noise.

road, as the MSE of the second NLPCA mode clusters of data points. Thus the rotated eigenvec-
tors may bear greater resemblance to actual phys-for p=0 may be much worse than that for p>0.
ical states (though they account for less variance)
than the unrotated eigenvectors, so RPCA is also
widely used (Barnston and Livezey, 1987). As4. A 3-way comparison between NLPCA,

RPCA and PCA there are many possible criteria for rotation, there
are many RPCA schemes, among which the vari-
max (Kaiser, 1958) scheme is perhaps the mostIn the linear approach, there is a dichotomy

between PCA and RPCA. In PCA, the linear popular.
In this section, we use the tropical Pacific SSTmode which accounts for the most variance of the

dataset is sought. However, as illustrated in to make a 3-way comparison between NLPCA,
RPCA and PCA. The monthly Pacific SST dataPreisendorfer (1988, Fig. 7.3), the resulting eigen-

vectors may not align close to local data clusters, from NOAA (Reynolds and Smith, 1994; Smith
et al., 1996) for the period January, 1950 to April,so the eigenvectors may not represent actual phys-

ical states well. The RPCA methods rotate the 1999 were used. The 2° by 2° resolution data,
covering the region 30°S to 30°N and 120°E toPCA eigenvectors, so they point closer to the local
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Fig. 5. The first NLPCA mode extracted with m=4 and p=0 (no weight penalty), showing a mixing of the first
and second theoretical modes from Fig. 4. The dash line shows the first PCA mode.

60°W, were combined into 4° by 4° gridded data El Niño and La Niña, as cool anomalies associated
with La Niña events are centred further west ofand smoothed by a 3-month running average.

Thus there are (15×45= ) 675 spatial variables the warm anomalies of El Niño (Hoerling et al.,
1997). The first 3 PCs (PC1, PC2 and PC3) wereand 592 time points. There are still far too many

spatial variables for this dataset to be directly used as the input x for the NLPCA network —
the number of inputs is kept small for peda-analyzed by the NLPCA. With l=675, the small-

est nonlinear NLPCA model (with m=2) would gogical reasons.
The data are shown as dots in a scatter plot incontain (2lm+4m+ l= ) 3383 parameters, which

greatly exceed the number of time points. the PC1–PC2 plane (Fig. 8), where the cool La
Niña states lie in the upper left corner, and theTo reduce the number of input variables, pre-

filtering the SST data by PCA is needed. PCA warm El Niño states in the upper right corner.
The NLPCA (with m=2) solution is a U-shapedmodes 1, 2 and 3 (Fig. 7) accounted for 51.4%,

10.1% and 7.2%, respectively, of the variance in curve linking the La Niña states at one end (low
u) to the El Niño states at the other end (high u),the SST data. The equatorial Pacific is known for

its warm states (El Niño) and cool states (La similar to that found by Monahan (2001). In
contrast, the first PCA eigenvector lies along theNiña), which are manifested in the first mode. The

second mode represents the asymmetry between horizontal line, and the second PCA, along the
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Fig. 6. The first NLPCA mode extracted with m=4 and p=1, showing a good resemblance to the first theoretical
mode X.

vertical line (Fig. 8), neither of which would come the El Niño/La Niña mode is contained within
the first 3 PCA modes.close to the El Niño nor the La Niña states.

With the NLPCA, for a given value of u, one In Fig. 8, the first PCA eigenvector spears nei-
ther the cluster of El Niño states in the uppercan map from u to the 3 PCs. Each of the 3 PCs

can be multiplied by its associated PCA (spatial ) right corner nor the La Niña states in the upper
left corner, and is therefore not particularly goodeigenvector, and the three added together to yield

the spatial pattern for that particular value of u. in representing either. For comparison, a varimax
rotation (Kaiser 1958; Preisendorfer 1988), wasFigs 9a–d show the spatial anomaly patterns as u

goes from its minimum value (corresponding to applied to the first 3 PCA eigenvectors. The
resulting first RPCA eigenvector, shown as athe strongest La Niña), all the way to its maximum

value (corresponding to the strongest El Niño). dashed line in Fig. 8, spears through the cluster of
El Niño states in the upper right corner, therebyClearly the asymmetry between El Niño and La

Niña is well captured by the first NLPCA mode, yielding a more accurate description of the El
Niño anomalies (Fig. 9e) than the first PCA modeas found by Monahan (2001). Incidentally,

