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ABSTRACT

Since the introduction of operational ensemble forecasts in Numerical Weather Prediction
(NWP) more than 5 years ago, the dispute on how to best determine the initial perturbations
has largely dominated the direction of research in the field of ensemble prediction. While it is
important to consider uncertainties in the initial condition, errors due to model physics or the
model numerics and truncation provide another source of forecast errors and might also be
considered in ensemble prediction. In this study, we compare the performance of 2 fundamentally
different ensemble schemes. First, the ensemble prediction system (EPS) of the European Centre
for Medium Range Forecasts is taken as a representative of the single-model approach based
on the perfect model assumption and thus taking only the uncertainty in the observations into
account. Second, a virtual ensemble comprised of the operational forecasts of 4 NWP centers
as a ‘‘gratis’’ candidate of the multi-model approach which, in addition, takes model errors into
account. The comparison is based on forecasts of 500 hPa fields over Europe for a summer and
a winter period in 1997 and on diagnostics ranging from various measures for the performance
of the ensemble means to the statistical consistency and discrimination properties of the
ensembles. The different sizes of both ensembles poses the main difficulty for the interpretation
of the results. If the ensemble size is not considered as a criterion for the evaluation, the results
lead to controversial conclusions; but when penalizing for an overly large and inefficient
ensemble the results are for the most part consistent, and one has to conclude that the multi-
model ensemble performs better in most forecast aspects.

1. Introduction justified by indications that the largest forecast

errors often (but not always) arise from errors in
The European Centre for Medium-Range the initial analysis (Rabier et al., 1996). Details of

Weather Forecasts (ECMWF) and the National the ensemble schemes are described in Palmer
Centers for Environmental Prediction (NCEP) et al. (1992) and Toth and Kalnay (1993) and
have performed operational ensemble forecasts references thereof. The primary difference between
since 1992; at present several other numerical the schemes is the method used to construct the
weather prediction centers run ensembles on initial ensemble. This difference has been the sub-
an experimental or semi-operational level ject of dispute (ECMWF, 1996) and shall not be
(Ehrendorfer, 1997; Sivillo et al., 1997; Toth et al., discussed in this paper. Here it is important to
1997). The common idea of ECMWF and NCEP note, that the ensemble scheme designs and evalu-
is to take into consideration the uncertainties in ation methods of both centers imply 2 assump-
the description of the initial state, a view which is tions. The first implicit assumption is that the

forecast model is perfect, since uncertainties in the

e-mail: chriss@agnld.uni-potsdam.de model are not considered. When probabilities of
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events are derived from the ensemble the members sequences of model imperfections for ensemble
prediction were pointed out by Leith (1983): ‘‘Aare usually weighted equally, i.e., it is also assumed

that each ensemble member occurs with the same flaw in stochastic dynamic prediction methods

and in Monte Carlo approximations to them islikelihood.
The interpretation of forecast probabilities that model imperfections are not taken into

account and thus sample clusters grow too slowly’’.based upon a perfect ensemble and a perfect model

is straightforward. In this case the occurrence of The probability distribution derived from
ensemble forecasts of imperfect models cannot beeach member of the ensemble is equally likely,

and the time evolution of the ensemble reflects the improved accountably through an increase of

ensemble size. One may sample the forecast distri-predictability of the system since model and system
are equivalent. But even if this perfect model were bution better, but this sample distribution may

not reflect the system distribution. In the worstknown, it is not simple to construct a perfect

ensemble for a given reference initial condition. If case, this forecast distribution would yield unreli-
able probabilistic forecasts, a useless ensemblethe dynamics is restricted to an attractor with a

dimension less than the state space an ensemble mean and a spread with no information on the

observed forecast error. Pitcher (1977) recom-distributed via the covariance matrix will include
initial conditions not on this attractor. Such an mended 20 years ago, that this could be partly

remedied by the introduction of random forcinginitial ensemble will not reflect a probability distri-

bution consistent with the long-term behavior of terms to simulate the effects of model imperfec-
tions. The idea of taking model imperfections intothe system, which is also called the natural meas-

ure on this attractor (Eckmann and Ruelle, 1985). account has been realized by the Canadian
‘‘system simulation approach’’ to ensemble predic-Consequently, at forecast time the ensemble will

not reflect the predictability originating from tion which allows uncertainties in the observations

as well as the model through different options foruncertain knowledge in the initial condition, but
may be dominated by transient effects. One parameterizations of processes and uncertainties

in surface parameter fields as for example themethod suggested by Smith (1996) (see also Smith

et al., 1999) to determine a perfect ensemble for a roughness length and albedo (Houtekamer et al.,
1996). The combination of 2 ensembles forecastsgiven initial condition is to integrate the model

forward in time and pick up those points on the from different centers can be also viewed as a

system simulation approach and leads to a biggertrajectory which fall within a distance smaller than
(an estimate of ) the typical observational error. ensemble of higher quality than the original

ensembles (Harrison and Richardson, 1997).These analogs are ‘‘identical’’ with the initial con-

dition within the observational uncertainty and A group of forecasts from different weather
prediction centers may be considered a ‘‘gratis’’they lie on the attractor. The resulting ensemble

forecast distribution has been denoted ‘‘account- multi-model ensemble (Balzer and Emmrich,

