
T ellus (2000), 52A, 523–532 Copyright © Munksgaard, 2000
Printed in UK. All rights reserved TELLUS

ISSN 0280–6495

Sensitivity analysis of the climate of a chaotic system

By DANIEL J. LEA1,*, MYLES R. ALLEN1,2 and THOMAS W. N. HAINE3, 1Atmospheric Oceanic
and Planetary Physics, Department of Physics, University of Oxford, Clarendon L aboratory, Parks Road,
Oxford OX1 3PU, UK; 2Space Science and T echnology Department, Rutherford Appleton L aboratory,
Chilton, Didcot, Oxon., OX11 0QX, UK; 3Department of Earth and Planetary Sciences, 329 Olin Hall,

T he Johns Hopkins University, Baltimore, MD 21218, USA

(Manuscript received 6 September 1999; in final form 3 March 2000)

ABSTRACT

This paper addresses some fundamental methodological issues concerning the sensitivity ana-
lysis of chaotic geophysical systems. We show, using the Lorenz system as an example, that a
naı̈ve approach to variational (‘‘adjoint’’) sensitivity analysis is of limited utility. Applied to
trajectories which are long relative to the predictability time scales of the system, cumulative
error growth means that adjoint results diverge exponentially from the ‘‘macroscopic climate
sensitivity’’ (that is, the sensitivity of time-averaged properties of the system to finite-amplitude
perturbations). This problem occurs even for time-averaged quantities and given infinite com-
puting resources. Alternatively, applied to very short trajectories, the adjoint provides an incor-
rect estimate of the sensitivity, even if averaged over large numbers of initial conditions, because
a finite time scale is required for the model climate to respond fully to certain perturbations.
In the Lorenz (1963) system, an intermediate time scale is found on which an ensemble of
adjoint gradients can give a reasonably accurate (O(10%)) estimate of the macroscopic climate
sensitivity. While this ensemble-adjoint approach is unlikely to be reliable for more complex
systems, it may provide useful guidance in identifying important parameter-combinations to be
explored further through direct finite-amplitude perturbations.

1. Introduction ‘‘climate’’ (time-averaged properties) of a chaotic

system; the direct method and the adjoint method.
Much of our understanding of geophysical sys- Under the direct method (Dickinson and

tems is based on computational modeling. A wide Gelinas, 1976) the sensitivity of the model output
range of problems, from data assimilation to the to a change, say, in a model parameter is found
analysis of uncertainty in model-based predictions, by comparing one model integration with another,
require an estimate of the sensitivity of model- which differs only by a finite perturbation to the
simulated quantities to changes in initial condi- parameter of interest. The key disadvantage of the
tions, boundary conditions, external forcing or the direct method is computational cost. If the sensi-
representation of unresolved processes. Sensitivity tivity to a number of model parameters is required,
analysis achieves this by evaluating the change in then a separate model integration must be per-
model outputs arising from specified changes in formed for each one.
these inputs. Here we evaluate two common An alternative method of sensitivity analysis is
approaches to sensitivity analysis, applied to the to use the adjoint to the model (Errico and

Vukicevic, 1992; Errico, 1997; Talagrand, 1997;

Giering and Kaminski, 1998). The adjoint gives* Corresponding author.
e-mail: d.lea1@physics.ox.ac.uk the sensitivity of a single component of the model
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output to infinitesimal changes in all the model investigated. Section 6 contains the concluding
discussion.input variables simultaneously. In contrast, the

direct method yields the full perturbed model

output to a non-vanishing change in a single
2. Lorenz equationsmodel input. The adjoint method is therefore

attractive when the important features of the
The model studied here is the Lorenz (1963)model output are known a priori and we wish to

system, often used as an analogue for atmosphericdiscover those model inputs that are most import-
behaviour because it mimics some of the propertiesant in determining them (Hall, 1986).
of the large-scale atmospheric circulation; notablyWe wish to compare the direct and adjoint
the occurrence of regime behaviour, distinct timemethods of finding the sensitivity of a chaotic
scales and variations in local predictabilitymodel with respect to parameter changes.
(Palmer, 1993). The Lorenz equations are threeSpecifically, we ask if results converge to the true
non-linear ordinary differential equations derived‘‘climate’’ sensitivity (which is independent of ini-
from a simplified version of the Rayleigh–Bénardtial conditions) as the integration time increases.
problem, which concerns fluid convection betweenThe kind of application we are interested in is
two horizontal plates (Emanuel, 1994). That isillustrated by Hall (1986) who used the adjoint