Monahan (2001) used the first 10 PCs as inputs (Fig. 7a), which did not fully represent the intense
warming of Peruvian waters. The second RPCAto his NLPCA, versus only 3 here. Since the

results are very similar, this means the essense of eigenvector, also shown as a dashed line in Fig. 8,
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Fig. 7. The first 3 PCA spatial modes (i.e., eigenvectors) of the tropical Pacific monthly SST (where the climatological
seasonal cycle had been removed). The eigenvectors have been normalized to unit norm, and the contours are in
units of 0.01°C, with the positive contours shown as solid curves, negative contours, dashed curves, and the zero
contour, a thick curve.

did not improve much on the second PCA mode, Niña states are not represented by a single RPCA
eigenvector. In contrast, the first NLPCA modewith the RPCA spatial pattern shown in Fig. 9f

(cf Fig. 7b). successfully passes through the La Niña states and
the El Niño states as u varies continuously fromOne problem with RPCA is that there are many

possible ways to rotate the PCA eigenvectors. In its minimum value to its maximum value. In terms
of variance explained, the first NLPCA modefact, nineteen types of rotations are listed in

Richman (1986), rendering a certain amount of explained 56.6% of the variance, versus 51.4% by
the first PCA mode, and 47.2% by the firstarbitrariness to RPCA when compared with PCA.

In our example here, while the El Niño states are RPCA mode.
Here both RPCA and NLPCA take the PCswell represented by a RPCA eigenvector, the La
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introduced a circular node or neuron, and showed
that the NLPCA with a circular node at the
bottleneck is capable of extracting closed curve
solutions. Fig. 10 shows the circular-noded
NLPCA (henceforth abbreviated as NLPCA.cir),
which is identical to the NLPCA of Fig. 1, except
at the bottleneck, where there are now two coupled
neurons p and q, instead of a single neuron u.

Analogous to u in (7), we calculate the pre-
states p0 and q0 by

p0=w(x)Ωh(x)+b: (x), q0=w̃(x)Ωh(x)+ b̃(x),
(16)

where w(x), w̃(x) are weight parameter vectors, and
b: (x) and b̃(x) are bias parameters. Let

Fig. 8. Scatter plot of the SST data (shown as dots) in
the PC1–PC2 plane, with the El Niño states lying in the r= ( p2

0
+q2

0
)1/2, (17)

upper right corner, and the La Niña states in the upper
left corner. The PC2 axis is stretched relative to the PC1 then the circular node is defined with
axis for better visualization. The first mode NLPCA

p=p0/r, q=q0/r, (18)approximation to the data is shown by the small circles,
which traced out a U-shaped curve. The first PCA eigen-

satisfying the unit circle equation p2+q2=1.
vector is indicated by the horizontal line, and the second

Thus, even though there are two variables p andPCA, by the vertical line. The varimax method rotates
q at the bottleneck, there is only one angularthe two PCA eigenvectors in a counterclockwise direc-

tion, as the rotated PCA (RPCA) eigenvectors are indi- degree of freedom from h (Fig. 10), due to the
cated by the dashed lines. (As the varimax method circle constraint. The mapping from the bottleneck
generates an orthogonal rotation, the angle between the to the output proceeds as in Section 2, with (5)
two RPCA eigenvectors is 90° in the 3-dimensional

replaced by
PC1–PC2–PC3 space).

h(u)
k
=tanh[(w(u)p+w̃(u)q+b(u))

k
]. (19)

from PCA as input. However, instead of multiply- When implementing NLPCA.cir, I found that
ing the PCs by a fixed orthonormal rotational there are actually two possible configurations: (i) a
matrix, as performed in the varimax RPCA restricted configuration where the constraint
approach, NLPCA performs a nonlinear mapping 
p�=
q�=0 is applied, and (ii) a general con-
of the PCs. It is easy to see why the dichotomy figuration where no constraint on 
p� and 
q� is
between PCA and RPCA in the linear approach applied. With (i), there are two fewer free para-
automatically vanishes in the nonlinear approach. meters, as
By increasing m to a large enough value in

b: (x)=−
w(x)Ωh(x)�, b̃(x)=−
w̃(x)Ωh(x)� .
NLPCA, the solution is capable of going through

