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ABSTRACT

The dynamics and predictability of Stommel’s box model of the thermohaline circulation is
studied. This nonlinear model with idealized geometry of the North Atlantic is solved exactly.
A phase space analysis of the model reveals that the optimal perturbation affecting long-term
climate variability is provided by high-latitude haline forcing in the Atlantic ocean, although
this perturbation has little resemblance with the most unstable mode of the system and the
leading EOF. Furthermore, the predictability problem is investigated by means of singular
vector analysis and the evolution of the probability distribution function. Uncertainties in the
oceanic initial conditions do increase in the phase space of the model. In the stochastically
forced box model with identical oceanic initial conditions, the climate predictability is examined
for the damped persistence forecast. We find that the loss of the predictability is related to the
different stages of the variance evolution which is also measured by the relative entropy. Our
analysis shows that the non-normal system matrix of Stommel’s model does affect the dynamics
and predictability of the system which is useful for the interpretation of long-term climate
variability and predictability.

1. Introduction northward oceanic heat transport is associated

with the meridional overturning which is driven,
at least in part, by deep water formation in theThe oceanic thermohaline circulation (THC)

occupies a central position in the understanding Labrador and Nordic Seas.

The pioneering work of Stommel (1961) demon-of climate variability and predictability because of
its link to long-term variability and climate strated the existence of multiple equilibria under

same atmospheric forcing conditions. Stommel’schanges. In the North Atlantic, warm and saline

surface water is transported northward, and on result with an ocean box model has initiated
studies using three dimensional ocean circulationits pathway it is cooled and freshened through

surface fluxes. The large amount of heat trans- models (Bryan, 1986; Manabe and Stouffer, 1988),

confirming the existence of multiple equilibria.ported by the THC is responsible for the relatively
mild climate in northern Europe. Most of the Besides the modeling studies, there is paleoclimatic

evidence (e.g. Lehmann and Keigwin, 1982) that
secular variability and abrupt climate changes are
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linked to variations in the THC. In addition toemail: gerrit.lohmann@dkrz.de
paleoclimatic shifts, interdecadal climate variabil-† Current affiliation: Data General Walldorf,

Germany. ity may originate from changes of North Atlantic
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Deep Water (NADW) formation. A large salinity adapted from information theory are applied to
our model. The results are discussed and conclu-fluctuation in the northern North Atlantic was

observed in the early seventies, known as the sions are given in Section 5.

‘‘Great Salinity Anomaly’’ (Dickson et al., 1988)
which temporarily weakened deep water forma-

2. Solution of Stommel’s model
tion in the Labrador Sea (Lazier, 1988).

We present in this paper the analytical solution
In this section, a category of the nonlinear

of Stommel’s (1961) low order model. The model
models following the simple thermohaline model

mimics the North Atlantic region which seems to
of Stommel (1961) is solved exactly. The common

be a very sensitive part of the global thermohaline
assumption of these box models is that the oceanic

circulation. With a coupled atmosphere-ocean ver-
overturning rate W can be expressed by the meridi-

sion of this model, we analyze the qualitative
onal density difference:

behavior of the THC in terms of stability, variabil-
W=−c(aDT−bDS), (1)ity, and predictability. The model dynamics are

analyzed in phase space and we examine the most where a and b are the thermal and haline expan-
effective excitation of the model variability. sion coefficients, c is a tunable parameter, and