1997). This approach uses different models withable’’ by Smith (1996), because its only shortcom-
ing is due to sampling uncertainty. As the ensemble different physics, numerics and truncations. Each

model starts from its own analysis, thus differencessize increases, the distribution of the ensemble

members will converge to the true system probab- in the initial conditions are also present. The
disadvantage of the multi-model approach is theility distribution arising from only observational

uncertainty. For operational weather forecasting limitation to only a few members, however this

may be compensated through the fact that themodels, however, such an approach seems
impossible. operational models are usually more highly

developed (higher resolution, better physics) thanOf course, models are not perfect. No numerical

model simulates the physics and dynamics of the the model versions used for the ensemble integra-
tion. Naturally, such gratis ensembles have beenatmosphere perfectly. Madigan — in the discus-

sion of the paper by Draper (1995) — puts this studied by operational forecasters. In the German
Weather Service (DWD) the operational globalfact into rather pictorial words: ‘‘Model uncer-

tainty is the Achilles heel of statistics;’’ and con- models of the service and of the ECMWF are

operationally interpreted in terms of local weathercludes: ‘‘to ignore it is to overstate your certainty
and risk making poor predictions’’. The con- by means of a statistical interpretation scheme of
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the perfect prog type (Klein et al., 1959; Wilks, 1995) (T159L31) in which a control forecast and an
ensemble of 50 forecasts each starting from awhich uses the 1000 hPa and 500 hPa topography

from a few grid-points around Germany as basic slightly perturbed control analysis are integrated

for 10 days. The initial perturbations are deter-predictors and local weather parameters at German
stations as predictands (Balzer, 1995). Balzer and mined with a linearized version of a model of even

lower resolution (T42L31) using the SingularEmmrich have demonstrated repeatedly that the

average of the statistical forecasts from the 2 models Vector (SV) method (Palmer et al., 1992; Molteni
and Palmer, 1993; Buizza and Palmer, 1995;performs better in terms of root mean square error

than the statistical forecast from the ECMWF Molteni et al., 1996). Thus the orientations of

these SVs are defined by the dynamics of infinites-ensemble mean. The advantage over the ECMWF
ensemble increases if the arithmetic average of 4 imal uncertainties which have grown the most

with respect to an energy-based metric at 48 h.operational models from the ECMWF, NCEP,

UKMO, DWD is used (Balzer and Emmrich, 1997). They are then scaled to be somewhat smaller than
the size of the usual analysis error and integratedEven the major ensemble system upgrade at the

ECMWF in December 1996 with a larger ensemble forward with the nonlinear model (T159L31) used

to perform the ensemble forecasts. Obviously, thissize and a higher resolution model to run the
ensemble did not change the situation. is a constrained ensemble with perturbations that

are not randomly drawn from the distribution ofStimulated by the above findings we carried out

further investigations of these 2 ensembles, the possible analysis errors and it is doubtful that
these ensemble members should be equally likely.ECMWF ensemble as a representative for a perfect

model approach and the ensemble consisting of the The ensemble members comprising the multi-
model ensemble are the operational forecasts fromECMWF, NCEP, UKMO, and DWD forecasts as

an example for a multi-model scheme. While the the European and 3 national weather forecast

centers, namely the ECMWF, UKMO, NCEP,previous results of the comparison between these 2
ensembles were mainly based on the verification of and DWD. For details see ‘‘ECMWF (1995)’’ for

the ECMWF operational model, Cullen (1993)local weather parameters at German stations, we

will investigate here field forecasts for a larger for the UK model, Derber et al. (1998) for the
NCEP model, and ‘‘Deutscher Wetterdienstregion. In Section 2 details about both ensembles

and the analyzed data sets are given. In Section 3 (1995)’’ for the DWD model. In case of a multi-

model ensemble it seems at first natural to weightwe introduce the verification strategy and show
verification measures for several aspects of the per- the forecasts of these models equally, because it is

unknown a priori which model will simulate theformance of the 2 different ensembles. The results

are discussed in Section 4 together with suggestions atmosphere the best. Optimal a posteriori weights
used for the statistical interpretation schemefor the design of new ensemble schemes.
AFREG were determined for 2 seasons and

showed a reasonable agreement with equal a priori
weights of 1/4 for each model (Balzer and2. Description of the project and analyzed

data Emmrich, 1997).

The investigated variable is the geopotential
height of the 500 hPa surface at 45 points on aThe design of this comparison experiment was

influenced by 2 practical questions: first, the wish 5°×5° grid over Europe (10°W–30°E, 40°–60°N,

see Fig. 1). Ensemble forecasts, f
i
with i=1, .. . , M,of the German Weather Service to conduct an

investigation for a region which is relevant for for 24, 48, . . . , 144 h are verified using the ECMWF
analysis denoted by o. Tests using the UKMOGerman weather forecasters and second, the avail-

ability of the data on the ECMWF MARS system. analysis resulted in only small differences; there-
fore all results shown below are based on theThe ECMWF ensemble forecasts used in this

study are based on the upgraded ensemble predic- ECMWF analysis. The ECMWF ensemble size is
50 for all forecast times, while the multi-modeltion system (EPS) started on 11 December 1996.

