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ABSTRACT

Assimilation of observations from frequently reporting surface stations with a four-dimensional
variational assimilation system (4D-Var) is described. A model for the serial observation error
correlation is applied to observed time sequences of surface pressure observations, whereby the
relative weight of the mean information over the temporal variations is decreased in the assimila-
tion. Variational quality control is performed jointly for each time sequence of observations so
as to either keep or reject all observations belonging to a time sequence. The operational
practice at ECMWF has previously been to use just one pressure datum from each station
within each 6-h assimilation time window. The increase of observational information used in
these assimilation experiments results in a small but systematic increase in the short-range
forecast accuracy. The r.m.s. of the analysis increments is decreased in the experiments, which
means there is an improved consistency between the background and the observations. A study
of a rapidly developing small-scale synoptic system (the Irish Christmas Storm in 1997) showed
that both the background and the analysis became more accurate when more frequent observa-
tions were assimilated. Single-observation experiments showed that a surface pressure time-
sequence of data from a single surface station can intensify the analysis of a mid-latitude
baroclinic system, that was underestimated in the background, when used in a 6-h 4D-Var. The
method to assimilate time sequences presented in this paper has been implemented into the
ECMWF operational 4D-Var assimilation system.

1. Introduction to make effective use of these observations in

numerical data assimilation and weather predic-
Surface pressure tendency is one of the most tion. The difficulty is due to the static nature of

accurately observed atmospheric quantities. three-dimensional data assimilation schemes, such
Measurements are unaffected by instrument calib- as Optimum Interpolation (Lorenc, 1981) or three-
ration problems, assuming any instrument bias dimensional variational assimilation (3D-Var)
remains constant during the interval between sub- (Parrish and Derber, 1992; Courtier et al., 1998),
sequent surface pressure measurements. Such which do not take the time-dimension fully into
observations are widely available and they have account. The recent introduction of four-dimen-
been used in subjective synoptic analysis and sional variational assimilation (4D-Var) in opera-
short-range forecasting providing information tional NWP (Rabier et al., 1999) has presented
about the evolution and movement of synoptic the possibility to use more frequent (asynoptic)
disturbances. It has, however, proven to be difficult observations at their appropriate time. In this

paper we develop a technique to make use of the

temporal variation in time sequences of surface* Corresponding author.
e-mail: e.andersson@ecmwf.int observations, in 4D-Var.
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It is conceivable to construct an observation information contained in the time sequences of
observations. (The OI/3D-Var implementation ofoperator for surface pressure tendency, also in a

static scheme, like 3D-Var. Such an operator could FGAT (First Guess at Appropriate Time) also

compares the observations at appropriate timebe based on the continuity equation and involve
the integration of the model divergence profile but can only improve the assimilation of the mean

observed state.) The operational implementationthrough the column of air above the observation

location, thereby obtaining the model’s instantan- of 4D-Var at ECMWF (Rabier et al., 1999) is a
temporal extension of 3D-Var (Courtier et al.,eous rate-of-change of surface pressure at the

observation point. Pressure tendency observations 1998; Rabier et al., 1998b; Andersson et al., 1998).

The observation operators (Courtier et al., 1998;could in such a scheme be used as static measure-
ments of vertically integrated divergence, provided Andersson et al., 1994; Stoffelen and Anderson

1997; Phalippou 1996) and the background termthat a dynamical constraint is applied to prevent

the information to project on high frequency (Derber and Bouttier 1999) are the same as in
3D-Var. Therefore, it ought to be possible togravity mode oscillations. There is however a

point of concern behind this idea, which explains assimilate observed surface pressure variations in

4D-Var by applying the existing observation oper-why it has to our knowledge not been attempted.
The reporting practice of surface pressure tendency ator to time sequences of surface pressure observa-

tions. This idea can be extended to other variablesat synoptic stations does not provide observations

of instantaneous surface pressure change but as well, for instance to winds, temperatures and
humidities. Difficulties may arise, however, if therather observations of pressure change during the

last 3 h. The absolute value of the change is a observed time series is affected by, e.g., local
thermal circulation systems not resolved by thedifference between the barometer reading at

observing time and the reading 3 h earlier. This assimilating model.

Daley (1992) foresaw that 4D-Var may requirevalue is supplemented in  reports with a
qualitative description of the nature of the change even greater knowledge of relevant observation

error statistics than earlier data assimilationas it appears on a barograph paper, for instance

increasing then steady. The observation operator schemes. In his study of serially correlated obser-
vation errors in a Kalman Filter framework Daleyfor 3D-Var suggested above, does not therefore

correspond to the actual available surface pressure found that the existence of serial correlation

reduces the information content in the observa-tendency quantity.
Because of the reporting practice, the surface tions, and reduces the analysis accuracy (compared

to serially un-correlated observations). However,pressure tendency observations are, in fact,

redundant whenever the previous surface pressure the effect is small for observation types character-
ized by low sampling frequency (e.g., radiosondeobservation itself is available. In other words,

surface pressure tendency information can be reco- observations), and it is also less important if the

advecting wind velocity is high. In this paper wevered from the time sequences of surface pressure
observations in an assimilation scheme that allows use observations with a 1-h sampling frequency

near the surface where the advecting wind velocitythe use of time series of data. There are 2 possibil-

ities: either using the pressure difference between is often small. In accordance with Daley’s theoret-
ical analysis we found it necessary to generalizeconsecutive pressure observations, or using the

sequence of pressure observations itself. The latter the 4D-Var formulation and incorporate serial

correlation of observation error, in order to makeapproach has been taken in this paper.
In contrast to static assimilation schemes, effective use of these frequent observations.

Our work on pressure time-sequences was4D-Var compares the observations to a model

trajectory (Rabier et al., 1998a) which extends strongly motivated by Bengtsson’s (1980) theoret-
ical paper. Long before the time of 4D-Varover the assimilation time window, currently 6 h

at ECMWF. There are 2 related benefits for the Bengtsson studied the optimal analysis response
to pressure tendency data in a baroclinic system.use of observations. First, the observations are

compared with the model counterparts at the With an ingenious yet simple assimilation system,

built around a quasi-geostrophic model, he wasappropriate time. Second, it should be possible to
update the model trajectory by using the dynamic able to demonstrate that it is possible to update
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the flow at upper levels using surface observations frequently reporting stations is available, that
could potentially be used in 4D-Var.only. By isolating the fastest growing modes of

the quasi-geostrophic model and correcting their In both 3D and 4D-Var an initial 6-h model

integration is carried out, starting from the back-growth over an assimilation period he simulated
almost exactly the functionality of 4D-Var. In so ground fields, to obtain what is called the high

resolution trajectory (Rabier et al., 1998a). All thedoing he predicted several of the most relevant

results presented in this paper. In 4D-Var the observational data within the assimilation time
window are presented to this model integrationeffective covariance matrix of background error is

modified by the fastest growing modes of the and their model counterparts are calculated by

applying the observation operators to the highatmosphere (Thépaut et al., 1993; 1996), which, as
will be demonstrated, enables flow-dependent cor- resolution trajectory at appropriate time. The

difference between an observed value and its modelrection of the upper levels in response to surface

pressure time-sequences. This effect is most counterpart is loosely called departure from the
background or background departure, in the fol-important in the vicinity of storms.

