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ABSTRACT
Changes in the climate and weather conditions, as well as rising earth’s average temperature are likely to
escalate deterioration of global drought occurrence. Drought is considered an interwoven natural disaster
composed by a number of different factors, as for example agricultural, meteorological or hydrological.
Hydrological drought estimation with regional accuracy is the most problematic and challenging issue. In
order to monitor and characterize drought conditions, using Standardized Drought Indices (SDI) is recently
the most frequently used practice. In this research article, we suggest an improved hydrological drought index
that incorporates upgraded monthly rainfall estimation records, which play an important role in defining
regional drought conditions, with regard to the global temperature rise. Rainfall is highly changeable even at
a low distance and therefore should be also considered in precipitation estimation records because temporal
rainfall records play a significant role in determining long-term rainfall shortages. Thus, the integration of
regional aspect to the amount of rainfall is essential for accurate regional drought assessment. This research
article proposes adding auxiliary data such as regional weights in order to make monthly rainfall records
more accurate in relation to the dependency characteristics of temperature and rainfall records under
regression and product estimation settings. Subsequently, we propose an innovative method of hydrological
drought evaluation, a so-called Regionally Improved Weighted Standardized Drought Index (RIWSDI). We
evaluated hydrological drought with the usage of RIWSDI at seven various meteorological regions situated
in climatologically different areas in Pakistan. We assessed and compared the results using RIWSDI,
Standardized Precipitation Index (SPI) on 3 and 12-month interval period on the basis of Pearson
correlation. Under both parametric and non-parametric standardization, we discovered that there is a high
positive correlation between RIWSDI and current methodology (SPI). To sum up, we proved that the
upgraded estimations of rainfall are able to improve systems for monitoring droughts.
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1. Introduction

Drought is a complicated natural phenomenon that

occurs basically due to the lack of precipitation over a

time period. And its occurrence usually results in great

costs on various parts of nature and society. Drought is

usually believed as a prolonged lack of precipitation. A

worldwide definition based on precipitation quantity and

period is: A drought implies that a spot has less

precipitation (rain or snow) than ordinary over a couple
of months or significantly more or drought is usually a
situation of adversity because of the insufficient water
due to surprising meteorological conditions. It could be
categorized into disparate types such as; Meteorological,
Hydrological, Agricultural and Socio-economic.
Meteorological drought is related to precipitation for
assessing dryness and dry period for a specific region
where average precipitation may diverge spatially.
Hydrological drought occurs when stream flow, reservoir,�Corresponding author. e-mail: khanma.jufe@gmail.com

Tellus A: 2020. # 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Citation: Tellus A: 2020, 72, 1773699, https://doi.org/10.1080/16000870.2020.1773699

1

Tellus
SERIES A
DYANAMIC
METEOROLOGY
AND OCEANOGRAPHY

PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM

https://doi.org/10.1080/16000870.2020.1773699


soil moisture, groundwater recharge, and lake levels are
affected due to a decrease in precipitation. Agricultural
drought occurs when there is not sufficient moisture to
maintain average crop production for specific land area.
Socioeconomic drought relates to the supply and demand
of some economic goods with fundamentals of hydro-
logical, meteorological, and agricultural drought. Climate
and weather conditions in Pakistan differ across its large
territory primarily due to the variety of altitude, longi-
tude and latitude, wind flows and distance from the sea.
A number of climate classification schemes have been
introduced to account for spatial variability. One of the
distinguished is the K€oppen-Geiger scheme (Kottek and
Rubel, 2007; Peel et al., 2007), which on the basis of pre-
cipitation and temperature separates climate into five
classes, such as polar and alpine, continental, mild, dry
and tropical climate. Since the late 20th century, a trend
of so-called global warming can be observed around the
world (Hansen et al., 2010; Rohde et al., 2013).
Continuance of the trend is expected by numerous cli-
mate models under most emission scenarios and concen-
tration pathways, which calculate the rise of the surface
temperature between 0.7 and 2.4 �C by the year 2050 in
comparison with the reference period of 1986–2005
(Collins et al., 2013). Field et al. (2012) assumes that the
rise of overall temperature might cause unprecedented cli-
mate disasters (such as droughts and floods). Few severe
droughts occurring in the early 21st century are support-
ing this presumption, as for example the 2010 drought in
Australia (Cai et al., 2014), the 2011 drought in southern
China Sun and Yang (2012) and the 2011–2012 drought
in the USA (Seneviratne et al., 2017).