In this configuration, the single deterministic ensemble consists of 4 members (ECMWF, DWD,

NCEP, UKMO) for the first 3 days and of onlyforecast is integrated using a T213L31 model. The
EPS is performed with a model of lower resolution 3 members (ECMWF, DWD, UKMO) for the
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slightly worse than of the one built from 2 pairs.
Choosing pairs instead of random members guar-
antees the coincidence of the ensemble mean with
the ensemble mean of the total 50 members (as
well as the unperturbed control run) for those
time scales in which the dynamics can be consid-
ered as linear. This may be the reason for the
better performance of the ensemble mean of pairs.
Note that after the third forecast day 3-member-
subensembles are chosen (one random pair and a
single third random member) for a consistent
comparison with the multi-model ensemble, which,
after 3 days, also consists of only 3 members. In
the example presented in the lower right panel of

Fig. 1. Investigated region and the grid of 45 points. Fig. 2 it seems as if only 3 members are shown
even between day 1 and day 3, but this is not the
case; one member is not visible in this plot because

longer forecast ranges, for which forecast data
one pair of EPS members falls on top of each

from NCEP were not available on the MARS
other until day 3. This is certainly not a desirable

system. These are the 2 fundamentally different
feature of the EPS since it conflicts with the

ensembles contrasted in this study, and examples
linearity assumption until day 2 under which anti-

for a specific date and grid point are shown in the
parallel vectors should remain anti-parallel (Smith

top 2 panels of Fig. 2 together with the verifying and Gilmour, 1998).
ECMWF analysis. Two periods of about 3 months length within

The lower 2 panels in Fig. 2 represent 2 reference the year 1997 were analyzed. The first data set
ensemble configurations. They have been intro- considers the 1 to 6 day forecasts issued between
duced to ease the interpretation of differences in 1 January and 31 March verifying on 2 January
the performance of the upper 2 practical to 6 April (‘‘winter’’), the second data set consists
ensembles. In the ‘‘perfect configuration’’ ( lower of forecasts issued between 1 May and 31 July
left panel ) one EPS member is drawn randomly verifying on 2 May to 6 August (‘‘summer’’). Thus,
as the verification. The member corresponding to this verification study is based on 2 independent
the opposite singular vector perturbation is samples each consisting of about 4000 forecasts
removed from the ensemble to avoid a biased (90 days×45 grid-points) for each forecast projec-
initial ensemble. Consequently, there remain only tion time. Both reference ensemble configurations
48 members for the perfect ensemble, but this size are repeated 11× for each forecast with random
is still comparable with the original ECMWF selections of the 2 pairs of ensemble members (in
ensemble size of 50. Systematic differences between case of the 4-member-subensembles) or the ‘‘veri-

fication’’ (in case of the perfect configuration).the results obtained for the ECMWF ensemble
Note that these random selections are independentand the perfect configuration reflect model error,
in each case, for each forecast projection time, andas there is no model error in the perfect ensemble
at each grid point. This procedure is justified byconfiguration. The ‘‘ECMWF sub-ensemble con-
the order of the evaluation. As explained in thefiguration’’ ( lower right panel ) consists of 2 pairs
next section, the evaluation is performed first grid-of ensemble members, each pair consisting of
point wise and then completed by averaging oversymmetric perturbations about the control. The
the grid. Throughout this article the verification2 pairs are drawn at random from the total of
measures for these 4 ensemble configurations are25 ECMWF pairs without replacement. This
denoted by the line types introduced in Figs. 2, 4.4-member-subensemble is verified against the

ECMWF analysis; the results of this reference
configuration are helpful in interpreting the effects 3. Verification strategy, methods, and results
of ensemble size. Note that if the 4-member-

subensemble is built from 4 random and independ- The assessment of the quality of an ensemble
prediction system is a more difficult task thanent ECMWF EPS members its performance is
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Fig. 2. The different ensemble configurations for grid-point 10°E–50°N and the 1 to 6 day forecasts issued on
1 January 1997. The top left panel shows the ECMWF ensemble (thin dotted) with the ECMWF verification analysis
(solid). The right top panel shows the multi-model ensemble (short-dashed) again with the ECMWF analysis (solid).
The lower left panel shows the ‘‘perfect configuration’’, where one ensemble member is picked at random and serves
as verification analysis (dot-dashed) and the lower right panel shows an ECMWF sub-ensemble (dotted) with the
ECMWF analysis (solid).

contrasting single deterministic forecast systems. tic prediction systems by Talagrand et al. (1998).
The 3 goals of ensemble prediction:The basic difficulty is that the predicted object (an

approximation of the probability density function
$ to improve the forecast skill by the ensemble

of possible states of the system) and the verifying
mean

object (the observed state) are of different nature.
$ to predict the forecast skill using the dispersion

Several approaches for the evaluation of proba-
of the ensemble

bilistic forecasts are given in Murphy and Katz
$ to provide reliable and useful probabilistic

(1985). Recently, special strategies for EPS veri-
forecasts

fication have been developed by Wilson et al.
(1998) and new evaluation methods of probabilis- as originally formulated by Leith (1974) provide
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the guideline for the comparison of these 2 differ- as large as the error variance of the climate mean
forecast, i.e., the error based on the mean of thisent ensembles. Several verification measures used

to quantify the probabilistic aspects of the distribution (see, e.g., the appendix in Hayashi

(1986)).ensembles can be only calculated for scalar quan-
tities, i.e., grid-point wise. Therefore, all verifica- While we keep the above problems in mind, we

nevertheless consider the ensemble mean. First,tion measures are defined as sample averages at

each grid point denoted by 
 � and then aver- because we compare the performance of 2
ensemble means with respect to the same observa-aged over the grid. There is one exception; the

performance of the best ensemble member which tion or analysis. Given the argument of forecast

variance reduction, one should then expect thatwill be defined in the next section. The effect of
exchanging the order of averaging over grid and the ECMWF ensemble will show a smaller rmse,

simply because its ensemble size is larger. As wesample was tested for the root mean square error

(rmse) of the ensemble means and lead to negligible shall see below, this is not the case for all forecast
times. A second reason to consider the ensembledifferences.
mean is that it is widely used by forecasters. In

addition, we shall also compare the statistics of3.1. Performance of the ensemble mean and the best
the best forecast member of each ensemble whichensemble member
does not share the inherent problems of a mean