method to study the sensitivity of a simplified dx

dt
=−sx+sy, (1a)atmospheric General Circulation Model (GCM)

to changes in various parameters including the

level of CO2 . He based his analysis on 10-day dy

dt
=−xz+rx−y, (1b)

integrations and raised the possibility of using
much longer trajectories to analyse the sensitivity dz

dt
=xy−bz. (1c)of a coupled GCM. We suggest here that a longer

integration would not give useful results because,
In this paper, we focus on z, which is related tofor chaotic systems, the adjoint sensitivity does
the heat flow between the plates, and r, whichnot converge smoothly to a consistent climate
is proportional to the temperature differencesensitivity value with increasing integration time.
between the plates. In numerical examples, we useThis question of finding a sensitivity which is
a 4th order Runge–Kutta method to integrate thenot strongly dependent on initial conditions inter-
Lorenz equations (1a–c) with a time-step of 0.005,ested Corti and Palmer (1997) who used an adjoint
where s=10 and b=8

3
.model to estimate the sensitivity of atmospheric

In a climate study, attention is focused on time-flow patterns to forcings that may occur in climate
averaged properties rather than one particularchange scenarios. This problem also arises in
trajectory. So in our analogue we consider the4-dimensional variational assimilation, in which
average value of z over a time-interval of lengthadjoint sensitivities are used to minimise the
t,model/data misfit over a specified assimilation

window, and gives rise to an upper limit in the
z:(r, t, x0 , y0 , z0 )=

1

t P t
0

z(t) dt, (2)assimilation window length (Cong et al., 1998;
Schröter et al., 1993).

To explore these issues requires many model where x0 , y0 , z0 are the initial conditions at t=0.

We define the ‘‘climatological’’ value of z, z:2 ,integrations so using a realistic geophysical model
such as an atmospheric or oceanic GCM is not as the value of z: as t�2 (in this stationary,

ergodic system, this is equivalent to the expecta-feasible. Instead, the Lorenz (1963) system is used;

this is much simpler than a GCM while retaining tion value of z). For a given value of r, z: consist-
ently converges to a single value of z:2 , that isthe same essential chaotic behaviour. In Section 2

the Lorenz (1963) system is reviewed. In Sections independent of initial conditions, for all but a
small number of ‘‘pathological’’ initial conditions3 and 4 numerical experiments are performed to

compare the direct and adjoint-based estimates of (such as setting x0 , y0 , z0 to a fixed point). We

shall therefore treat z:2 as a single-valued functionthe sensitivity. In Section 5, possible ways around
the limitations found in the adjoint method are of r, while noting the possibility of these non-
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generic trajectories and ensuring, of course, that 3. Relationship between z: and r
we avoid them in our numerical experiments.

Fig. 1 shows that an increase in r raises the value In most practical situations, we are interested

in the response of a system to finite perturbationsof z:. We intuitively expect this behaviour because,
in the Rayleigh–Bénard system, an increase in the in parameters, which we refer to as the ‘‘macro-

scopic sensitivity’’ or slope. For a given set oftemperature difference between the horizontal

plates (r) should produce an increase in the average initial conditions and integration time, the slope
of the average value of z isflux of heat (z:). The analogue in a climate GCM

might be the dependence of the equator to pole

heat flux on meridional temperature gradient, for
Dz:
Dr

=
z:(r+Dr)−z:(r)

Dr
. (3)

instance. For the Lorenz system, the increase in z:
with r can be anticipated by considering the gov- Fig. 2 suggests that, for the Lorenz (1963) system,

the slope of z:2 (the macroscopic climate sensitiv-erning equations directly and determining the posi-
tions of the fixed points around which the trajectory ity, Dz:2/Dr) is a smoothly-varying, single-valued

function of r over a wide range of values of r.orbits. In this case, the fixed points are given by

z=r−1, so z: grows as the attractor surrounding That is, for a given r, Dz:/Dr converges to a single
value which is independent of x0 , y0 , z0 and t and,the fixed points grows with r. In general, however,

finding the positions of the fixed points may not be for small finite perturbations, also independent of