The issue of atmospheric predictability started D denotes the meridional difference operator.
with the work of Lorenz (1965). This was later Stommel (1961) considered a two-box ocean
extented to a coupled atmosphere-ocean mixed model where the boxes are connected by an over-
layer model (Nese and Dutton, 1993). Although flow at the top and a capillary tube at the bottom,
the typical predictability limit of weather phen- such that the capillary flow is directed from the
omena is of the order of weeks, climate variations high density vessel to the low density vessel follow-
are much more predictable due to the large oceanic ing the law (1).
heat capacity and dynamical inertia. Other The equations for temperature T and salinity S
modeling studies deal with the forecast of the are the heat and salt budgets in one oceanic box
dominant interannual climate fluctuation, the using an upstream scheme for the advective trans-
El Niño/Southern Oscillation (Goswami and port:
Shukla, 1991; Blumenthal, 1991; Eckert and Latif,
1997). For the North Atlantic, the predictability d

dt
T =−

W

V
DT −

Foa
r0cph

, (2)
should include an active THC which was recently
addressed by Griffies and Bryan (1997). In several d

dt
S=−

W

V
DS−

S0
h

(P−E), (3)predictability experiments with their complex

coupled model, they estimated the predictability
where V is the volume of the box with depth h,of the dominant EOF patterns. They concluded
and (P−E) denotes the fresh water flux (precip-that the ocean-atmosphere interactions yield to
itation minus evaporation plus runoff ). Foa is thepredictability limits beyond the intrinsic predict-
heat flux at the ocean-atmosphere interface, S0 isability limits of the atmosphere. Following their
a reference salinity, and r0cp denotes the heatapproach, we will address the question of predict-
capacity of the ocean. For simplicity, we haveability in our simple model which is forced by
restricted our notation to the case with highstochastic atmospheric white noise stemming from
latitude deep water formation. For a reversedthe underlying dynamical processes in the
circulation, the parameter c in (1) must then beatmosphere.
substituted by −c.The paper is organized as follows. We present

The budget equations for temperature and salin-the exact solution of Stommel’s (1961) box model
ity (2, 3) for each box with volume V can be(Section 2). In Section 3, the dynamics and error
subtracted from each other in order to get:growth is analyzed in the phase space of the

model. A stochastically forced box model is pre- d

dt
DT =−2

W

V
DT −D

Foa
r0cph

, (4)sented in Section 4. We are particularly interested
in the type of forcing which leads to maximal

long-term variability and predictability. The d

dt
DS=−2

W

V
DS−D

S0
h

(P−E). (5)
damped persistence forecast and a concept
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As in Lohmann et al. (1996), we assume a linear Zhang (1996), Winton (1997) and many others
are of type (6), and their dynamics are thereforeresponse model for the surface fluxes Foa and

P−E as function of sea surface temperature exactly known.

(Appendix 7.1). The equilibrium temperature and
salinity gradients (DT °, DS° ), correspond to those
values for which the left hand side of (4) and (5) 3. Dynamics and error growth
vanish. The resulting cubic function for DT ° in
terms of DS° has three real solutions for a wide In this section, we analyze the sensitivity of the

model and its variability in phase space. In particu-range of parameters in the model (Stommel, 1961).

We subtract the climatic background state lar, we examine why salinity perturbations are so
important in changing the THC, and how errors(DT °, DS° ) from the dynamical equations (4, 5)

resulting a nonlinear evolution equations for the in the initial conditions develop further.

anomalies DT−DT ° and DS−DS° which are
denoted in the following by T and S, respectively.

3.1. Dynamics
Denoting* furthermore X for the two dimensional

vector (T , S), the evolution equation for the anom- The model is tuned to the present climate
(Lohmann et al., 1996) which places it in thealies T and S is of the following structure:
thermal regime of the THC with a meridional

overturning rate W° of 14 Sv (1 Sv=106 m3 s−1 ).d

dt
X=AX+
b |X�X ,

We seek the initial conditions for which X(t)

asymptotically reaches this equilibrium state.X(0)=X0 for X, X0µRn, nµN .
Because c=1 initially (9), this question can be

The brackets 
 | � denote the Euclidean scalar reduced to the determination of initial conditions
product. This evolution equation (6) without X0 where c(t; X0 )>0 is positive for all t�0. The
inhomogeneities has the stationary solution grey area in the phase space spanned by temper-
X=0, corresponding to the stationary state ature and salinity (Fig. 1) indicates the region of
(DT °, DS° ). In the Appendix 7.1, matrix A and unstable initial states which are outside the basin
vector b are specified for the box model. of attraction for the thermally driven THC. The