The outline of the paper is as follows: First, in lowing. In Kalman filter terminology it is also

called the innovation vector. These departures areSection 2, the availability of observations from
frequently reporting surface stations is discussed subjected to the background quality control

(BgQC, Andersson and Järvinen 1999), whichand the method for selecting (or screening) obser-

vations for use in the analysis on an hourly or rejects outliers. From the subset of good quality
observations some redundant observations are6-hourly basis is described. The results from initial

experimentation using more frequent observations removed so that a unique set of observations is
retained for the assimilation.is described in Section 3. A modified cost function

calculation allowing for serial correlation of obser- In 3D-Var multiple reports from the same sta-

tion are considered redundant. Preference is thenvation error is developed in Section 4 and results
of its filtering properties are presented. The bene- given to the report closest to the centre of the

assimilation time window. This observationfits and problems with this approach are discussed.

An option to perform the variational quality con- screening configuration is called 3D-screening. In
4D-Var, the trajectory is available hourly and thetrol (VarQC) by considering all observations from

each time sequence jointly is introduced. A per- observations are organized into 1-h time slots,

accordingly. Observations are selected within eachformance evaluation based on a series of assimila-
tion and forecast experiments is presented in time slot independently. Preference is in this case

given to the observation closest to the centre ofSection 5 together with a single-observation

experiment illustrating the impact of one surface the time slot. This configuration is called
4D-screening. The assimilation system has beenpressure time-sequence on a rapidly developing

baroclinic system. A summary and conclusions prepared such that either 3D or 4D-screening can

be performed in 4D-Var, in order to enable com-are given in Section 6.
parison between 3D and 4D-Var results using
similar sets of observations. The first ECMWF

operational implementation of 4D-Var used2. Observation selection
3D-screening.

The choice of screening method primarily affectsThere are many surface stations around the

world that report more than once every 6 h. Most the observation types that are reported frequently,
e.g., synoptic stations on land () and on seaassimilation systems, however, use only one report

in each assimilation cycle, the length of which is () as well as drifting buoys (). The global

number of  surface pressure observationsusually 6 h. This has been the case in ECMWF’s
OI and 3D-Var systems as well as in its first used with 4D-screening is roughly twice the

number in a corresponding assimilation usingoperational 4D-Var system. In this section we
outline the observation selection algorithm applied 3D-screening, in the same period. The difference

is mainly due to the observations made outsideso far within 3D and 4D-Var (see Järvinen and

Undén 1997 for details), and demonstrate that a the main (synoptic) observing times. The number
of  observations increases typically by alarge resource of additional observations from
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factor of 3 with 4D-screening, and the number of 3.1. A rapidly developing small-scale synoptic
system reports increases by about 20%, as the

satellite orbits overlap in the polar areas and the
The additional asynoptic observations intro-

hourly thinning procedure (to a density of approxi-
duce information on the temporal variation of

mately 1/(250 km)2 ) retains more reports there
surface pressure, temperature, humidity and wind.

(compared to 6 hourly thinning in 3D-screening).
These variations are usually strongest in associ-

The number of observations of other types remains ation with relatively small- scale, rapidly moving,
largely unchanged. synoptic systems, such as intense baroclinic devel-

opments and tropical cyclones. The analysis of
such systems is especially difficult if the develop-

3. Initial experimentation with frequent ment takes place over the relatively data sparse
observations oceans. One such case took place on Christmas

Eve 1997 when the western coast of Ireland was
In this section, we present results from the initial hit by a vicious winter storm. The operational

assimilation and forecast experiments using asyn- ECMWF assimilation did not capture this devel-
optic observations from frequently reporting sta- opment well – the analysed low was not deep
tions, i.e., 4D-screening in 4D-Var. An example enough. The analysis for 12  24 December
will show that these additional observations 1997 is shown in Fig. 1 for the North-Eastern
improved the analysis of rapidly developing small- Atlantic area. The analysed surface pressure at the
scale synoptic systems. With up to 6 observations centre of the storm is 983.5 hPa. This is about 5
over 6 h from many surface stations, however, the to 10 hPa higher than a subjective surface analysis
assimilation became more sensitive to isolated would suggest (A. Persson, personal communica-
biased observations which, as we will demonstrate, tion) – supported by an observation from Valentia
had a detrimental impact in the Southern observatory on the south western tip of Ireland

(Fig. 1) which reported 977.8 hPa.Hemisphere.

Fig. 1. Operational ECMWF analysis of surface pressure (solid isolines) and of 850 hPa temperature (dashed isolines)
for North Eastern Atlantic at 12  24 December 1997. Selected surface observations of 10-m wind, surface pressure
and total cloudiness are plotted with standard notations. () observations are marked with a station
ring (triangle).
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The limited spatial resolution of the analysis used in the case of 3D and 4D-screening, respect-
ively. Table 1 shows that 4D-screening uses theincrements is an obvious deficiency of a global

assimilation system when analysing rapidly devel- majority of observations, whilst 3D-screening

makes use of less than one third in this particularoping small-scale features (Lönnberg 1988; Rabier
et al., 1998b; Derber and Bouttier 1999). The area. There is also a considerable increase in the

number of used ten-metre wind observations (not4D-Var minimization problem is solved using the

incremental minimization method (Courtier et al., shown). Note also that not nearly all  obser-
vations have been used even with 4D-screening,1994) at operational T213/T63 resolution. The

analysis increments are computed at T63 reso- because they often report even more frequently

than once per hour.lution and added to the full T213 model fields (as
explained in detail by Courtier et al., 1998). Early The additional surface observations do improve

the analysis and the forecast of the storm, atresults from experiments using 4D-Var at

T213/T106 resolution suggest that the analysis for T213/T63 resolution. The effect of these observa-
tions can be seen in Fig. 2 where the difference inthe Irish Christmas Eve storm is greatly improved

by enhanced analysis resolution. At the moment surface pressure between the experiment and

operations is displayed. Negative values (dashedthis is a costly option, however, and the relevant
question is whether the T213/T63 analysis could isolines) indicate lower surface pressure in the

experiment. The experiment’s surface pressurebe improved by using more frequent observations.