Several further environmental factors are engaged in
the occurrence of drought, such as temperature, wind
flows, relative humidity and intensity, duration and sever-
ity of rain (Wilhite et al., 1994). However, the long term
precipitation and temperature factors play the leading
role in methods for calculating drought indices (Coffel
and Horton, 2015). In recent decades, the frequency,
intensity and influencing area of the drought have signifi-
cantly increased, which have drawn the attention of many
researchers. It was mainly caused by climate changes and
human activities.

Not only precipitation and temperature on a global
level but also their regional distribution is of high import-
ance for accurate monitoring of climate changes and
other natural disasters. Furthermore, the documentation
of rainfall and its regional distribution is one of the main
responsibilities of the governmental meteorological
department. Therefore, it is essential to track drought
conditions with the use of regional statistics and data.
Moreover, accurate regional precipitation estimates are
indispensable for a wide range of research fields, such as

hydrology, meteorology and others. Understanding of
drought characteristics on a regional level is necessary for
mitigating drought risks, moderating potential impacts on
various socio-economic sectors and adopting proper
measures and strategies (Hirabayashi et al., 2008;
Svoboda et al., 2016).

Spatial distribution of precipitation and temperature
belong to the major watershed factors playing a signifi-
cant role in advanced hydrological researches.
Consequently, taking into account the intricacy of the
temporal structure of the regional climate, several authors
Coles and Tawn (1991), Guler et al. (2007) and Mahdian
et al. (2009) jointly constructed two methods based on
geospatial tools and advanced statistical models. Yet,
those techniques are built on temporal data collected
from single stations, which means that it only covers a
single realization at a continuous spatial domain. That
deprives the findings of those methods from the effect of
spatial prevalence in climate. Additionally, increased the
uncertainty of the prediction might have negative conse-
quences on climate shifts policies and reliability of envir-
onmental, climate and weather conditions prognoses.
Therefore, the incorporation of regional rainfall records
combined with the temperature already at the entry stage
might provide a substantial contribution to the accuracy,
efficiency, and reliability of drought moderation policies.
A regional rainfall may be defined as ‘the average of all
stations’ rainfall (monthly/annually) in a region’.

However, contemporary advances in estimation meth-
ods which add auxiliary variables are accessible in sam-
pling theory and environmental statistics. Cochran (2007)
proposes comprehensive theory and methods connected
to the usage of auxiliary data in order to improve the
assessment of unknown features of unsystematic varia-
bles. Several other researchers also incorporate additional
supplementary data to enhance the estimation of an
examined variable under auxiliary information based stat-
istical methods such as regression and kriging (Zhu and
Lin, 2010). Paloscia et al. (2013) works with Australian
Landsat images having Landsat (path ¼ 92/row ¼ 84)
that are similar to ENVISAT data in order to observe
the effects of auxiliary information on vegetation.
Apaydin et al. (2011) deals with altitude as a basis of
auxiliary data connected to climatic inputs (precipitation
and temperature) for interpolation under co-krig-
ing settings.

Keeping in mind the significance of auxiliary informa-
tion in an estimation procedure, the aim of this research
article is to incorporate and apply regional temperature
as auxiliary information in the process. By regional tem-
perature we mean the average of all stations’ monthly
mean temperature of a region. We propose another
drought index, its framework is constructed on the basis
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of regional temperature used as an auxiliary variable to
improve the accuracy and reliability of average precipita-
tion estimates. Calculated precipitation values are further
utilized to acquire Standardized Drought Index (SDI) val-
ues (Ali et al., 2019). In contrast, temperature and rainfall
can be perceived as global representatives of a specific
natural homogenous optimized regional catchment area.
Thus, using regional temperature as the auxiliary infor-
mation might improve the validity of precipitation data.