Let jµRn denote the solution of circulation with North Atlantic Deep Water

formation is possible only in the white areaA*j+b=0, (7)
(Fig. 1), basic states with a large meridional salin-

where A* is the adjoint operator to A. With the ity or small temperature gradient are not stable.
definition Furthermore, we find that the critical perturbation

is mainly a function of the strength of the back-
X(t))

1

c(t)
exp(At)X0 , X0 , X(t)µRn, (8) ground meridional mass transport W° (not shown).

We analyze the dynamics in the phase space
and the scaling function spanned by temperature and salinity anomalies

and investigate the model sensitivity under anom-c(t; X0 ))
j | exp(At)X0�−
j |X0�+1, (9)
alous high latitude forcing, induced as an initial

one can verify that X(t) of (8) solves the differential perturbation. The lines in Fig. 1 are phase space
eq. (6): trajectories after perturbations of different magni-

tude have been injected into the North Atlantic.d

dt
X=A

1

c
exp(At)X0−

ċ

c2
exp(At)X0 We notice that for most trajectories, the distances

from zero (0, 0) increases temporarily, where the

maximal distance from zero is after a decade. After=AX−
j |AX�X=AX+
b |X�X . (10)
about 10 years the trajectories in Fig. 1 point into

The models of Stommel (1961), Marotzke and
a ‘‘mixed temperature/salinity direction’’, denoted

Stone (1995), Lohmann et al. (1996), Ruddick and
further as e1 . Fig. 1 imply that the adjustment of
the THC involves two phases: A fast thermal

response and a slower response on the e1-direction.* Bold face is used for vectors and matrices throughout
the paper. We shall see later that the vector e1 is identical
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Fig. 2. Eigenvectors e1 , e2 , and adjoint eigenvectors e*1 ,
e*2 of the tangent linear operator A. The dotted lines
show the line of constant density and the perpendicular.

Fig. 1. The basin of attraction (white area) and the
dynamics in the thermo-haline phase space. With initial

real and negative. Because of l2<l1 , the first termconditions outside the gray area, the trajectories con-
verge asymptotically to the origin corresponding to the dominates for long time-scales and the second for
thermal driven solution of the THC. Due to the fast short time-scales. Using the biorthogonality condi-
thermal response during the first decade of relaxation, tion, we get furthermore the coefficients
the distance of the trajectories from zero can increase
temporarily.

c
i
=


e*
i
|X0�


e*
i
| e
i
�

for i=1, 2. (12)

A perturbation is called ‘‘optimal’’, if the initialwith the most unstable mode in the system.
error vector has minimal projection onto theBecause the scaling function c(t) acts upon both
subspace with fastest decaying perturbations, ortemperature and salinity (eq. (8)), the evolution of
equivalently if the coefficient c1 is maximal. Thisthe nonlinear model can be well characterized by
is according to (12) equivalent to X0 pointing intothe eigenvectors of the matrix A, which is discussed
the direction of e*

1
. This unit vector e*

1
is calledin the next section.

the ‘‘biorthogonal’’ (Palmer, 1996) to the most
unstable eigenvector e1 which we want to excite.*

3.2. Initial excitation The most unstable mode e1 and its biorthogonal
e*
1

differ greatly from each other, and the perturba-The operator A of the box model is found to
tion that optimally excites the mode bears littlebe non-normal (AA*≠A*A), and the eigenvectors
resemblance to the mode itself.of A, e1 and e2 , are not orthogonal (Fig. 2). One

It is remarkable that the optimal initial per-eigenvalue (e2 ) is closely related to temperature
turbation vector e*