The operational 4D-Var assimilation system at background field at the time of the storm is about
3.2 hPa lower to the west of Ireland and somethe time applied 3D-screening of observations and

there was a large number of asynoptic / 2.0 hPa higher to the south-east of Ireland
(Fig. 2a). The analysed surface pressure in theand  (drifting buoy) reports in the area of

the developing storm that remained unused as experiment is about 3.2 hPa lower just west of

Ireland, and there is a small area of about 1.0 hPathey were considered redundant. Timing informa-
tion of relevance to the development of the storm higher pressure around the eastern part of Ireland

(Fig. 2b). The conclusion is that the additionalmay therefore have been lost. Poor background

fields have also caused more BgQC rejections for asynoptic observations have improved the analysis
locally. It is not only the analysis that is improvedthe wrong reason – not because observations were

wrong but because the background field was inac- but also the background is more accurate,

although the depression is still too far to the westcurate (Hollingsworth et al., 1986).
A data assimilation experiment was run to study in the background (compared with Fig. 1). The

4D-Var analysis with the enhanced sets of observa-the effect of additional asynoptic observations on

this case. The assimilation system used in the tions manages to correct it eastward. The analysis
difference extends upwards through the tropo-experiment is identical to the operational 4D-Var

except that 4D-screening of observations was sphere with a westward tilt and weakens so that

at the 300 hPa level the difference is approximatelyapplied from 00  23 December 1997 onwards,
i.e., seven analysis cycles before the storm hit the one quarter of the surface value in terms of

geopotential height (not shown).west coast of Ireland. Table 1 shows the number

of / and  surface pressure observa- Another visualization of the improved back-
ground is given in Fig. 3, where a time series oftions available in the area of the storm over a

period of 3 days as well as the number actually the observed surface pressure at a selected location

Table 1. Number of available and used surface pressure observations in the area of the Christmas Eve
storm (47 to 57°N, 25 to 5°W) during the period from 23 to 25 December 1997 for 3D and 4D-screening,
respectively

Observation type Available Used with 3D-screening Used with 4D-screening

 land 2324 402 (17%) 2175 (94%)
 ship 635 192 (30%) 547 (86%)
, drifting buoys 524 63 (12%) 316 (60%)
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Fig. 2. Surface pressure difference between the experiment and the operational fields as seen in the background (a)
and in the analysis (b), respectively, for 12  24 December 1997. Negative values (dashed isolines) indicate lower
surface pressure in the experiment. Contour interval is 1 hPa. The area is the same as in Fig. 1.

later than observed, though. Most of the time, the

background follows the observed surface pressure
more closely in the experiment than in operations.

The conclusion of these experiments is that by

using more of the frequently available observa-
tions (at operational resolution T213/T63) it is
possible to improve the analysis and short range

forecast, i.e., background, of a rapidly developing
synoptic system. The surface analysis has become
more realistic. The analysis of the studied case

can also be improved by increasing the resolution
of the analysis increments, as suggested by
T213/T106 results (not shown).

3.2. Isolated biased observations

Before deciding on the final configuration of
Fig. 3. Observed surface pressure at Belmullet in Ireland

4D-Var for operational implementation (Rabier(54.14°N, 10.00°W) around the time of the Christmas
et al., 1999), the impact of using more frequentEve storm in 1997 (solid line), background surface pres-
observations was tested in assimilation andsure of the ECMWF operational 4D-Var assimilation

system using 3D-screening ( long dashed line) and the forecast experiments. The resulting forecast scores
background surface pressure from a 4D-Var assimilation were neutral or slightly positive in the Northern
experiment using 4D-screening (thick dashed line).

Hemisphere and clearly negative in the Southern
Hemisphere. The poorer Southern Hemisphere
forecast scores turned out to be due to biased time(Belmullet) on the Irish West coast (solid line) is

plotted together with the background from the sequences of surface pressure observations from
isolated stations. The decision was taken then tooperational system (long dashed line) and from

the experiment (thick dashed line). The opera- continue 4D-Var experimentation with the same
selection of observation as in 3D-Var, i.e., applyingtional background field at the time of deepest

depression is about 8 hPa too weak, whereas the the 3D-screening in 4D-Var, until the problems

were solved. The experiments are described inexperimental background is much closer, only
about 2 hPa too weak, both occurring some 4 h more detail in this section.
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Fig. 4. 850 hPa geopotential difference between two 4D-Var experiments: 4D3S minus 4D4S, in the Antarctic region:
(a) is for the analysis on 12  3 February 1997 and (b) for the subsequent 48 h forecast. The contour interval is
80 m2 s−2 The maximum difference in (b) is roughly 700 m2 s−2.

3.2.1. Forecast results. The impact of using terms of 850 hPa geopotential for 12 
3 February 1997 is shown in Fig. 4a. This is themore frequent observations (4D-screening) was

studied in a 2 week test period in January 1996 3rd day of the experiment. The difference pattern
is a very localized one. In the subsequent forecastwith 3 different assimilation systems: 3D-Var

with 3D-screening (3D3S), 4D-Var applying the pattern drifts to a synoptically active region.

An interaction with travelling synoptic waves3D-screening (4D3S) and 4D-Var applying
4D-screening (4D4S). In the Northern Hemisphere takes place leading to propagation and an increase

of the difference. The 48-h forecast 850 geopoten-both 4D-Var systems produced equally good

forecast scores. In the medium range both 4D-Var tial difference is shown in Fig. 4b. The associated
hemispheric forecast scores are poor throughoutsystems scored 6 to 12 h better than 3D-Var both

at 1000 and 500 hPa (not shown). The Southern the forecast range, most notably after 2 days

(not shown).Hemisphere scores were however best for the
4D3S system, i.e., for the one without the addi- The localized pattern of analysis differences

suggests that a few stations at the edge of thetional observations. There the inclusion of asynop-

tic observations deteriorated the 4D-Var forecast Antarctic plateau may have caused this large
analysis difference. Investigations into the observa-performance to the level of, or even below, the

3D-Var (not shown). Another set of experiments tion departure statistics revealed certain stations

in this area with significant biases against thewas performed for a period in February 1997.
After 1 week of assimilation it became clear that background for all times of the day. When time

sequences (of up to 6 observations) were used,4D4S again performed systematically worse than

4D3S. large analysis increments were produced in the
vicinity of those stations. For isolated observa-

tions, particularly in the Southern Hemisphere,3.2.2. Investigation of the forecast failures over
the Antarctic region. The forecast scores in the there were no mechanisms to prevent these unreal-

istic increments to appear and to develop into4D-Var experiments applying 4D-screening are

particularly poor over the Antarctic region. The forecast errors. In the Northern Hemisphere, in
contrast, there are usually neighbouring observa-analysis difference between 4D3S and 4D4S in
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tions which constrain the analysis and the effect (1986) applies also in the case of serial correlations
is given in the Section 8.of any biased observations tends to be less

pronounced.