(20)
all local data clusters while maximizing the global
variance explained. (In fact, for large enough m, If a closed curve solution is sought, then (i) is

better than (ii) as it has two fewer parameters.NLPCA can pass through all data points, though
this will in general give an undesirable, overfitted However, (ii), being more general than (i), can

actually model open curve solutions like a regularsolution.)
NLPCA. The reason is that if the input data
mapped onto the p–q plane covers only a segment
of the unit circle instead of the whole circle, then5. NLPCA with a circular bottleneck node
the inverse mapping from the p–q space to the
output space will yield a solution resembling anThe NLPCA of Kramer (1991) is capable of

extracting open curve solutions, but not closed open curve. Hence, given a dataset, (ii) may yield
either a closed curve or an open curve solution.curve solutions, as the bottleneck neuron u is not

an angular variable. Kirby and Miranda (1996) Its generality comes with a price, namely that
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Fig. 9. The SST anomaly patterns (°C) of the NLPCA and the RPCA. The anomaly pattern as the NLPC u of the
first NLPCA mode varies from (a) its minimum (strong La Niña), to (b) half its minimum (weak La Niña), to (c) half
its maximum (weak El Niño) and (d) its maximum (strong El Niño). The first and second varimax RPCA spatial
modes are shown in (e) and (f ) respectively, (both with their corresponding RPCs at maximum value). With a
contour interval of 0.5°C, the positive contours are shown as solid curves, negative contours, dashed curves, and the
zero contour, a thick curve. When comparing these patterns with those in Fig. 7, remember that the patterns in
Fig. 7 are normalized differently (i.e., with unit norm).

there may be more local minima to contend with. linear transfer functions are used, NLPCA.cir does
not appear to have a linear counterpart.The number of free parameters is 2lm+6m+ l for

configuration (i), and 2lm+6m+ l+2 for (ii). Next we apply NLPCA.cir to the tropical
Pacific SST. The data set is the same as that usedUnlike NLPCA which reduces to PCA when only
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From the residual, we extracted the second
mode (Fig. 12) — using the general configuration
(no constraint on 
p� and 
q�), as we are not
sure a priori whether to expect an open curve or
a closed curve. The second mode resulted in an
open curve (though some of the ensemble members
ended up at shallower local minima corresponding
to closed curves). In Fig. 12a, the El Niño states
are located at the upper right corner, and the La
Niña states at the lower right corner. That high
PC2 values (El Niño conditions) tend to occur
with high PC1 (which occurs during winter) simply
means that the peak of El Niño events tend to
occur during winter. That low PC2 (La Niña

Fig. 10. The NLPCA with a circular node at the events) also tend to occur during moderately high
bottleneck. Instead of having one bottleneck neuron u values of PC1 means that the La Niña events also
as in Fig. 1, there are now two neurons p and q con- tend to peak during winter.
strained to lie on a unit circle in the p–q plane, so there

For NLPCA.cir mode 2, the p, q values cover
is only one free angular parameter (h).

only a segment of the circle, with h ranging from
−182° to 67°. The SST anomalies associated with

in Section 4, but the climatological seasonal cycle
maximum h (Fig. 13a) correspond to La Niña.

has not been removed from the data. PCA was
Comparing with the La Niña picture of Fig. 9a,

then performed, with mode 1, 2 and 3 accounting
we see that Fig. 13a gives the additional informa-

for 78.8%, 10.8% and 3.4%, respectively, of the
tion that La Niña tends to occur during winter,

total variance. The PC1 time series of the first
as SST north of the equator are cooler than SST

mode is now totally dominated by the seasonal
south of the equator. Fig. 13b shows the minimum

cycle, and the spatial pattern (not shown) displays
h situation. Here El Niño warming of the eastern

the SST anomalies associated with the Northern
equatorial water occurs when SST north of the

Hemisphere winter, i.e., a spatial pattern domin-
equatorial region are cooler than SST south of

ated by the meridional temperature gradient, with
the equatorial region, i.e., during winter. Thus

cooler waters to the north and warmer waters to
NLPCA.cir mode 2 shows the El Niño and La

the south. The second mode, which has a spatial
Niña states in their proper relation with the

pattern resembling that of Fig. 7a, has its PC time
seasonal cycle. Incidentally, the seasonal cycle is

series showing El Niño and La Niña events, as
almost invisible in the second mode h time series

well as the seasonal cycle. The mode 3 PC time
(not shown), in contrast to PC2 (not shown),

series shows the seasonal cycle and interdecadal
where the seasonal cycle is manifested. This means

fluctuations. These three PC time series are then
that the first NLPCA.cir mode has fully captured

input into NLPCA.cir.
the seasonal cycle, unlike PCA mode 1, which

Since we want to extract the dominant seasonal
only captured part of the seasonal cycle, scattering

cycle, we use the restricted configuration for
the remainder into PC2 and PC3.