1
does not coincide with aanomalies, whereas the other (e1 ) is a ‘‘mixed

perturbation in sea surface density at high lati-temperature/salinity eigenvector’’ (Fig. 2). The
tudes, which would reside on the dotted lineeigenvectors of the adjoint matrix A* are denoted
perpendicular to r=const. in Fig. 2. Even whenby e*1 and e*2 , respectively. For the non-normal
using a space spanned by (aT , bS) instead of (T , S),matrix A, the eigenvectors of A and A* do not
to take into account the different values for thecoincide, but fulfilling the ‘‘biorthogonality condi-

tion’’: e*1 ) e2 and e*2 ) e1 . For the linear dynamics
* In order to make a geometrical picture for the math-cX, we make the ansatz

ematical considerations, assume that the tail of the vector
X0 is placed on the e1-line and its tip on the e2-line. ThiscX=c1e1 exp (l1t)+c2e2 exp (l2t) , (11)
vector is stretched maximally because the tail decays to

where the eigenvalues l1,2 correspond to the eigen- zero quickly, whereas the tip is hardly unchanged due
to the larger eigenvalue l1 .vectors e1,2 . In our system, both eigenvalues are
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thermal and haline expansion coefficients, vector
e*
1

is much more dominated by the scaled salinity
anomalies than the temperature anomalies of the

high latitudinal box.*

3.3. T he error growth due to uncertain initial
conditions

Assume that the oceanic initial conditions of

our model are uncertain which could be due to
the lack of exact measurements or due to extreme
events. Our interest is in identifying and analyzing

which uncertainties in the initial conditions are
crucial for the limitation of the system’s predict-
ability. In our box model, the evolution X(t) is

known. Thus, the tangent linear operator A(X)
can be obtained analytically. The evolution on the
tangent vector space is given by: x(t)=exp(At)x0 Fig. 3. Forecast ellipsoid after 1 day, 1 month, 6 months,
and the growth of the error vector x(t) can be 1 year, and 2 years. The main axes of the ellipsoids define

the singular vectors of the system. After a year, themeasured by the norm of the symmetric matrix
dominant singular vector coincides almost with sea sur-eA*t eAt :
face salinity anomalies. The axes are scaled for equal

dx(t)d2)
eAtx0 | eAtx0�=
eA*t eAtx0 | x0� . (13) contributions of salinity and temperature anomalies to
high latitude density.

The eigenvectors of the so-called Oseldec-
operator eA*t eAt are the singular vectors of the
tangent linear operator A. The eigenvalues of

eA*t eAt are connected to the amplification rates 1+ (A*+A)t, and the ellipsoid deformation for
initial time coincides with the vector (e1+e*

1
)/2of x(t).

We suppose that the initial conditions are uncer- (Fig. 2). After a few months, the error growth is

rotated into the direction of the next term of thetain and are normally distributed in phase space.
The initial state is then represented by a circle in Taylor expansion (A*At2/2) of the Oseldec-oper-

ator. After one year, the dominant singular vectorphase space (Fig. 3) where the axis units corre-

spond to the same density contribution. The devel- coincides almost with sea surface salinity anomal-
ies. We obtain that ellipsoids after a few yearsopment for five different times 1 day, 1 month,

6 months, 1 year, and 2 years is shown in Fig. 3. degenerate to a line, and asymptotically they are

reduced to the origin (0, 0) because the matrix AFor time-scales larger than 2 years, the ellipsoids
coincide almost with a line on the major axis are is asymptotically stable.