4.1. Observation cost function
3.2.3. Discussion. The bias in the Antarctic case

In previous presentations (Rabier et al., 1998a)is partly due to a mismatch between the true and
the 4D-Var cost function has been written as amodel orographies. Extrapolation of the model
sum of separate cost function contributions, oneatmosphere into the model orography is needed
per time slot. With serial correlation of observa-to calculate the model counterpart of the observed
tion error, this formulation must be generalized.quantity. The subterranean extrapolation is per-

formed applying a standard atmospheric lapse
4.1.1. Standard expression. The standard expres-rate for temperature and humidity which results

sion for the 3D/4D-Var observations cost functionin a systematic difference in some cases. The
(Lorenc, 1986) is:correct way of handling these particular 

stations could involve a bias correction scheme,

or improvements of the observation operator itself. Jo=
1

2
(y−Hx)TR−1(y−Hx) , (1)

The latter possibility is outside the scope of this
paper, and a bias correction scheme (for selected where y is the array of observations, with error
stations) has also not been pursued in this context covariance matrix R, x is the model state and H
as it would be logistically difficult and it cannot the observation operator. The matrix R contains
be assumed that the biases remain steady in time. measurement error plus error of representativity.

Another possible way of addressing the bias The expression degenerates in the case of uncorrel-
problem is to allow for serial correlation of the ated observations to a sum of individual Joi contri-
observation errors. The effect of such correlation butions (one for each observed datum), i.e.,
would be to draw the analysis more towards the
temporal information contained in the time Jo=∑

i
Joi=∑

i

1

2 Ayi−H
i
x

soi
B2 (2)

sequences, than towards the time-mean observed
value, providing the model for temporal observa-

with soi the observation error standard deviation
tion error correlation is suitably chosen. This idea

and i an index to each observed datum. In practice
will be further developed in the next section.

on a parallel computer, the contribution from
In summary, the results of the initial experi-

each observation is stored in memory and then
mentation using more frequent observations are

summed up in a predetermined sequence, in order
positive with respect to the 4D-Var analysis of

to get reproducible results irrespective of how the
small scale synoptic systems, but it is prone, in its

observations have been distributed across the
plain formulation, to be adversely affected by

processors.
biased stations in data sparse areas.

4.1.2. Serially correlated observation error.
Assume z is the vector of n correlated observations

4. Serial observation error correlation:
with elements (y

i
−H

i
x
i
)/soi , i.e., the normalized

formulation
departures.

In this section, the concept of serially correlated
observation errors will be developed in an effort
to reduce the negative impact from biases in time z=Cy1−H1x1

so1
· · ·

y
n
−H

n
x
n

son
D .

sequences. This involves changes to the way the
observation term of the cost function is calculated

for these observations. Changes will also be intro-
duced to the variational quality control so that it The observation cost function is then given by
can be applied simultaneously to all observations

of a time sequence. A proof that the ‘‘forced
Jo=

1

2
zTO−1z . (3)

adjoint technique’’ of, e.g., LeDimet and Talagrand
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The gradient with respect to x of eq. (3) is The vertical part of the operator, Hv , can then be
applied to all observations at once, irrespective ofV

x
Jo=−H*SO−1z , (4)

time slot. This leads to longer vector-loops, and
where O is the n×n matrix of observation error higher efficiency on computers with vector pro-
correlations. S is a diagonal matrix with elements cessors. The normalized departures are thus com-
1/soi , and H* is the adjoint of the tangent linear puted
observation operator H. The calculation of O−1z

z=[d−Hvdx]S . (9)
is performed by solving the linear system of equa-
tions: In the case of non-zero observation error cor-

relation z̃ is calculated solving eq. (5), otherwiseOz̃=z (5)
z̃=z, and Jo=(1/2)zTz̃ as before.

for z̃ using the Choleski decomposition. z̃=O−1z We have seen that the forward vertical operators
is sometimes called the effective departure. Once are applied once only, across all time slots, and
we have z̃, Jo becomes Jo= (1/2)zTz̃ and V

x
Jo= that the horizontal operators are applied once per

−H*Sz̃. The array z̃ is calculated in the forward time slot. The same applies to the adjoint, but in
branch of the observation operators. For effici- the opposite order. The adjoint of the vertical
ency, it is saved temporarily in the observation operators H*v are applied first, to get the gradient
array (one number per observed datum) to be of observation cost function with respect to dx,
re-used (rather than recalculated) in the adjoint. V

dx
Jo :

V
dx

Jo=−H*v Sz̃ . (10)4.1.3. Incremental formulation, 6-h 4D-Var over
several time slots. In the incremental formulation The gradient is then organized by time slot, i.e.,
(Courtier et al., 1994), the normalized departure,

z, is computed from increments dx at low reso-
lution (currently T63), using the tangent-linear

V
dx

Jo=CVdx
0

Jo
V
dx
1

Jo
· · ·

V
dx
T

Jo
D ,observation operators, H

z= (d−Hdx)S (6)

with the innovation vector d computed from the and the adjoint of the horizontal interpolation,
high resolution trajectory xHR using the full non- H*h is applied once per time slot, to form V

dx
Jolinear observation operators, H

d=y−HxHR . (7)

V
dx

Jo=CH*h,0Vdx
0

Jo
H*h,1Vdx

1

Jo
· · ·

H*h,TVdx
T

Jo
D .Integration of the tangent linear model, M, gives

dx
t
for each (hourly) time slot as follows

dx
t
=M

t
dx

t−1 . (8)

The gradient is transported backwards in time,In practice H has been split in a horizontal and a
recursively applying the adjoint of the model (thevertical part, H=HvHh . The horizontal interpola-
adjoint of eq. (8))tion of model profiles to observation locations Hh

is performed once per time slot, and the results V
dx
t−1

Jo=M*
t
V
dx
t

J0 (11)
Hh,tdx

t
for all time slots t=[0, T ] are stored in

which finally yields V
dx
0

Jo , the gradient at initial
memory. In operational 6-h 4D-Var T =6.

time.
Introducing the symbol dx

t
=Hh,tdx

t
for brevity,

we concatenate all time slots to form the vector
4.1.4. Introducing serial correlation. When we

dx :
introduce serial correlation of observation errors,

the application of O in eq. (5) will involve observa-
tions from several time slots. The normalized

dx=Cdx
0

dx
1

· · ·

dxT
D . departures are calculated using eq. (9), as before.

Once the effective departures z̃ are stored in the
observation array, the adjoint calculations can
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proceed as normal, without any modification, given to the mean of the 6 observations (equivalent
to increasing the observation error standard devi-using eq. (10) and eq. (11).