The average performance of the ensemble mean, value as discussed in the above paragraph.
First, maps of ensemble mean performance for

f:=
1

M
∑
M

i=1
f
i
, both the ECMWF and the multi-model ensemble

are considered. Fig. 3 shows rmse and bias of both
ensemble means for the third forecast day of therelative to the verification analysis, o, will be

investigated first. Often it is argued that one winter data set. While the geographical patterns
of rmse and bias are similar for both ensemblesshould not compare the performance of the

ensemble mean of a variable with an individual the magnitudes of the errors are larger for the

ECMWF ensemble mean. Next, the distributionobserved value of the same variable. There are 2
reasons for this. First, an ensemble mean can be of the distances of the ensemble members from

the ensemble mean as ‘‘indicator for predictability’’unphysical and it may not be realizable by the

system. This is visualized in Smith et al. (1999) is investigated. Here, the average squared distance
of the ensemble members from their meanswhere the time evolution of a perfect initial

ensemble in the Lorenz (1963) system is shown. (spread) is calculated and correlated with the

square error of the ensemble mean (skill ) at eachAfter some evolution time the ensemble ‘‘splits’’
with one part of the ensemble members visiting grid point. The geographical agreement in the

rmse and bias fields between both ensembles isone wing of the attractor while the other ensemble

members chose the other butterfly wing. The not observed for the spread-skill-correlation
(Fig. 3, lower panels). The largest correlations areensemble forecast distribution becomes bimodal

and the ensemble mean at values close to zero is slightly above 0.6 for the ECMWF ensemble but

only 0.4 for the multi-model ensemble. Note thatnot an observable state of the system. Second, a
mean value is statistically a different quantity with the spread-skill-correlation is determined with

respect to the ensemble mean for both ensembles,a smaller variance than an individual realization

of the same variable. If the ensemble mean is built because in the case of the multi-model ensemble
no ‘‘control’’ forecast is available. Since the tangentby M independent realizations of a variable with

variance s2, then the variance of the mean is only model is centered about the control and not

the mean, the spread-skill-correlations for thes2/M. This has the effect that the rmse of an
ensemble mean forecast is in general smaller than ECMWF ensemble shown here may be smaller

than correlations calculated with respect to thethat of a single forecast, because the variance of
the forecasts with respect to the forecast mean control forecast (Molteni et al., 1996).

Figs. 4a, 5a summarize the results for both thecontributes to the rmse. It is well known that the

error variance of a single forecast which is drawn winter and the summer sample as a function of
the forecast time. The rmse of the multi-modelat random from the climate distribution is twice
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Fig. 3. Root mean square error, bias and spread-skill-correlation of the ensemble mean forecast for the ECMWF
(left) and the multi-model ensemble (right) at day 3 in winter 97. Error units in the upper 4 panels are meters.

ensemble mean is somewhat smaller than that of alies, o−
o�, shows in winter and summer

qualitatively the same behavior as the uncorrectedthe ECMWF ensemble mean until day 4 in the
summer and until day 5 in the winter sample. This mse. The standard linear correlation coefficient

(not the anomaly correlation coefficient) is largerresult cannot be explained merely due to the larger
biases of the ECMWF ensemble mean in both for the multi-model ensemble for all forecast times

in the winter sample and up to day 5 in thesamples: the error variance, Var(E)=mse−bias2,
i.e., the mean square error of the forecasted anom- summer sample (figures not shown).

For a closer interpretation of these results, onealies, f:−
 f: � with respect to the observed anom-
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Fig. 4. Summary of some results for the winter sample showing the average rmse of the ensemble mean forecast (a)
and of the best ensemble member (b). Panel (c) shows the fraction of cases in which the best member of the combined
ensemble is found in the multi-model ensemble. Panel (d) shows the spread-skill-correlation. In all following figures
the same line styles for the 4 ensemble configurations will be used as here. The ECMWF ensemble with thick solid
lines, the multi-model ensemble with thick dashed lines, the perfect configuration dot-dashed, and the 4-member
ECMWF subensembles dotted. In case of the 2 reference configurations the median is shown with thick lines and
the 10 and 90% quantiles with thinner lines of the same line type. Note that in panel (a) the distributions are very
narrow, in panel (d) the 10, 50, and 90% quantiles are better visible.
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Fig. 5. Same as Fig. 4 but for the summer sample.

has to keep in mind that both rmse and correla- of forecast and observed standard deviations,

Cov{F, O}/Var{O}, may be a more suitable veri-tion coefficient favor forecasts with small forecast
variances Var{F}, which can be easily seen when fication measure than the correlation itself,

because it penalizes forecasts with a too smallthe error variance is split up into its compon-
ents Var(E)=Var(F−O)=Var{F}+Var{O}− ratio between the forecasted and observed vari-

ances Var{F}/Var{O}. In terms of this weighted2Cov{F, O}. If one is not willing to accept the

reduction of forecast variance as a ‘‘predictional correlation the multi-model ensemble mean out-
performs the ECMWF ensemble mean for allsuccess’’ then the correlation weighted by the ratio
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forecast times and in both samples (figures not all models maintain an activity level corresponding
to the atmosphere’s activity). Figs. 4c, 5c show theshown). With increasing forecast time the variance

of the ensemble mean forecast Var{F} decreases fractions of cases in which the best member of

the combined ensemble (i.e., all members of bothfrom about 100% of the variance of the observa-
tions Var{O} at day 1 to about 70% [93%] at the ECMWF and the multi-model ensemble) is a

member of the multi-model-ensemble. In agree-day 6 for the ECMWF [multi-model] ensemble

in the summer sample and 65% [94%] at day 6 ment with the above rmse results, these figures
show a fraction which is much larger at shortin the winter sample. As expected, the ratio

between ensemble mean forecast variance and forecast ranges as would be expected if all mem-

bers in the combined ensemble were equally likely.observed variance is smaller for the ECMWF
ensemble because of its larger ensemble size. This This fraction would be 4