It follows that errors in high latitude sea surfacetherefore not shown in Fig. 3. The initial circle is

stretched during the evolution, thereby decreasing temperature (SST) are less important in the initial
conditions than sea surface salinities when pre-its area by the factors 0.99, 0.89, 0.50, 0.25, and

0.06, respectively. The main axes of the ellipsoids dicting the evolution of oceanic variables. We find

that a negative feedback (damping) of SST-anom-define the singular vectors of the system. The
forecast ellipsoids rotate further in phase space alies in the northern North Atlantic due to the

atmospheric response model is essential for our(Fig. 3). Initially, eA*t eAt can be approximated by

conclusions. A positive feedback for SST-anomal-
ies would amplify initial errors, making the SST

* We have chosen the (T , S)-space instead of (aT , bS), highly unpredictable. We find furthermore that
in order to make the phase space analogy more clear

the dominant error growth vector changes only
and to discuss the effect of changed a under different

slightly for different background climatic statesclimatic conditions. For colder climate states, the angle
(DT °, DS° ) and thus for a whole model trajectorybetween the eigenmodes e1 and e2 decreases and the

transient amplification in Fig. 1 is stronger. X(t)=(T (t), S(t)).
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4. The stochastically forced box model (shown as so1 in Fig. 4), excites most effectively
the stationary variance. This vector points almost
into the direction of the most efficient excitationWe generalize Stommel’s (1961) dynamics (4, 5)

to the stochastically driven system where additive vector e*
1

(Fig. 4). The effective span of the vari-
ance is referred as to the empirical orthogonalnoise in the temperature and salinity dynamics

reflects the variance of heat and freshwater fluxes functions (EOFs). The first EOF (eof1 in Fig. 4),

explaining more than 99% of the total variance,due to synoptic activity (Hasselmann, 1976;
Lemke, 1977). We consider moderate stochastic is quite different from the vector which most

effectively excites the stationary variance (so1)forcing only, and a numerical simulation of the

stochastic differential equation shows that the which is a common feature of non-normal systems
(Farrell and Ioannou, 1996).nonlinear terms in the stochastic differential equa-

tion play a minor role. For simplicity, the linear-

ized version is discussed only. With the
4.2. Predictability

abbreviation X1=T and X2=S as in the previous
sections, this set of equations can be rewritten as In this section, we use the additive stochastic

forcing components in (14) with equal contribu-
tions to the high latitude density such that the

d

dt
X=AX+Fg , X, gµR2, (14)

variances of aT and bS have the same magnitude

in (14). We define the ensemble mean vector X9=with g(t) as a white noise forcing with unit variance
and zero mean, and F as a matrix specified later. (E{X

i
}) and the covariance matrix R= (R

ij
)=

(E{(X
i
−X9 i) (Xj−X9j)}). In the statistically steadyThe solution of this linear stochastic differential

equation is the stochastic integral state, the eigenvectors of the asymptotic variance
matrix R

2
= lim

t�2
R
ij

span the maintained vari-

ance (EOFs). The leading EOF (eof1 in Fig. 4) isX(t)=eAtX0+eAt P t
0

e−AsFg(s) ds . (15)
the first eigenvector of R

2
. One can prove that

the time evolution of the covariance matrix R(t)
4.1. Stochastic excitation is given by

In the previous Subsections 3.2 and 3.3, we have R(t)=R2−eAtR2 eA*t. (17)
investigated at the sensitivity of the THC with

The matrix R(t) is symmetric and its eigenvec-
respect to initial conditions. Here, we want to

tors rotate in phase space, which is a consequence
consider the statistical steady state, and to seek
that stochastic forcing F which most effectively

excites the stationary variance. From (15), the
variance induced by the stochastic forcing is

E{(X−X9 )2}=Tr CF* AP t
0

eA*(t−s) eA(t−s) dsB FD
7Tr[F*B

t
F], (16)

with the positive hermitian B
t

accumulating the
perturbation growth. The variance (16) is max-

imal, if the matrix F consists of the eigenvectors
of B

t
, because then the matrix F*B

t
F has diagonal

form and the trace in (16) is maximal.