Dr. Note that this does not necessarily follow fromhelpful in predicting the sensitivity of a quantity to
a change in a model input. For example, changes the assumption that z:2 itself is a single-valued

function of r. Lorenz (1964) draws attention to ain inputs may perturb the probability density func-
tion of the system attractor without significantly system in which z:2 is a highly discontinuous

function of r, such that Dz:2/Dr would generallychanging the locations of the fixed points (Palmer,

1999). Furthermore, in the case of the Lorenz remain dependent on Dr no matter how small the
perturbation.system, there is a third unstable fixed point (z=0):

in a practical problem knowing how the fixed The four panels in Fig. 2 show z:(r) for 4 integra-

tion times and 2 initial conditions obtained in eachpoints affect the behaviour of the attractor may not
be possible. case by performing a large number of integrations

Fig. 1. Graphs of the Lorenz attractor for r=30 and r=80. The horizontal lines indicate the value of z: in each case
(for t=131.36).
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(c)  long (d)  very long

(a)  short (b)  intermediate

Fig. 2. Graphs of z:, the average of z over integration time (eq. (2)), against r. Panels show graphs for (a) a short
integration (t=0.1), (b) an intermediate integration (t=0.44), (c) a long integration (t=2.26), and (d) a very long
integration (t=131.36). In (a) and (b), line 1 is for initial conditions x0=−2.40, y0=−3.70, z0=14.98 and line 2
is for initial conditions x0=8.00, y0=−2.00, z0=36.05. Graphs (c) and (d) show the results for the first set of initial
conditions only. Values of z: are calculated at intervals of r=0.005.

scanning over a range of values of r at intervals This averaging or smoothing appears to have

occurred for the very long integrations of theof 0.005. The integration times are referred to as
short, intermediate, long and very long, and are Lorenz system (Fig. 2d), giving a nearly linear

dependence of z: on r with a slope of around 0.96t=0.1, t=0.44, t=2.26 and t=131.36, respect-

ively. The significance of these integration times is (estimated by a linear fit to Fig. 2d), independent
of initial conditions (at least, in these two casesas follows: the short integrations only traverse

part of an orbit around the Lorenz attractor; the and in several others we have tried, with the

exception of fixed points noted above). This meansintermediate integrations complete a full orbit; the
long integrations complete several such orbits; and that, in this case, the macroscopic climate sensitiv-

ity Dz:2/Dr is nearly independent of x0 , y0 , z0the very long integrations travel around the

attractor O(100) times. The very long integrations and Dr.
The assumption that z:2 is a single-valued andare analogous to a climate integration of a GCM

or a multi-year integration in an eddy-resolving continuous function of r appears only to be valid
over a limited range of values of r. Discontinuitiesocean model where many life cycles of the chaotic

geostrophic eddies are completed. In these cases, are apparent for r>90, where the system switches

in and out of limit cycles (Frøyland and Alfsen,the effects of individual eddies average out, reveal-
ing the underlying climate sensitivity as r varies. 1984) and around r=24.74 where the system
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switches from transient chaos to continuous chaos. directly analogous to the problem highlighted by
Fig. 2a; whatever the size of the perturbation, theIn the neighbourhood of these bifurcations, z:2 is

(presumably) discontinuous and the gradient of system still needs a finite time to display its

response.the climatological value of z, ∂z:/∂r, is not well-
defined. Fortunately, for many practical applica- The intermediate, long and very long integra-

tions have all completed one or more orbitstions this kind of discontinuous behaviour appears

to be unusual. For example, recent laboratory around the attractor, and in contrast to the short
integration all three cases display the same overallexperiments show a smooth dependence of heat

flux on Rayleigh number in hard Rayleigh–Bénard increase of z: with r. Thus integrations of inter-

mediate length or longer give a good estimate ofturbulence (Glazier et al., 1999).
As we are unable to perform integrations of z:2 (r) and therefore of the macroscopic climate

sensitivity. In detail, however, the intermediate,infinite length to determine z:2 (r), an important

question is how long an integration is necessary long and very long integrations do differ. Although
z:(r) in the intermediate integrations is smoothlyto estimate the slope, Dz:2/Dr, accurately? The

short integrations (Fig. 2a) are not long enough varying, the long integration displays isolated

extrema (for example at r#57). The cause of thesebecause they have a smaller overall slope than
either the intermediate, long or very long integra- isolated extrema is chaotic error growth; a per-

turbation Dr produces a change in the modeltions. The reason for this is that a change in the

value of r takes a non-vanishing time to affect the variables that grows exponentially leading, after
sufficient time, to a completely different trajectoryvalue of z. This can be seen by considering the

sensitivity as t�0. For a sufficiently short integra- on the same basic attractor. This is seen in Fig. 3
which shows the trajectory of z(t) for r=57 andtion, of length t, we can use a Taylor expansion

to yield for r=57.175. Intuitively, we expect an increase

in r to produce an increase in z:, but in this case
the small increase in z:2 is completely overpowered∂z:

∂r
=

1

t P t
0

1

2!
x2
0
Dt2 d(Dt)+O(t3 ) . (4)

by the exponential divergence of nearby trajector-

ies. This gives a local, initial-condition-dependent
decrease in z:, and an extremum in the graph of z:Hence ∂z:/∂r≈ (1/6)x2

0
t2. Therefore for very small

t (accurate for t<0.01 in the current case) we against r.

As we increase the length of the integration,expect a very small sensitivity, which depends on
x0 and t but not on r. Unfortunately, there is no averaging over longer time scales, the size of these

extrema are reduced. Fig. 4 shows that theway we can infer the macroscopic climate sensitiv-

ity of #0.96 from eq. (4). For the short integra-
tions (t=0.1, Fig. 2a), eq. (4) is no longer accurate
yet the integration is still too short to display the

full macroscopic sensitivity.
This behaviour can also be seen in other sys-

tems. For example, Hall (1986) considers the sen-

sitivity of near-surface air temperature to a change
in the level of CO2 in an atmospheric GCM. He
finds a response of 0.12 K to a doubling of CO2
using an adjoint sensitivity analysis of a 10-day
integration. Although consistent with direct calcu-
lations with fixed sea surface temperatures (as Hall

(1986) used), this sensitivity is much less than the
range of coupled GCM estimates of the sensitivity
to doubled-CO2 of 1.5–4.5 K (Kattenberg et al.,

Fig. 3. The time evolution of z(t) is plotted for r=57
1995). The coupled GCMs have a larger sensitivity

(solid curve) and r=57.175 (dotted curve). Although r
because they react by changing the sea surface has increased, the time mean of z, z: (horizontal lines),
temperature in a response that takes longer than has decreased. This decrease in z: produces the isolated

extremum seen in Fig. 2c at r=57.175.10 days to fully evolve. Thus this discrepancy is
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model adjoint linearised about the original model
trajectory (Errico and Vukicevic, 1992; Errico, 1997;
Talagrand, 1997; Giering and Kaminski, 1998). This

will, of course, be different from the value of ∂z:/∂r
for the underlying continuous system, but the
difference is irrelevant to the points we address here.

The gradients for the short, intermediate and long
integration times are as would be expected from
differentiating the functions in Fig. 2. The long

integrations, for example, show the effect of the
isolated extrema leading to gradients that peak near
±104, compared to #0.96 for the macroscopic
climate sensitivity. These values are highly unrepres-

Fig. 4. Mean amplitude of the isolated extrema (Fig. 2) entative of the macroscopic trend of z: with r and
plotted against integration time t. The mean amplitude

also strongly dependent on the initial conditions.
of the extrema is found by considering z:(r) for two differ-

Furthermore, this behaviour deteriorates for theent initial conditions, and subtracting them from one
very long integrations where the gradients areanother to leave only the initial-condition-dependent
O(10100 ). These pathological values would not haveextrema. The mean extrema amplitude is the standard

deviation of this difference. been anticipated from visual inspection of Fig. 2
and indicate the presence of many small-amplitude

but tightly packed extrema.amplitude of the isolated extrema scales with 1/Et,
as if they were generated by a linear stochastic Fig. 6 shows how |∂z:/∂r | varies with integration

time t for various ranges of r. It suggests that theprocess. Thus, we expect the amplitude of these

extrema to tend to zero as the integration time tends infinitesimal or microscopic sensitivity can be writ-
ten asto infinity. In other words, the slope of the average

value of z (Dz:/Dr) calculated on a finite time (for a
|∂z:/∂r |3elt. (5)

fixed perturbationDr) converges to the macroscopic
climate sensitivity (Dz:2/Dr) in the limit of a long The values of the exponent l are consistent with the

first global Lyapunov exponents found by Frøylandintegration time. We can therefore use finite-integra-

tion-time macroscopic sensitivities (the direct and Alfsen (1984) (see also Trevisan and Legnani,
1995). This result supports the idea that the expo-method) with reasonable confidence to estimate the

underlying macroscopic climate sensitivity, pro- nential growth in microscopic sensitivity is due to

chaotic error growth produced by a change in r.vided that (a) we allow sufficient time for the system
to display its true sensitivity, (b) Dr is large enough Since the perturbation is infinitesimal this exponen-

tial growth will continue indefinitely without satur-that the error due to local extrema is small, and,