With serial correlation the gradient for one time ation for the mean by a factor 1.50), and to

increase the weight given to higher modes (seeslot will depend on observations not just from the
same time slot, but from all time slots. The forcing Subsection 4.8 of Daley, 1991). The first eigenvec-

tor corresponds to the 6-h mean, the second toof the adjoint model (at a given time) thus depends

on observations from all time slots: past, present the mean 6-h tendency and the third to a pressure
drop followed by a rise (or vice versa) within theand future. This may at first seem counter-intuit-

ive, but it is formally correct (see Section 8). A 6-h period. The different entries in the table show

results for variations in the parameter values tmore straight-forward interpretation is that the
serial correlations filter, in time, the ‘‘signal’’ from and a, and in the functional form for r. Form A

uses eq. (12) and B uses an exponentialthe observations. The unfiltered signal is z and

the filtered signal is z̃. r=a exp(−|t1−t2 |/t)+ (1−a)d
t
1
−t
2

for the cor-
relation function. We concluded that the form of
the correlation function is not too important. Even

4.2. Specifying serial correlations
a constant correlation of 30% between all 6 obser-
vations (4th entry in Table 2) would give theWe do not know of a practical method to obtain

estimates of the serial correlation of observation desired effect.

error. Statistics of background departures are
dominated by correlations in the background 4.3. Joint VarQC of time sequence of observations
error. For now we have adopted a simple ad hoc

The variational quality control (VarQC) for theGaussian model for the serial correlation of
time sequences of / and  surface/ and  surface pressure and height
pressure and height observations was modifiedobservations. The correlation r between 2 observa-
such that the check is applied jointly for alltions at times t1 and t2 is thus:
observations in the time sequences. One joint

quality control decision is computed which then
r=a exp C−(t1−t2 )2

t2 D+ (1−a)d
t
1
−t
2

, (12)
applies equally to all data in the time sequence.
This is similar to the VarQC formulation for u

with an e-folding time t of 6 h and a=0.3. d is and v-component winds, which are also checked
the Kronecker delta. jointly. The theory and application of VarQC have

An eigenvalue decomposition of a 6×6 correla- been described by Ingleby and Lorenc (1993) and
tion matrix of observations 1 h apart, using Andersson and Järvinen (1999).
eq. (12) (Table 2, first entry), showed that the effect
of the serial correlation is to reduce the weight 4.3.1. Formulation. The probability density

function (p.d.f.) with VarQC pQC is expressed as a
sum of 2 terms: one representing good observa-

Table 2. Eigenvector decomposition of a 6×6 cor-
tions, modelled by a Gaussian N and one repres-

relation matrix with observations 1 h apart
enting observations with gross errors, often
modelled by a flat p.d.f. F. A is the a-prioriForm Parameter values Ev1 Ev2 Ev3
probability of gross error.

A t=6, a=0.3 1.50 0.96 0.84 pQC= (1−A)N+AF . (13)
A t=6, a=0.6 1.88 0.92 0.65
A t=24, a=0.3 1.58 0.85 0.84 For n (maximum 6 in this case) independent
A t=2, a=0.3 1.58 0.85 0.84 observations, we multiply the p.d.f.s for each obser-
B t=6, a=0.3 1.43 0.98 0.89 vation, to obtain the combined p.d.f.:
B t=24, a=0.3 1.54 0.89 0.85

pQC= a
n

i=1
[(1−A

i
)N

i
+A

i
F
i
] . (14)

The table shows the eigenvalue for the first three eigen-
vectors (Ev) for different parameter values t and a.

For consistency with the assumption of serial errorForm A uses eq. (12) and B uses an exponential form
correlation, we shall assume that also the gross(see main text) for the correlation function. The eigen-

values for Ev4, 5 and 6 are within 2% of those for Ev3. errors are not independent. If we assume that one
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error source affects all observations in the time impact of isolated biased time sequences, identified
as the main problem in the initial set of experi-sequence we may write the a-priori probability

that all observations in the time sequence are ments. For ease of implementation we apply the

correct, 1−Ats : changes equally, to all stations globally. The per-

formance of the modified assimilation system is
1−Ats= a

n

i=1
(1−A

i
) , (15) assessed in assimilation and forecast experiments.

we can then write:

pQC= (1−Ats)Nn+Ats a
n

i=1
F
i
, (16)

5.1. Bias correction properties of the modified
system

where Nn is an n-dimensional Gaussian with cor-

relation matrix O and observation errors as in We have seen that the standard 4D-Var using
Subsection 4.1, and F is a flat distribution (repres- 4D-screening (4D4S) is more sensitive to biased
enting the observations with gross errors). The isolated stations than 4D3S is. The importance of
VarQC-modified cost function is JQCo =−ln pQC. the 2 modifications developed in the preceding

The a posteriori probability of gross error Pts is section in reducing the negative impact of biased
then, by construction, the same for all observations time sequences was investigated in a set of three
in the time sequence and given by 3-day assimilations. In a first experiment serial

observation error correlation was activated separ-
Pts=

cts
cts+exp[−Jo]

, (17) ately (4D4S_SC). In a second experiment joint

VarQC was activated separately (4D4S_JVQC),

and in a third experiment both were activatedwhere cts is
simultaneously (4D4S_SC_JVQC).

Mean 850 hPa geopotential analysis differencescts=
Ats (

E2p)n

(1−Ats ) Aan
i=1

2d
iB , (18)

against 4D3S over the 3 days (1–3 February 1997),

for the Antarctic region, are displayed in Fig. 5,
such that in the areas of positive values (solid

and d
i
is the width of the flat p.d.f.

isolines) the experiment has higher values ofThe gradient of the cost-function with VarQC,
850 hPa geopotential than 4D3S. Fig. 5a showsexpressed with respect to the normal cost function
4D4S minus 4D3S (which is rather similar towithout VarQC, is finally:
Fig. 4a). In the next panel (Fig. 5b) we see that

VJQCo =VJo(1−Pts ) . (19) the experiment 4D4S_SC brings only a small

improvement compared to Fig. 5a. The effect fromEq. (19) shows that time sequences that are found
the VarQC modification alone (4D4S_JVQC) alsolikely to be incorrect (Pts#1) are given reduced
leaves large mean analysis differences (Fig. 5c),weight in the analysis. Conversely, time sequences
but 4D4S_JVQC is slightly better than 4D4S_SC.that are found to be correct (Pts#0) are given the
The combined modification ( joint VarQC andweight they would have had using purely Gaussian
serial correlation of observation errors, experimentobservation error p.d.f. The value of Pts is
4D4S_SC_JVQC) gives the best result (Fig. 5d).re-calculated every iteration of the main 4D-Var
The combined effect is larger than the sum of theminimisation, hence observations may gradually
effects from the 2 separate modifications. This isregain (or lose) influence on the analysis during
because joint VarQC in the last experiment isthe course of minimisation, due to neighbouring
applied to the filtered time sequences, which resultsobservations for example.
in more rejections of biased observations than in

the other experiments. The combination of modi-

fications introduced in Section 4 can thus be5. Experimentation with the modified
thought of as a conservative and targeted biasassimilation system
correction scheme, removing a large part of the

impact on the analysis of the biased time sequencesIn this section, we investigate to what extent
the modified system can alleviate the detrimental of observations.
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Fig. 5. Mean 850 hPa geopotential analysis differences between 4D3S and four different 4D-screening experiments:
4D4S minus 4D3S (a), 4D4S_SC minus 4D3S (b), 4D4S_JVQC minus 4D3S (c) and 4D4S_SC_JVQC minus 4D3S (d),
respectively, during the period of 1–3 February 1997. The area is the same as in Fig. 4. The contour interval
is 80 m2 s−2.