Because the matrix A is asymptotically stable,
the statistics are stationary. For the statistically

steady state, the eigenvectors of B2= lim
t�2 B

t
are ordered according to their contribution to the

Fig. 4. The first EOF (eof1) and the stochastic optimal
variance and are called ‘‘stochastic optimals’’ (so1) in the phase space of temperature and salinity
(Farrell and Ioannou, 1996) for the linearized anomalies. For orientation, the eigenvectors e1 , e2 and

adjoint eigenvector e*1 are shown with dashed lines.dynamics (14). The leading stochastic optimal
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of the non-normal evolution operator A. The reduced to statistically independent normal
modes.solution (15) corresponds to the solution of a

Fokker–Planck equation, an evolution equation The mean square difference between the realiza-

tions X(t) and the mean vector X9 (t) provides afor the probability distribution function (Appendix
7.2). Starting with a d-function at initial time (and definition of the error in the forecast and is called

damped persistence forecast of the ensemble meanassume without loss of generality zero mean), the

time evolution of the probability distribution func- X9 (Lorenz, 1973). The loss of predictability in the
first year is largest for salinity (Fig. 5a, b), andtions (PDFs) is shown in Fig. 5. In a system where

the eigenvector would be orthogonal, the PDF after 2 years, the variance is greatest in the direc-

tion of the first EOF (Fig. 5c, d).would not rotate because the dynamics can be

Fig. 5. Development of the probability distribution function (PDF). Starting with a d-function in (0, 0), the PDF is
shown after 1 month (a) and 6 months (b) with contour interval 1, and after 1 year (c) and 2 years (d) with contour
interval 0.2. The axes are scaled for equal contributions of salinity and temperature to high latitude density with
units psu and K, respectively.
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This box model, consisting of the components to
the meridional buoyancy gradient in the North
Atlantic ocean, has been used as a paradigm for

multiple equilibria of the large-scale ocean circula-
tion. Starting from the analytical solution of
Stommel’s model, we found a class of exactly

solvable nonlinear differential equations.
Interestingly, this class of differential equations
form singularities and the dynamics has a finite

escape time. The explicit solution of the Stommel
(1961) box model enables us to study the para-
meter sensitivity, dynamics, and error growth ofFig. 6. Time evolution of the negative relative entropy

which provides a measure for the knowledge about the this idealized model of the thermohaline circula-
system. For a description, we refer to Subsection 4.2 tion. We have focussed mainly on aspects of the
Appendix 7.2. model phase space spanned by temperature and

salinity and on its consequences for long-term
climate variability.Assuming an initial anomaly X0 , a net skill

Our results suggest that climatic states whichparameter of climate prediction may be defined
are associated with NADW formation are locatedby the signal to noise ratio. A more objective way
in a specific part of the phase space only whereto define predictability is in the framework of
the NADW circulation with a large meridionalinformation theory (Leung and North, 1990). This
salinity or small temperature gradient is not stable.concept makes use of an ensemble entropy E(t)
This is also supported by the recent coupled GCMwhich yields a predictability measure for the evolu-
experiments of Tzipermann (1997) who findstion.* Fig. 6 shows the negative of the relative
inherently unstable climate behavior due toentropy which decreases in time. This quantity is
weak THC.also called transinformation, and the values of

Because of the special structure of the analytical−E(t) can be associated with the amount of
solution, the dynamics can be traced by the eigen-uncertainty, which can be removed if we know the
vectors in phase space which are found to beinitial anomaly (Leung and North, 1990). The
highly non-orthogonal. In the model phase space,decay of −E(t) in Fig. 6 corresponds to different
we found that the temperature response is verydynamical stages of our two dimensional problem.
fast compared to that of the most unstable mode.In the first month, the information loss is mainly
The most unstable mode represents a mixed tem-due to the broadening of the PDF in the salinity
perature/salinity vector. Applying the concept ofdirection (corresponding to Fig. 5a). After that
Farrell and Ioannou (1996) to the non-normaltime, the rms error increases with a larger e-folding
system matrix of Stommel’s model of the Northtime, and the knowledge about the system is very
Atlantic, it is retrieved that haline perturbationssmall after a decade (Fig. 6). The stationary PDF
in the northern North Atlantic provide the mosthas maximal variance and therefore contains less
effective excitate-mechanism to the thermohalineinformation about the system. The loss of predict-
circulation. The optimal perturbation for theability can also be associated with the overlap of
model’s THC, understood in terms of an initialthe actual PDF with the stationary PDF (Eckert
value problem, is not due to high latitude density.and Latif, 1997).
The optimal perturbation is perpendicular to the
temperature eigenmode of the system and has