NLPCA.cir (i.e., with 
p�=
q�=0). The first
If NLPCA.cir (general configuration) is applied

mode extracted the seasonal cycle (Fig. 11), which
to the data in Section 4 (i.e., with climatological

illustrates how NLPCA.cir can extract periodic or
seasonal cycle removed prior to the PCA), the

wave modes from the data. Of course, this is a
resulting first mode is indistinguishable from

trivial example as the period of the seasonal cycle
that obtained by the original NLPCA (Figs.

is well defined, so it can easily be extracted without
8, 9a,b,c,d).

using NLPCA.cir. But for waves of unknown
period or quasi-periodic waves, NLPCA.cir may

6. Conclusionsbe valuable in their extraction — the retrieved
curve can be a continuous closed curve of any
shape (if an adequate number of hidden neurons The advent of neural network (NN) models has

significantly advanced nonlinear empirical model-is used in the encoding and decoding layers).
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Fig. 11. The first NLPCA.cir (NLPCA with circular bottleneck node) mode extracted with m=3 and p=1, shown
as (overlapping) circles, with the data as dots.

ling. Every member of the hierachy of classical tors tend to point more towards local data clusters
and are therefore more representative of physicalmultivariate methods — multiple linear regression,

PCA and canonical correlation analysis (CCA) — states than the PCA eigenvectors. With the trop-
ical Pacific SST as an example, it was shown thathas been nonlinearly generalized by NN models —

nonlinear multiple regression by Rumelhart et al. RPCA represented El Niño states better than
PCA, but neither methods represented La Niña(1986), nonlinear PCA by Kramer(1991), and

nonlinear CCA by Hsieh (2000, 2001). The non- states well. In contrast, nonlinear PCA (NLPCA),
passed through both the clusters of El Niño andlinear PCA and CCA codes are available from

the author’s web site, http://www.ocgy.ubc.ca/ La Niña states, thus representing both well within
a single mode. Furthermore, the NLPCA firstprojects/clim.pred.

PCA is used for two main purposes: (i) to mode explained more variance of the dataset than
the first mode of PCA or RPCA. With a linearreduce the dimensionality of the dataset, and (ii) to

extract features or recognize patterns from the approach, it is generally impossible to have a
solution simultaneously (a) explaining maximumdataset. It is purpose (ii) where PCA can be

improved upon. Rotated PCA (RPCA) sacrifices global variance of the dataset and (b) approaching
local data clusters, hence the dichotomy betweenon the amount of variance explained, but by

rotating the PCA eigenvectors, RPCA eigenvec- PCA and RPCA. With the more flexible NLPCA
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Fig. 12. The second NLPCA.cir mode extracted with m=3 and p=1, shown as circles, with the data as dots.

Fig. 13. The SST anomaly patterns (°C) of the second NLPCA.cir mode when (a) h is maximum (strong La Niña),
and (b) h is minimum (strong El Niño).
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method, both objectives (a) and (b) can be attained closed curve, so periodic or wave solutions can be
modelled. When dealing with data containing atogether, thus the nonlinearity in NLPCA unifies

the PCA and RPCA approaches. nonlinear or periodic structure, the linear methods
scatter the energy into multiple modes, which isThe main disadvantage of NLPCA compared

with the linear methods lies in its instability or usually prevented when the nonlinear methods
are used.nonuniqueness — with multiple minima in the

cost function, optimizations started from different Whether the nonlinear approach has a signific-
ant advantage over the linear approach is highlyinitial parameters often end up at different minima

for the NLPCA. An ensemble of optimization runs dependent on the dataset — the nonlinear
approach is generally ineffective if the data recordstarting from different random initial parameters

is needed, where the best ensemble member is is short and noisy, or the underlying physics is
essentially linear. Presently, m, the number ofchosen as the solution — even then, there is no

guarantee that the global minimum has been hidden neurons in the encoding layer, and p, the
weight penalty parameter, are determined largelyfound. Proper scaling of the input data is essential

to avoid having the nonlinear optimization algo- by a trial and error approach. Future research
will hopefully provide more guidance on theirrithm searching for parameters with a wide range

of magnitudes. Regularization by adding weight choice.
penalty terms to the cost function greatly
improved the stability of the NLPCA. Only the
weights in the encoding layer of the network need 7. Acknowlegments
to be penalized to avoid excessive nonlinearity in
the solution. Weight penalty was found to be Benyang Tang kindly sent me the SST dataset

and his Matlab contouring package. Helpful com-effective in preventing zigzag shaped solutions and
the mixing of two theoretical modes. ments were provided by members of our research

group, especially Adam Monahan, Youmin Tang,With PCA, the straight line explaining the max-
imum variance of the data is found. With NLPCA, Aiming Wu and Yuval. Support through research

and strategic grants from the Natural Sciencesthe straight line is replaced by a continuous, open
curve. NLPCA.cir (NLPCA with a circular node and Engineering Research Council of Canada is

gratefully acknowledged.at the bottleneck) replaces the open curve with a
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