(c) Dr is small enough that the underlying curvature ating, so there is no reason in principle why Fig. 6
cannot be extrapolated indefinitely to an arbitrarilyof the climate variable z:2 is weak.
long integration. Hence, we expect that as the integ-

ration length increases then ∂z:/∂r grows without
bound, giving an infinite microscopic climate sensit-4. Relationship between ∂z:/∂r and r
ivity. Thus, z

2
appears to behave like a Weierstrass

function (McShane, 1989), at least in the rangeIn practice, for the case of sensitivity to many
parameters, the direct method becomes prohibit- 25∏r∏50; that is, it is apparently continuous but

its local gradients are undefined.ively expensive. We now investigate whether the

adjoint method, a promising alternative technique, In summary, the microscopic sensitivity values
found using the model adjoint are not useful incan be used to find the climate sensitivity.

Fig. 5 shows ∂z:/∂r as a function of r for the same estimating the macroscopic climate sensitivities if
an integration longer than intermediate length isintegration times and initial conditions used in

Fig. 2. For each value of r, an exact value of ∂z:/∂r used, indeed ∂z:2/∂r is expected to be infinite.

Unfortunately, too short an integration period pro-for this set of initial conditions, integration time and
finite-difference formulation is computed using the duces a stable (i.e., only weakly dependent on initial
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(c)  long (d)  very long

(a)  short (b)  intermediate

Fig. 5. Graphs of ∂z:/∂r against r for, (a) a short integration (t=0.10), (b) an intermediate integration (t=0.44), (c) a
long integration (t=2.26), and (d) a very long integration (t=131.36). The dashed line, in (a) and (b), shows an
estimate of the macroscopic climate sensitivity (0.9600±0.0002). Note the change in ordinate scales for (c) and (d).
In (a) and (b) line 1 is for initial conditions x=−2.40, y=−3.70, z=14.98 and line 2 is for initial conditions x=
8.00, y=−2.00, z=36.05. Graphs (c) and (d) show the results for the first set of initial conditions only. Values of
∂z:/∂r are calculated at intervals of r=0.005.

conditions) but incorrect estimate of the sensitivity, but with errors of O(100%). A possible way to
reduce these errors is to average results from anexactly as in the direct method. For an intermediate

or long trajectory, the estimate may be correct over ensemble of intermediate length integrations, as

used by Corti and Palmer (1997). To test thismuch of the range, but wildly inaccurate for certain
values of r in the vicinity of the isolated extrema. idea we take the very long integration, for each

value of r, and split it into many intermediateSimple microscopic sensitivities from adjoints are

therefore essentially useless for analysing the macro- length segments. We then perform an adjoint cal-
culation on each segment, and average the resultscopic climate sensitivity of a chaotic system.
(Fig. 7a). This produces a reasonable estimate of

the macroscopic climate sensitivity, particularly for
40<r<65. The procedure requires only the same5. Can the limitations of adjoint sensitivity

analysis be avoided? computing resources as a single adjoint calculation
for the very long integration, which gave useless
(O(10100)) gradients. Some scatter about the mac-Fig. 5b shows the adjoint method applied to an

intermediate length integration provides a reason- roscopic climate sensitivity (O(10%)) still exists
for an ensemble adjoint estimate made in this way.able estimate of the macroscopic climate sensitivity
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Fig. 6. Graph of the natural logarithm of the modulus
of the gradient, |∂z:/∂r |, against integration time t aver-
aged over various ranges of r. The sensitivity grows
exponentially with increasing integration time and the
rate of growth depends on the value of r. Performing
least squares exponential fits of the form elt gives for
0∏r<20, l=0.002±0.001; for 25∏r<30, l=
0.933±0.004; for 35∏r<40, l=1.121±0.004; for
45∏r<50, l=1.313±0.006; and for 93.5∏r<94.5,
l=1.812±0.004. These values of l are consistent with
the first Lyapunov exponents of Frøyland and Alfsen
(1984). For 92.1∏r<93 a limit cycle is present. In this
case, the trajectory is initially chaotic, and then enters
the non-chaotic limit cycle; thus, the sensitivity initially
grows exponentially with t, but then ceases to grow once
the limit cycle is achieved.