little resemblance with the most unstable mode5. Discussion and conclusions
and the leading EOF. Our study suggests that a

proper conceptual model with an active THCWe have presented an analytical solution for
variability should not be one-dimensional sincethe types of models proposed by Stommel (1961).
two different regimes are coupled due to an active

THC. In one-dimensional models, the stochastic* For a detailed definition and calculation of E(t), we
refer to the Appendix 7.2. optimal, the optimal excitation vector and the
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most unstable normal mode coincide with each to the non-orthogonality of our system eigenvec-
tors. Formally, the change in meridional over-other.

Furthermore, we find that the leading EOF, a turning is responsible for the non-normality of the

system and the coupling of temperature and salin-mixed temperature/salinity vector, is optimally
excited by salinity fluctuations in the northern ity in the model. The modes interact such that the

ensemble response variance is larger than theNorth Atlantic induced by the weather noise. With

our low order model, we can show that freshwater summation of two different autoregressive pro-
cesses for the distinct time-regimes (Farrell andflux fluctuations play thus an important role

influencing long-term climate variability. Sev- Ioannou, 1996). Therefore, local linear stochastic

theory may not explain sea surface temperatureeral studies analyzed the long-term variability
using stochastic upper boundary conditions. and salinity variability when an active meridional

overturning is involved in the dynamics which isMikolajewicz and Maier-Reimer (1990) and

Weisse et al. (1994) used an ocean general circula- consistent with Hall and Manabe’s (1997) findings
in a coupled GCM.tion model under mixed boundary conditions with

superimposed white noise forcing in the freshwater In the stochastically forced model, the pre-

diction is traced by the probability distributionflux, finding a strong secular mode of variability.
Other studies using models with different levels of function of the corresponding Fokker–Planck

equation. The predictability has been calculatedcomplexity (as e.g. Griffies and Tzipermann, 1995)

find also that the long-term variability depends as a damped persistence forecast (Lorenz, 1973)
for the multivariate process. The response of thestrongly on the noise level of atmospheric fluxes.

In terms of our terminology, their models are system to an external forcing by noise is different
from the error growth dynamic conducted by theforced by perturbations that are close to the

leading stochastic optimal for long-term singular vector analysis. The PDF-prediction is

by construction not sensitive to initial conditions,variability.
We address the question of climate predictability because the initial conditions are exactly known

(ideally a d-function). Our stochastic approachin our low order model adopting the concepts of

error growth dynamics and the PDF evolution. provides a means of quantifying the growth of the
variance in time. The evolution of the probabilityUncertainties in the oceanic initial conditions

grow in the phase space of the box model. The distribution function is largely affected by the non-

normality of the model, and the PDF maximadominant error growth vector rotates in the phase
space and after one year, this vector is closely rotate in phase space. We show furthermore that

the prediction skill can be quantified by the rela-related to the salinity anomalies. Uncertainties in

high latitude salinity are responsible for the short- tive entropy, a measure of information in the
dynamical system (Leung and North, 1990),term amplification of the forecast ellipsoid,

because haline anomalies provide an effective yielding an objective criterium for the loss of

predictability in the model. We argue that predict-instability mechanism for the THC. When
modeling climate variations on decadal time- ability is connected with the instabilities of the

system. Using a model with much more degreesscales, the initialization of sea surface salinity is

therefore more important than errors in the initial of freedom and further instability mechanisms, the
ensemble experiments of Griffies and Bryan (1997)temperature field.