5.2. Departure statistics ment are under the heading ‘‘exp’’ in Table 3. In
collecting the statistics we have considered only

We now turn to a more general evaluation of those observations that have been used (i.e., passed
the modified 4D4S system, in terms of quality of all quality control) by both assimilation systems,
the background and analysis with respect to obser- in order to have truly comparable results.
vations. The mean and standard deviation of There have been several significant improve-
background and analysis departures are given in ments in the departure statistics. In the modified
Table 3 for / and  surface pressure system there has been a decrease in the standard
and ten-metre wind observations over the North deviation of background departures (Table 3),
Atlantic for a 2-week period in May 1997. The which indicates an improvement in the quality of
statistics have been calculated for the unmodified the background. The decrease is statistically signi-
system (4D4S) and for the modified system ficant (F-test) for surface pressure observations.

There has also been a statistically significant(4D4S_SC_JVQC), the results for the latter experi-
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Table 3. Mean and standard deviation of background and analysis departures for / and 
surface pressure (p

s
) and 10-m wind components (u, v) over part of the North Atlantic (30–75°N,

10–60°W) in 4D4S (cntrl) and in the modified system 4D4S_SC_JVQC (exp) for period 15–28 May 1997

Background departure Analysis departure

mean std-deviation mean std-deviation
Variable Sample cntrl exp cntrl exp cntrl exp cntrl exp

 ps 2148 8.63 7.44(1) 87.3 79.9(4) 8.53 6.78 67.9 64.9(2)
 u 499 −0.01 0.03 2.18 2.04 −0.05 −0.02 1.85 1.65(3)
 v 449 −0.12 −0.14 2.03 1.98 −0.05 −0.05 1.74 1.59(2)
 ps 4333 −8.70 −13.01(1) 134.4 130.5(2) −14.6 −16.4(1) 114.5 114.8
 u 4002 −0.09 −0.10 3.16 3.13 −0.06 −0.07 3.13 2.82(4)
 v 4002 −0.15 −0.17 3.11 3.10 −0.10 −0.10 2.80 2.80

A decrease in the mean departures in the modified system at a statistical significance level of 0.5% is denoted by
‘‘(1)’’. A decrease in the standard deviation of departures at statistical significance levels of 5%, 1% and 0.1% are
denoted by ‘‘(2)’’, ‘‘(3)’’ and ‘‘(4)’’, respectively. Units are Pa for ps and are ms−1 for u and v.

decrease in the standard deviation of analysis increments (Thépaut et al., 1993; 1996, Rabier
et al., 1999). Here we use the same technique todepartures, especially for ten-metre u-component

wind. There has been a consistent and statistically study the 4D-Var response to a time sequence of
surface pressure data. We have chosen a timesignificant change (t-test for matched pairs) in the

mean of background and analysis departures in sequence from the  station Malin Head

(03980, at 55.37°N, 7.33°W) at the northern tip ofsurface pressure (Table 3), to slightly lower values.
This implies that the modifications have increased Ireland. In the period when the storm was

approaching Ireland from the southwest Malinthe mean surface pressure slightly in this North

Atlantic area, in the background as well as in the Head reported a rapid pressure fall of 20.1 hPa in
5 h, from 997.1 hPa at 10  to 977.0 hPa atanalysis. This is not surprising as the serial obser-

vation error correlation has been applied to the 15 . The background in the same period

showed a pressure fall of 15.8 hPa, i.e., an under-surface pressure observations and it is an indica-
tion that the observed mean departure has been estimate of 4.3 hPa, indicative of a less intense

storm in the background than in reality.assimilated slightly less in the experiment.

In the first experiment (MH_TS) the whole time
sequence of 6 surface pressure observations was

5.3. T he Irish Christmas storm and
used. In the second experiment (MH_12) only the

single-observation experiments
observation at 12  was used. This mimics the
observation selection of 4D and 3D-screening,The assimilation 4D4S was superior to 4D3S in

analysing the Irish Christmas storm, already in respectively. Given the Malin Head data values,

the MH_12 analysis should reduce the surfacethe initial set of experiments. The same experiment
as in Subsection 3.1 was repeated using the modi- pressure (at 12 ) compared to the background,

by up to 1.7 hPa. The MH_TS analysis, on thefications of Section 4. We found that the surface

pressure analysis had further deepened to the other hand, should produce a more rapid pressure
fall. The resulting surface pressure analysis incre-southwest of Ireland in this new experiment for

12  24 December 1997 (not shown), which ments at initial and end time (9 and 15 ) are

shown for both experiments in Fig. 6. Uppermeans a further improvement over the standard
4D4S. We studied the Irish storm case further by panels show MH_TS and lower panels show

MH_12. We can see that both analyses havecarrying out single-observation experiments as
described in the following. lowered the surface pressure. MH_TS has a sharp

gradient in the increment (at initial time) to theSingle-observation experiments have been used

in several previous studies of 4D-Var to illustrate southwest (i.e., upstream) of the observation,
whereas the MH_12 increment has a very weakthe effect of the dynamics on the 4D-Var analysis
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Fig. 6. Surface-pressure analysis increments (hPa) from 4D-Var single-observation experiments at 12 
24 December 1997. Panels (a) and (b) show MH_TS (time sequence) at 9 and 15 , respectively, and (c) and (d)
show MH_12 (one observation at 12 , see main text) also at 9 and 15 , respectively. The observation (Malin
Head) is near the northern tip of Ireland. The contour interval is 0.2 hPa, with the zero line dashed. The line plotted
in (a) indicates the orientation of the cross-sections in Fig. 7.

gradient over Ireland, reducing the pressure in a in Fig. 7, for both experiments. The panels to the
left show potential temperature and those to themore wide spread area than MH_TS. The analysis

increment produced by MH_TS intensifies rapidly right show vertical velocity. The background is

the same for both experiments. In Fig. 7b we see(from −1.1 to −3.1 hPa, in the centre) over 6 h,
whereas the MH_12 increment intensifies more that the negative surface pressure increments at

the surface are associated with deep negativemodestly (from −1.1 to −1.7 hPa). From the

MH_TS result we can conclude that 4D-Var suc- temperature increments in the troposphere, which
change sign at the tropopause. By comparisoncessfully produced an increment at initial time

which intensifies rapidly during the 6 h of assimila- with panel a) we see that the main increments are

within the cold air mass, and that the change intion, so as to reduce the mis-fit to the observed
time sequence of surface pressure at Malin Head. sign corresponds to the location of the actual

tropopause in the background. Furthermore, theThe other experiment (MH_12) which lacks tem-
poral information from the observations, has pro- analysis has also warmed the warm air mass to

the south of the cross-section, on the southernduced an increment which is more steady in time.