54
(and after the third

forecast day 3
53
≈0.06). It should be also notedratio would become (1/M)% if both ensembles

were built from M members randomly sampled that the definition of the best member used here
is a purely static one, because the best memberfrom a constant population distribution, which

would be the case if the model had forgotten its can be a different one for each forecast time. The

best dynamical ensemble member, which is theinitial conditions. Until day 6, however, this ratio
is still much larger than (1/M)% for both best but for the total forecast range may be also

an interesting verification aspect.ensembles.

The perfect ensemble configuration leads in the
summer sample as expected to the smallest rmse

3.2. Spread-skill relation
(Fig. 5a). It is interesting to note that in the winter
sample (Fig. 4a) this is not the case. Since the rmse The superiority of the multi-model ensemble is

not observed in the spread-skill-relation (Figs. 4d,in the perfect configuration is closely related with

the average spread in the sample, one may con- 5d). Here, the small multi-model ensemble is only
advantageous for the first forecast day. This isclude that in the winter sample the spread is

slightly too large at day 2 and 3 compared with probably due to the fact that the ECMWF

ensemble is known to have much too small arealistic forecast errors. The 4-member-sub-
ensembles from the ECMWF EPS show consist- spread at the early forecast times, because its

initial spread (at zero forecast time) is chosenently larger errors than the multi-model ensemble

in both the winter and the summer sample. smaller than average analysis errors in order to
represent realistic day 2 errors (Talagrand et al.,Next we present results for the ‘‘best ensemble

members’’. The best ensemble member within each 1998). For the larger forecast times the ECMWF

ensemble shows the higher (but still not practicallyensemble is defined as that member for which the
rmse is the smallest over the grid for the forecast useful ) correlations. The main reason for this is

that the multi-model ensemble is simply too smalltime in question. Figs. 4b, 5b show the rmse of

the best ensemble member of the ECMWF and to capture the expanding orientations in this very
high dimensional phase space. This interpretationthe multi-model ensemble in the winter and the

summer sample. In both samples the rmse of the is supported by the results for the ECMWF

4-member-subensembles which show significantlybest ensemble members do not differ much until
the third forecast day, but the rmse of the best smaller correlations than the original 50 member

ECMWF ensemble. In the winter sample, how-ECMWF ensemble member remains considerably

smaller than that of the multi-model ensemble for ever, the spread-skill-correlations of the multi-
model ensemble are even significantly smaller thanthe longer forecast ranges. This demonstrates the

greater sampling potential of larger ensembles, those of the ECMWF sub-ensembles. One might

expect positive correlations between spread andhowever, the error of the best ensemble member
is probably also strongly related to differences in skill due to the existence of regions in the state

space in which uncertainties are more likely tothe resolution of the models used. Higher reso-
lution models would be expected to show relatively grow or more likely to decay, i.e., the variability

of predictability (Smith et al., 1999). This conceptlarger errors at longer ranges than lower resolution

models because of differences in predictability of of stretching and shrinking regions in state space
cannot be directly applied to the multi-modelsmall scales compared to large scales (assuming
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approach, because there are several model state more closely. It is the agreement between the
spaces. In some models uncertainties may grow a priori predicted distributions with the a poster-
while they may shrink in another. If the majority iori observations. Talagrand et al. (1998) define
of the different models in a multi-model ensemble this agreement by the condition that for each
represent reasonable models of the atmospheric possible probability distribution p, the a posteriori
dynamics, however, it is expected that such a set verifying observations are distributed according
of models should also be able to indicate high to p in those circumstances when the ensemble
predictability when the true atmosphere is in a system predicts the distribution p. One approach
state of extended predictability. To summarize, if to test for statistical consistency is to determine
the goal is to reach the largest spread-skill-correla- rank histograms (Hamill and Colucci, 1998),
tions a single model EPS appears to be more which are also called Talagrand diagrams. The
appropriate, however, possibly conflicting with same idea has been also published under the term
another goal, namely to improve the forecast skill ‘‘binned probability ensemble’’ technique by
by the ensemble mean. It seems, that the 3 goals Anderson (1996). A rank histogram is an extension
of ensemble prediction as originally stated by of the idea of the bias for a single deterministic
Leith (1974) cannot be optimized simultaneously forecast to the case of an ensemble of forecasts.
within a single ensemble scheme. One determines the frequency of occurrences of

On the other hand, it is known that even in a the observed values in the intervals defined by the
perfect model/ensemble environment spread will single ensemble members. If the ensemble members
not be perfectly correlated with the error of any are indistinguishable from each other in the sense
individual forecast (Barker, 1991). In the perfect that they possess the same probability of occur-
ensemble configuration the maximum correlations rence, the frequency should be the same for all
are around 0.5 (0.6) in winter (summer). When the intervals including the 2 extreme intervals outside
spread is small, then the mean trajectory should the range of ensemble values. An example from
be close to the verifying trajectory, however when the summer sample showing the rank histograms
spread is large this need not be the case. Therefore, of both ensembles for the day 3 forecasts at grid
a better indication whether the forecast dispersion point 10°E–50°N is given in Fig. 6. Besides the
captures the error behavior may be the fraction number of cases in all M+1 classes the expected
of cases, in which the ensemble mean forecast number and confidence limits based on the equally
error is smaller than the maximum distance of likely occurrence of all intervals with p=1/(M+1)
any ensemble member from the ensemble mean. are indicated. The probability of drawing ran-
In a perfect model perfect ensemble environment domly a certain interval k times in N trials is
this fraction should be very close to one; only binomial distributed
sampling problems (too few ensemble members)
can lead to smaller values. For the multi-model P(k)=