In our consideration of the long-term variability show that sea surface temperature is only predict-

able for a few years due to the overlying atmo-in the North Atlantic, we added noise to the
deterministic Stommel (1961) model. The stoch- spheric variability. Additionally, their system is

hardly predictable in regions of active convection,astic component accounts for an active participa-

tion of the THC variability, integrating short term since convective activity provides a source of
ensemble variance growth in their model withweather fluctuations. This is consistent with the

red-noise hypothesis and the role of negative identical oceanic initial conditions.
Although the Stommel (1961) box model hardlyfeedback process in limiting climate variability

(Hasselmann, 1976). In addition to the usual red- represents the real climate system, this model is

good prototype models to understand climatenoise response, the low-frequency variability for
the multivariate process is strongly enhanced due variability and predictability in the Atlantic area.
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Our analysis demonstrates that the non-normal The denominator in (21) is the negative determin-
ant of matrix A. The units of vector j= (j1 , j2 )properties of the model have a strong influence

on the dynamics and predictability. Because non- are 1/K and 1/psu, respectively.

normal system matrices are a quite general feature
of fluid dynamical systems (Reddy, 1993; Trefethen
et al., 1993), we think that more complex models

7.2. Fokker–Planck equation and entropy functioncould benefit from a phase space approach
applied here.

The Fokker–Planck equation which corre-

sponds to the stochastic differential equation (14)
is a partial differential equation for the probability6. Acknowledgements
distribution function:

M. Latif, A. Timmermann, R. Gerdes, C. Eckert,
∂
t
P(X, t)=−VΩ[AXP(X, t)]

E. Maier-Reimer, and K. Rogers are gratefully
acknowledged for their improvements to the +VΩ[FF*VP(X, t)]. (22)
manuscript. We thank Prof. Dr. K. Hasselmann

and Prof. Dr. W. Maaß for their support. This The solution is
work was partly supported by the Bundes-
ministrium für Forschung und Technologie

P(X, t)=Cdet R−1
(2p)n D1/2through WOCE project.

×exp C− 1

2
(X−X9 )R−1(X−X9 )D , (23)7. Appendix

7.1. System matrix and exact solution where X9 (t) and R(t) are the ensemble mean vector

and covariance matrix of (14), respectively. TheIn our formulation (6), the system matrix A is
stationary probability distribution functionspecified to be:
Pstat(X) can be retrieved from (23) by replacing R

by R2 and X9 by zero.A=A−W°/V+caDT °/V+q −cbDT °/V

caDS°/V+p −W°/V−cbDS°/VB ,
We define the relative entropy by

(18)

and vector b is (ca/V, −cb/V ). The abbreviations E(t))− P
Rn

dX P(X, t) ln[P(X, t)/Pstat(X)],
for p and q are

(24)

p=
∂(P−E)

∂T
S0/h, (19)

and find that E(t) increases monotonically in time
and approaches zero for t�2. This can be found

q=
∂Foa
∂T

V /(r0cph). (20) by inserting the Fokker–Planck equation (22) into
(24) or directly by calculating E(t) with the solu-

These parameters are defined through the atmo- tion (23):
spheric response model where the meridional
transports are parameterized as diffusion

E(t)=
1

2
ln[det(R−12 R)]−

1

2
X9 R−12 X9(Lohmann et al., 1996).

The dynamics of the model is exactly known,
when the vector j=−(A*)−1b of eq. (7) is speci- +

1

2
Tr[R−1

2
eAtR

2
eA*t]. (25)

fied:

In addition, the relative entropy is averaged over
the initial state such that the second term in (25)

j=
AcaW°−cbVp

cbW°−cbq B
−2W°W°−q(caDT °−2cbDS° )−cbVpDT °

.
vanishes and the function becomes independent
on initial state.(21)
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