The vertical structure of the background and and eastern side of the cold front (not shown),
thereby strengthening the frontal temperature gra-analysis increments at initial time (9 ) is shown
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Fig. 7. Results of 4D-Var single-observation analysis experiments at 12  24 December 1997, using surface pressure
observations from Malin Head ( 03980, at 55.37°N, 7.33°W), only. The panels to the left show potential
temperature (K) and the panels to the right show vertical velocity (Pa s−1 ): (a) and (d) show the background.
Remaining panels show analysis increments: (b) and (e) using the full time sequence of hourly observations (i.e., 6
surface pressure observations) with serial correlation, and (c) and (f ) using the Malin Head observation at 12 ,
only. The increments refer to the initial time of the 4D-Var assimilation window, i.e., 9 . The contour intervals
are 5 K (a), 0.05 K (b) and (c), 0.2 Pa s−1 (d) and 0.004 Pa s−1 (e) and (f ), with zero lines dashed. The location of
the cross-section is as indicated in Fig. 6a.

dient. Experiment MH_12 (Fig. 7c) shows a sim- In a static scheme (e.g., 3D-Var) temperature incre-
ments would have their maximum directly aboveilar structure in temperature increments, with less

amplitude. In terms of vertical velocity, we see by the station location. Their vertical structure would

follow the shape of the specified T-ps cross-correla-comparing panels (e) with (d) that both the upward
(negative) and downward (positive) motion associ- tions, i.e., a local positive maximum in the lower

troposphere and second positive maximum in theated with the approaching low has been intensified

by the analysis increments of MH_TS. Again, lower stratosphere (see Rabier et al., 1998b, their
Fig. 9b and the discussion in Section 5 ofMH_12 shows a similar structure (panel f ) to

MH_TS, but far weaker. Andersson et al., 1998). The actual increments in
panel (b) are therefore far from what would beNote that the maximum temperature incre-

ments, created by the time sequence of surface expected from the background term alone, which

is a demonstration of the strong dynamical influ-pressure observations at Malin Head, are located
ten degrees to the west (upstream) of the station. ence on the 4D-Var increments, in this case.
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These single-observation experiments have region, in the North Atlantic, the North-East
Pacific, over Southern Africa and South America.shown that a pressure time-sequence from a single
This can be seen from the r.m.s. of analysis differencesurface station can intensify the analysis of a mid-
between 4D4S_SC_JVQC and its 4D3S control, aslatitude baroclinic system, that was underesti-
shown in Fig. 8. The additional surface observationsmated in the background, when used in a 6-h
have had largest impact in these otherwise relatively4D-Var system.
data sparse areas. With 4D-screening we use more
 data in the polar regions where orbits overlap,

5.4. Data assimilation impact which may also have contributed to the differences
at high latitudes.4D-Var with 4D-screening, serial correlation

The use of time sequences of surface pressureand joint VarQC has been tested in data assimila-
observations improves the accuracy of the back-tion and forecast experiments in 3 separate periods
ground in the assimilation, as previously shownin May, November and December 1997, totalling
in Fig. 3 and Table 3. If the background has39 days, see Table 4. It has been compared to
improved significantly then analysis increments4D3S (3D-screening) and in 2 of the periods
should be smaller in the experiment than in thestandard 4D-screening (4D4S) was run, too.
control. Experiments with 4D-screening (alone)The impact on analyses is largest in the Antarctic
have systematically shown a small reduction in
1000 hPa height increments in many areas but

Table 4. L ist of data assimilation experiments test-
have shown a clear deterioration in the Antarctic,

ing the impact of 4D-screening (4D4S) on its own,
as discussed in Subsection 3.2. With the introduc-

or together with serial correlation (SC) and joint
tion of serial correlation and joint VarQC the

VarQC
situation has improved quite clearly. Fig. 9 shows
that the 1000 hPa analysis increments generallyPeriod From To No. days
are smaller in many areas in both hemispheres.

1 15 May 1997 31 May 1997 17
2 11 Nov 1997 24 Nov 1997 14 5.5. Forecast impact
3 28 Nov 1997 5 Dec 1997 8

The forecast impact is small. It tends to be
positive especially at short range: +24 to +96 h,The controls are 4D-Var with 3D-screening (4D3S).

Fig. 8. 1000 hPa geopotential height r.m.s. of analysis difference between the experiment (4D-screening + serial
correlation + joint VarQC) and its control (3D-screening), for the period 00  11 November 1997 to 18 
24 November 1997. The contours are 0.35, 0.5, 0.75, 1.0, 1.5, 2.0 and 3.0 decametres.
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Fig. 9. 1000 hPa geopotential height difference between r.m.s. of analysis increments in the experiment (4D-screening
+ serial correlation + joint VarQC) and r.m.s. of analysis increments in the control (3D- screening), for the period
00  11 November 1997 to 18  24 November 1997. The contours are ±0.1, ±0.25 and ±0.50 dm. Light (dark)
shading indicates negative (positive) values, and there is no shading in the interval from −0.1 to 0.1 dm.

in both hemispheres and Europe. Fig. 10 shows
the Northern Hemisphere scores only – Southern
Hemisphere and Europe are similar. To test the

significance of the difference in these forecast
scores we have applied the student t-test. The
results are summarized in Table 5.

It shows that the forecast results are significantly
better for Europe at +48 h, Northern Hemisphere
at +48, +72 and +96 h, and Southern

Hemisphere at +48 h. Of the tested scores (+48,
+72, +96 and +120 h at 1000 and 500 hPa) only
Europe at 500 hPa +120 h was significantly

worse. Although the forecast impact is small, it is
systematic enough to be significant. There was no
discernible impact on Tropical scores, and no

significant impact beyond day 5.

6. Conclusions Fig. 10. Average 1000 hPa geopotential height r.m.s. of
forecast error (m) for the experiment (4D-screening +
serial correlation + joint VarQC) full line, and its con-Frequently reporting synoptic stations and drift-
trol, dashed, for Northern Hemisphere. There are 39ing buoys constitute a resource of observational
cases in all – see Table 4 for the experiment definitions

information which is not always fully utilized in and periods.
operational numerical data assimilation. In this
paper we have presented a method to assimilate
these observations in the context of 4D-Var. It ECMWF’s OI and 3D-Var systems, nor in the

first operational implementation of 4D-Var.allows the assimilation of a large number of sur-
face observations which were neither used in In the ECMWF assimilation system, there is an
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Table 5. Summary of significance test applied to the serial correlation of observation error and by modi-
fying the variational quality control of the timediVerence in forecast scores between the experiments

(4D4S_SC_JVQC) and their controls (4D3S) for sequences of / and  surface pressure

and height observations. Serial correlation of obser-39 cases in 3 separate periods (Table 4)
vation error of a Gaussian form shifts the emphasis

Level Fc. Step Significance from the mean observed value to the temporal
Area (hPa) (h) Verdict level (%)

variation in the time sequences. It has not been
possible to support the choice of correlation modelEurope 1000 48 BETTER 5.0
with statistics. On the other hand, it was demon-500 48 BETTER 0.1
strated that there is not a strong sensitivity to the72 BETTER 5.0

120 WORSE 5.0 choice of the actual form of the correlation function.
N. Hem 1000 48 BETTER 0.1 The variational quality control was modified to

72 BETTER 1.0 check all observations from the time sequences for
96 BETTER 5.0

each station jointly, so that it rejects or accepts the
500 48 BETTER 2.0

entire time sequence. These 2 developments success-72 BETTER 5.0
fully solve the initial difficulties with biased isolatedS. Hem 1000 48 BETTER 2.0

500 48 BETTER 5.0 stations, and acts as a conservative targeted bias
correction scheme removing most of the detrimental

The significance test was carried out for the r.m.s. of effect of the biased time sequences. A more straight-
forecast error for steps +48, +72, +96 and +120 h, for

forward bias correction scheme of selected stations
geopotential height at 1000 and 500 hPa, for Europe and

was not tried in this context as difficulties with itsthe two hemispheres. Only those scores that are signifi-
maintenance were foreseen.cant at the 5% level (or higher) have been included.