This is because the underlying trajectories about

which the linearisation is performed are com-
pletely different even for two nearby values of r.

For r<40, the ensemble adjoint estimates are

also biased. This is because the individual integra-
tion segments are not long enough to display the
full climate sensitivity. To reduce the bias, we

repeat the multiple segment integration using a
larger segment length of t=0.66 (see Fig. 7b). As
expected, the bias is reduced, although the scatter

is increased (particularly for large r) for a given
total computation time. This is because the effect
of the isolated extrema (see Fig. 6 and eq. (5)) on

each individual integration segment is larger, and

(b)

(a)

(c)

also because fewer integrations are averaged.
Fig. 7. Estimates of the macroscopic climate sensitivity

Fig. 7c shows that if the integration segment is from averaging an ensemble of microscopic sensitivities
too short, the sensitivity estimate is systematically from adjoint calculations: (a) average of the gradient
low for all r, despite a greater precision. of 299 intermediate integrations (t=0.44); (b) average

of the gradient of 199 longer integrations (t=0.66);Clearly the length of the integration segment
(c) average of the gradient of 1314 short integrations (t=must be chosen carefully for this ensemble-adjoint
0.1). All of these ensembles span the same integrationapproach to work. In any practical application,
time as one very long integration (t=131.36). The

several different segment lengths would have to
dashed line, in each figure, shows an estimate of the

be tested in a search for a stable estimate. macroscopic climate sensitivity (0.9600±0.0002) from
fitting a straight line to Fig. 2d.
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Furthermore, although our results for the Lorenz of yielding the sensitivity values to many model
inputs simultaneously at similar computationalequations are encouraging, other chaotic systems

may well behave differently. Nevertheless, in view cost to a single direct method calculation.

Intermediate length or longer integrations mustof the prohibitive expense of the direct method,
any potentially useful adjoint technique should be be used in the ensemble as shorter integrations do

not display the macroscopic climate sensitivity, atinvestigated. We defer detailed discussion of these

issues to another article. least for the Lorenz (1963) system. Averaging an
ensemble of intermediate length microscopic sen-
sitivities has not yet been attempted for more

complex systems. For example, it is not clear
whether an appropriate intermediate time scale6. Discussion
exists in a complex climate GCM where there are

multiple chaotic time scales. Finding a suitableThe question we have addressed is as follows:
do the direct and adjoint methods of estimating intermediate time scale for the system of interest

is vital because choosing too short an integrationsensitivity converge to the macroscopic sensitivity

as the integration time tends to infinity? This work segment produces a biased estimate of the macro-
scopic climate sensitivity. Alternatively, if theshows that the direct method does converge for

the Lorenz (1963) system. The adjoint method integration segments are too long, the amplitude

of the chaotic, initial-condition-dependent effectsdoes not tend to a useful climate sensitivity value,
however; rather it grows exponentially with are too large for a reasonably-sized ensemble of

segments to uncover the underlying macroscopicincreasing integration time. This suggests studying
the climate response of a chaotic GCM using climate sensitivity.

Overall, the direct perturbation method is thesensitivities from an adjoint model would not yield

the macroscopic climate sensitivity required. most reliable for studying macroscopic climate
sensitivity. The simple adjoint method, yieldingThe reason for this problem with the adjoint

method is that, for climate studies, the sensitivity microscopic sensitivities, is not useful for finding

macroscopic climate sensitivity in chaotic systems.of a single model realisation to an infinitesimal
change in the model parameters is not the quantity The ensemble-adjoint method may be of some use

however, although difficult issues remain to beof most interest. In this case, the microscopic

sensitivity from the adjoint model is highly resolved before it is applied to a complex GCM.
In any event, direct sensitivity calculations willdependent on initial conditions because it is prim-

arily dependent on chaotic changes in the solution probably still need to be used to confirm results

for parameters of most interest.trajectory. Of greater interest is the component of
the response that is independent of the initial
conditions. Neither the adjoint nor the direct

sensitivity methods provide this unequivocally.
Our results suggest that the direct method, used,
for example, in model predictions of the effect of 7. Acknowledgments
increased CO2 on the Earth’s climate (Kattenberg
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