N!

k!(N−k)!
pkqN−k with q=1−p.

ensemble in the winter sample this fraction is
slightly above 50% at day 1 and decreases to 35% The cumulative binomial probability Pc(k) of
at day 6. A prediction that the squared forecast drawing randomly k or more times a specific
error of the ensemble mean will be smaller than

ensemble member ranges from 0 for k=N+1 to
the maximum distance found in the ensemble

1 for k=0 and provides the lower [upper] confid-
would be incorrect in more than in half of the

ence bound N
l

[N
u
] when 1−Pc (Nl

) [Pc (Nu
)]

cases and is considered as useless. For the
becomes larger than 0.05. Numerically it is

ECMWF ensemble the results are a bit better
approximated by the incomplete beta function

from day 2 on with fractions slightly above 60%
(Press et al., 1992) because N is too large to

decreasing to values around 55% at day 6. In the
calculate the P(k) directly. We see that at this grid

summer sample, both ensembles yield useless
point both ensembles significantly predict too high

results with fractions not larger than 50%.
values. Note that the confidence bounds are based
on the assumption of independent trials, while the

3.3. Statistical consistency of the ensemble
daily data at this grid point are temporally correl-

ated. Nevertheless, the results will remain note-Statistical consistency of the ensemble is the
next ensemble quality which will be investigated worthy even under wider confidence bounds.
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Fig. 6. Rank histograms for the ECMWF (top) and multi-model ensemble (bottom) at grid-point 10°E–50°N for
day 3 forecasts of the summer sample. The bars indicate the number cases found in the M+1 intervals. The thick
dashed lines show the expectation values, the thin dashed lines indicate confidence limits at N

u
and N

l
defined by

the probabilities of finding counts above or below these lines by chance to be smaller than 5%, where independence
of the data is assumed.

Another special aspect of statistical consistency tion, either because its spread is too small and/or

is the frequency of ‘‘outliers’’, i.e., cases in which the ensemble is biased. If r is smaller than 1, the
the observation falls outside the range of ensemble ensemble does cover the observation but this could
values. A certain proportion of observations will be due to worst and best case estimates which are
be expected by chance to be outliers. Obviously, too conservative. In this case the spread is too
the larger the ensemble size, the larger is the large. Fig. 7 shows the results for both the winter
possibility that the ensemble will cover even and the summer sample. As expected the large
extreme values towards the tails of the distribu- ensemble size of the ECMWF ensemble provides
tions. To be able to compare the outliers statistics a smaller percentage of outliers in the winter and
of ensembles of different ensemble sizes, we intro- the summer sample (7a and c) than the multi-
duce the ‘‘effectivity’’ r as the ratio of the observed model ensemble. If we compare the effectivity r,
frequency of outliers, fobs , and the probability of however, the multi-model ensemble has almost
outliers expected by chance, ptheo . If the ensemble optimal values around 1, while for the ECMWF
members were all equally likely with the M ensemble the spread is too small especially on
ensemble members dividing the whole range into day 1 before it levels at r≈2 in the winter and
M+1 equally likely probability classes, then the r≈3–4 in the summer sample (7b and d). Note
probability for the outlier class is ptheo=2/(M+1) that the effectivity r has to be interpreted with
and consequently the ratio r is care since its maximum value, rmax , depends on

the ensemble size. The maximum rmax is reached
r=

(M+1) fobs
2

. (1) when in each case the verification falls outside the

ensemble range, i.e., fobs=1, leading to rmax=
(M+1)/2. Therefore, rmax is 2.5 for the multi-The optimal case is when r=1. If r is larger

than 1 the ensemble does not cover the observa- model ensemble and a factor of 10 larger for the

Tellus 52A (2000), 3



. 292

Fig. 7. Relative frequency of outliers, when the verification falls outside the interval spanned by the ensemble mem-
bers, for the summer (a) and the winter sample (b) and the corresponding effectivities r in (c) and (d). Line types are
explained in Fig. 4.

ECMWF ensemble. While the relative frequency multi-model ensemble become very small. The
multi-model ensemble shows the best r for thefavors large ensembles, the effectivity penalizes

large ensembles if they do not reflect a wide first forecast day. The results for the perfect con-
figuration in Fig. 7b, d are also interesting. Theenough and unbiased (i.e., appropriate) dispersion.

In that case the ensemble size could be reduced effectivity appears to be only slightly but consist-
ently too small during the first few days in bothwithout much loss of information about the pos-

sible forecast range, i.e., the ensemble is not effect- samples (i.e., even smaller than would be expected

from the design of the perfect ensemble which isive. This becomes clear when the ECMWF sub-
ensembles are considered; the differences from the not exactly 1 but only ( 2

50
)/( 2
49

)=0.98 because the
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‘‘verification’’ is drawn from the total of the 50 last few EPS members on day 1, i.e., the ensemble
members seem not to be equally likely in repres-EPS members but the SV perturbation opposite

to it is then disregarded in the perfect ensemble). enting the maxima or minma values. This is not

observed at day 6; now the histogram appearsThis behavior is not well understood, and may
possibly be related to the results discussed next. more flat. Fig. 8 is based on 4050 forecasts which

are correlated in time and space, and hence mightIn rank histograms, the individual ‘‘names’’ of

the ensemble members are ignored. It is irrelevant not provide a big enough sample to ensure the
significance of this observation. The summerwhich one of the multi-model ensemble is the