The initial experimentation showed that the

enhanced observation frequency improved the short
range forecast of rapidly developing small scaleobservation screening stage which selects a unique

set of good quality observations for use in the 3D synoptic systems. A case study of the Irish Christmas

Eve Storm in 1997 showed that the use of timeor 4D-Var assimilation. The observation screening
can be performed either 6-hourly for 3D/4D-Var, or sequences improved the background of the assimila-

tion. Single-observation experiments showed that ahourly for 4D-Var (sometimes called 3D- and

4D-screening, respectively). The first operational pressure time-sequence from a single surface station
can intensify the analysis of a mid-latitude baroclinicimplementation of 4D-Var at ECMWF applied

3D-screening, which enabled an easier comparison system, that was underestimated in the background,

when used in a 6-h 4D-Var. The actual analysiswith 3D-Var results as the number of observations
used in both systems was very nearly the same increments in the studied case were far from what

would be expected from the background term alone,(Rabier et al., 1999). In 4D-screening time sequences

of up to 6 observations per station can be retained which is a demonstration of the strong dynamical
influence on the 4D-Var increments.for use in the analysis.Globally, 4D-screening retains

approximately twice as many / observa- We have shown that the accuracy of the back-

ground 1000 hPa height fields have improved in thetions and 3 times as many  observations as
used operationally. Also  data over the poles, assimilation experiments using time sequences of

observations. A relevant measure for the relativewhere the orbits overlap, increase in numbers,

somewhat. accuracy of the background field is the r.m.s. of the
analysis increments, when comparing 2 assimilationWith up to 6 observations from each station,

4D-Var becomes vulnerable to isolated observations systems using the same observations. The more

consistent the background is with the observations,that exhibit biases relative to the model background
fields. This was found to be the case especially over the smaller is the r.m.s. of analysis increments. The

improvement is largest over mid-latitudes andthe Antarctic region where some synoptic stations
over the high orography have large biases against polar areas.

The forecast impact is small, and yet significantlythe model surface pressure. It caused a deterioration

of Southern Hemisphere forecast performance. We positive at 1000 hPa for Europe at +48 h, Northern
Hemisphere at +48, +72 and +96 h and Southernhave addressed the bias problem by introducing
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Hemisphere at+48 h, for example. The performance Denoting the linearized versions of H and M by
H and M, the differentials of the departures withfor Europe+120 h, at 500 hPa was however slightly

(and significantly) worse. The proposed method for respect to the control variable x are:

using time sequences of observations was, based on
de1=H1M1dx ,

these results, introduced operationally in ECMWF
4D-Var in June 1998. The extra computational cost de2=H2M2M1dx .

is small at approximately 4% of 4D-Var.
In the uncorrelated case, it is a classic result that

the observation cost-function, its differential and
7. Acknowledgements its gradient with respect to x are, respectively:

Jo(x)=eT1R−11 e1+eT2R−12 e2 ,We are grateful to our colleagues Anthony
Hollingsworth, Florence Rabier, Adrian Simmons dJo=2(dxTMT1HT1R−11 e1+dxTMT1MT2HT2R−12 e2 ) ,
and Per Undén for valuable discussions and com-

VJo=2MT1(HT1R−11 e1+MT2HT2R−12 e2ments. Michael Fisher provided the significance
test of paired forecasts used in Table 5 and Anders where R

i
is the observation error covariance

Persson provided subjective analyses of the Irish matrix for time slot i. The evaluation of VJo entails
Christmas Eve storm. Mats Hamrud advised us the computation of HT2R−12 e2 and HT1R−11 e1 , and
on how to implement serial correlations efficiently their multiplication by the adjoint time-stepping
and Jan Haseler’s work facilitated the experi- operators MT2 and then MT1 , which is called the
mentation. Jocelyn Williams skilfully improved ‘‘forced adjoint model’’.
the figures. The helpful comments by 2 anonymous If there are cross-correlations between the obser-
reviewers are gratefully acknowledged. vation errors in both time slots, Jo is defined using

the inverse of the observation error covariance
matrix R between the slots. The inverse of R is8. Appendix A
written as a block matrix according to the sub-
spaces defined by the observation times:Generalization of 4D-Var with serial observation

error correlation
R−1=CA1 A12

AT12 A2
D ,

A crucial ingredient in the practical implementa-
tion of a 4D-Var assimilation is the computation

and the cost function is now:
of the gradient of the observation cost-function Jo
using a forced adjoint model integration, as dem-

Jox=[eT1 eT2 ] CA1 A12
AT12 A2

D Ce1
e2
D .onstrated in, e.g., Le Dimet and Talagrand (1986)

with observation errors not correlated in time.
Its differential is equal toHowever, it is not obvious that this technique

remains valid when serial error correlations are dJo=2[dxTMT1HT1 dxTMT1MT2HT2 ]introduced. This result is proven below. It implies

that observation serial error correlations can be ×CA1 A12
AT12 A2

D Ce1
e2
D ,

introduced into a 4D-Var code with minimal effort.

As in Subsection 4.1, the notation follows Ide
and the gradient can be factorized as follows:

et al. (1998). For the sake of simplicity we shall
assume that there are only 2 observation times,

VJo=2MT1 GHT1 [A1A12] Ce1e2Didentified by subscripts 1 and 2 (the algebra is
trivially extended to an arbitrary number of times).
The model states at these times are linked to the

+MT2HT2 [AT12A2] Ce1
e2
DH ,

control variable x by the forecast operators M1
and M2 , i.e., x1=M1x and x2=M2M1x. We

which shows that, despite the increased algebraicdenote the observation departures as follows:
complexity introduced in the cost-function, VJo is

e1= (H1M1x−y1 ) , still computed using a forced adjoint model integ-
ration, provided that the product between R−1e2= (H2M2M1x−y2 ) .
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and the departures has been suitably precomputed, the expression of the departures, otherwise the
stored and provided line by line to the correspond- algebra remains the same. The variational quality
ing observation time slots of the forced adjoint control does not change the algorithm either,
run, as in Subsection 4.1. The incremental formula- because it is merely a scaling of VJo .
tion described in Subsection 4.1.3 only changes
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