‘‘DWD-model’’ or which of ECMWF ensemble is sample shows qualitatively the same behavior and

supports the results, however, this systematic pref-the ensemble member ‘‘1’’. Retaining this informa-
tion is, of course, important when the ensemble is erence should be investigated in a further study

based on a much larger data set. We also countedtested for ‘‘equal likelihood of the members’’. It is

interesting to note the appearance of minima and the number of cases in which minima and maxima
appear as pairs, as would be expected under amaxima found in the total ensemble at certain

ensemble members. This is shown in Fig. 8 for the perfect linear evolution of the pairs. On day 1,

this is the case in about 60% of the pairs, indicat-day 1 and the day 6 forecasts in the winter sample.
There appears to be a systematic preference of the ing nonlinear effects already at the very early stage

of uncertainty growth. A similar result was foundminima and maxima to fall on the first few and

Fig. 8. Number of occurrence of minima (black) and maxima (gray) at certain (named) ECMWF EPS members for
day 1 (top) and day 6 (bottom) in the winter sample at all grid points.
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by Smith and Gilmour (1998). On day 6, minima (above) which the event is considered to have (not)
occurred. This threshold has been determined forand maxima appear as pairs in about 5% of

the cases. all grid-points separately by the extreme values

found in the analysis during the respective veri-It would also be interesting to test how the
verifying analysis falls onto the ensemble distribu- fication period by xthresh=xmin+(xmax−xmin)/3

in order to be sure that the event whose probabilitytion using a standard (not ranked) histogram. If

the ensemble members show different probabilities is forecasted has occurred at all.
Next, the probability for the occurrence of theto be closest to the verification, one might use

these a posteriori weights to improve the perform- event needs to be computed. Wilson et al. (1999)

state that one should not compute this probabilityance of the ensemble. Each time when an EPS
system is changed, however, these a posteriori directly from the ensemble distribution because of

its too small size. Instead, they suggest a paramet-weights become invalid, therefore the real goal

remains to produce ensembles with equally likely ric approach to describe the distribution, first to
fit parameters of an a priori chosen distributionmembers.

Another integrated measure of statistical con- and then to estimate the probabilities from the

fitted distribution. Here, however, the simplesistency of an ensemble proposed by Talagrand
et al. (1998) is related to the average ensemble approach of counting the number of ensemble

members in which the event occurred and dividingskill, i.e., the average squared forecast error of the

ensemble mean, 
(o− f: )2�, and the average by the ensemble size has been applied. Note that
in both cases the underlying assumption is equalensemble spread, i.e., the average variance of the

ensemble forecasts about the ensemble mean likelihood of the ensemble members. The multi-
model ensemble is too small to allow probability
(1/M)WM

i=1 ( f
i
− f: )2�. Statistical consistency

requires the quantity classes. Therefore, discrete probabilities at p
i
=1/i,

i=0, M are forecasted whenever none, one, two,
three or all operational models predict the event.ENC=


(o− f: )2�

T 1

M
∑
M

i=1
( f
i
− f: )2U−1

The ECMWF ensemble has been evaluated in the

same way with M+1 discrete probabilities. In an
early version of the paper the ECMWF ensembleto be 2/(M−1). Values larger than this indicate a
was evaluated using the same number of probabil-too small spread (or a large bias). Both ensembles
ity bins as for the multi-model ensemble. Usingyield too large values of ENC in both samples;
finer bins leads to improved results for theonly days 2 and 3 in the winter sample yield
ECMWF ensemble. Therefore we present allnegative values for the ECMWF ensemble thus a
results in a consistent way, even when this system-too large spread which had been already reported
atically penalizes the ensemble with the smallerin Subsection 3.1. This result is surprising because
number of ensemble members.often a generally too small spread of the ECMWF

Murphy (1993) suggested a set of 9 attributesensemble for the first forecast days is reported.
to quantify the goodness of probability forecasts.Note that a meaningless ensemble whose mem-
Here we concentrate on reliability and discrimina-bers were drawn at random from the climatolo-
tion and determine reliability and ROC diagramsgical distribution would yield a perfect statistical
(Stanski et al., 1989; Murphy and Katz, 1985;consistency with r=1 and ENC=2/(M−1). The
Mason, 1982). Two scalar quantities are derivedability of the ensembles to provide not only statist-
from these graphical verification tools. The quan-ically consistent but also useful probabilistic
tity ‘‘reliability’’ as the variance of the points fromforecasts will be discussed in the next section.
the diagonal weighted with the forecast frequency

of the probability class, and the area above the
3.4 Verification of probabilistic forecasts derived

curve in the ROC diagram. Often the area below
f rom the ensembles

the ROC curve is calculated (Stanski et al., 1989);
here we choose the area above to orient theFor the evaluation of the ensemble in terms of

probabilistic forecasts the continuous variable scoring in the same way as the reliability calcula-

tion, i.e., the smaller both values the better thegeopotential has to be transformed into a categor-
ical variable by defining a threshold value below probabilistic forecasts. Note that reliability is

Tellus 52A (2000), 3



   -  295

another measure to test for statistical consistency first 3 days. Since the ECMWF ensemble leads to
a more complete estimate of the full ROC curvesas the rank histograms, the effectivity r, and ENC

in the previous section; the difference is that now due to its larger ensemble size, the area above the

curves needs to be interpreted with care. Masonthe agreement between the consistency of the
forecasted and the observed probabilities is tested. (1982) suggested to fit curves assuming a normal-

normal model for the hit and false alarm rates.The ROC and its statistics consider the variability

in the predicted probabilities and reflects the Instead, we only contrast results of those
ensembles shown in Figs. 10b, d which have aboutability of the forecast to distinguish between condi-

tions preceding occurrence and non-occurrence of the same size. As expected, the perfect configura-

tion leads to better results than the ECMWFthe event.
Fig. 9 shows ROC diagrams for the day 6 ensemble. The ECMWF-subensembles yield con-

sistently larger values than the multi-modelforecasts in the winter and in the summer sample.

The differences between the ECMWF and the ensemble, supporting the general result of this
study that when taking the ensemble size intomulti-model ensemble are not very large, and both

ensembles still provide useful information because account, the multi-model ensemble appears to

perform better than the ECMWF ensemble.the curves are still well above the diagonal, and
so the area above the curves is still much smaller As for the ensemble mean results we investigated

the effect of the bias of the ensemble also on thethan 0.5. Fig. 9 also demonstrates nicely that the

area above the ROC curve can be misleading if measures for effectivity, reliability and discrimina-
tion. While one can reduce the scalar reliabilitydifferent numbers of probability bins are evalu-

ated. Even if all points of the multi-model ensemble remarkably when the bias is removed, all other
results remain qualitatively the same.fall exactly on the curve for the ECMWF

ensemble, the area will be larger for the multi-

model ensemble merely because of the convex
shape of ROC curves. 4. Discussion and conclusion

Fig. 10 summarizes the results of this Subsec-

tion. The scalar measure reliability is shown for In this study, the performance of a modern EPS
which explicitly takes uncertainties in the initialboth samples in Fig. 10a, c and indicates that the

multi-model ensemble is more reliable in summer conditions into account has been compared with

a multi-model ensemble which consists of theduring the first 5 days, and in winter during the

Fig. 9. ROC diagrams at forecast day 6 in the winter (a) and the summer sample (b). Line types are explained in
Fig. 4. In this case not the percentiles but the results of all 11 repetitions for the 2 reference configurations are shown.
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Fig. 10. Reliability and the area above the ROC curves in the summer (a) and (b) and the winter sample (c) and (d).
Line types are explained in Fig. 4.

operational forecasts from 4 different national as a criterion for the evaluation, the results lead
to controversial conclusions. For example, theweather forecasting centers and thus implicitly

considers model uncertainties. ensemble mean of the multi-model ensemble per-
forms better for most forecast ranges, while theGuidelined by the originally formulated goals

of ensemble prediction, several forecast attributes ECMWF EPS can provide a better ‘‘best’’
ensemble member for all forecast ranges becauseof both ensembles have been investigated and

contrasted. The different sizes of both ensembles of its larger size. But, if one relates this result to

the different ensemble sizes the best member isposes the main difficulty for the interpretation of
the results. If the ensemble size is not considered found disproportionately more often in the multi-

Tellus 52A (2000), 3



   -  297

model ensemble especially in the earlier forecast sets. Atger (1999) concludes that a multi-model
ensemble performs better than the ECMWF andranges (Figs. 4, 5). The larger sampling potential

of the ECMWF ensemble also yields the better the NCEP ensembles up to +144 h.

Do our results indicate that model deficienciesoutlier statistics in terms of frequencies, yet the
corresponding effectivities show that this sampling need to be taken into account and that by tuning

the initial conditions alone one cannot force theis not efficient (Fig. 7). Thus when taking the

different ensemble sizes into account and penaliz- model close to a trajectory of the real atmosphere?
Rabier et al. (1996) used the linear adjoint methoding for an overly large and inefficient ensemble,

the results are for the most part consistent, and and report about some cases when it is indeed not

possible to reduce a large forecast error appre-one has to conclude that the multi-model ensemble
performs better in most forecast aspects. This ciably by a better initial condition. A nonlinear

method to address this question is the method ofresult is supported by the 4-member-ECMWF-

subensembles which also perform worse than the ‘‘shadowing’’ as proposed by Smith and Gilmour
(1998), in which one searches for a ‘‘dream per-multi-model ensemble in most forecast aspects

except the skill-predictability, yet at the cost of turbation’’ that would bring the model trajectory

close to the observation within the observationalsmaller skill. The discussion would become more
complicated when not only the ensemble size but uncertainty. Since the multi-model ensemble not

only consists of different models but also usesalso costs were included into the evaluation of

both types of ensembles which would, for example, different analysis we unfortunately cannot con-
clude finally from this study that it is the differentarise by adding one new member to the ensemble.

Before concluding we would like to discuss models, that make the multi-model approach
attractive especially in the early medium range.some limitations in this analysis: (i) We do not

present uncertainties for the results concerning the Nevertheless, the fact that a small ensemble con-

sisting of forecasts from 4 different models withECMWF and multi-model ensemble. Instead, we
contrast the results with distributions of 2 refer- different physics, different analysis, different

numerical schemes, and different resolutions out-ence ensemble configurations. The confidence

limits with respect to these medians may provide performs a much larger ensemble in several key
aspects is an interesting result per se and suggestsan estimate for the uncertainties in the results for

both the ECMWF and the multi-model ensemble. that model uncertainty remains an important

aspect to consider in ensemble prediction methods.(ii) By verifying against the ECMWF analysis we
may favor the ECMWF ensemble because all EPS
members are integrated with a close relative of

that model, while the ECMWF analysis is only 5. Acknowledgments
akin to one of the members in the multi-model
ensemble. It would be best to verify against obser- This study has been carried out under a contract
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