Although hydrological characteristics of droughts have
been examined broader than ecological and socio-eco-
nomic aspects, deeper understanding of hydrological
aspects of drought is still necessary to assess potential
effects of drought more precisely and to design and
implement adequate and effective moderation measures.
In this regard, further research on drought conditions
taking into account hydrological and regional disparity
factors seems crucial. Indeed, regional spatial variability
of drought affects the definition of the drought itself. As
Yevjevich (1967) indicates, the term ‘drought’ can be
used for a large covered area together with a long term
severe deficit of water, whereas expressions as ‘water
shortage’ or ‘deficit’ describe occasions with less harmful
impacts. Ali et al. (2019) proposed Locally Weighted
Standardized Drought Index (LWSDI). They utilized
auxiliary information as a local weight for the improve-
ment of monthly precipitation record. Ali et al. (2019)
used regression estimator as a tool to incorporate auxil-
iary information in the study variable. One disadvantage
is that they didn’t cover the scenario for the negative cor-
relation between actual rainfall and average temperature
(auxiliary variable). And the other disadvantage is that
they improved only the specified stations but not all the
regions of Pakistan. Our study is designed to cover all
the disadvantages in a precise manner.

Moreover, growing vulnerability and dependence of a
high-quality agricultural production on the accessibility
of water and the development of large-scale multi-pur-
pose water-supply systems indicate the fact, that the ana-
lysis of drought only at a single station is insufficient and
a regional scale would be more beneficial. Lastly, the
necessity for working with the whole array of existing
regional data in measuring stations has arisen and it can
be similarly used in different kinds of hydrological
researches (e.g. flood analysis) as well. Historically it has
been recorded that almost all Pakistani provinces faced
repeated droughts: Khyber Pakhtunkhwa (KPK) in 1902
and 1951; Punjab province in 1899, 1920 and 1935 and
Sindh province in 1871, 1881, 1899, 1931, 1947 and 1999
(Drought Bulletin of Pakistan, 2015). Therefore, it is
necessary to assess the regional impact of drought on a
particular area in order to better understand the situation
and subsequently adopt appropriate measures.

There are numerous number of estimation procedures
such as product, regression and ratio estimators, which
integrate complementary information on single/multiple
auxiliary variables. Detailed overview, as well as the
mathematical structure of regression, product and ratio
estimators can be found in (Cochran, 2007). In each
respective method, validation of the proposed estimator
depends on the incorporation of the auxiliary variables.
For instance, when it is perceived that there is a negative
correlation between study variable and auxiliary variable,
then product estimator provides precise estimates for the
population characteristics. On the contrary, when there is
positive and perfect correlation then ratio estimator is
useful. Preliminary applications based on the auxiliary
information employed in 1973 Tarima and Pavlov (2006),
when Pugachev (1973) incorporated the auxiliary infor-
mation using correlation effects. As, in many surveys and
records keeping modules, a collection of some extra infor-
mation related to study variables are common practice.
Ali et al. (2019) proposed a new method for the assess-
ment of drought-the Locally Weighted Standardized
Precipitation Index (LWSDI). They used LWSDI on ten
different stations having different regions of Pakistan.
Different probability distributions have been used to cal-
culate LWSDI. For each stations, the CDF of those dis-
tributions having smallest value of BIC, are then selected
for standardization.

This research article suggests a new way to characterize
annual drought conditions, in which precipitation data
specified by the auxiliary variable are incorporated in
Standardized Drought Index (SDI) process. Hereby we
recommend adding a regional average of monthly tem-
perature data as weights in order to improve dependent
precipitation estimates under regression and product esti-
mation settings. Thus, we are able to diminish the sam-
pling defects in the projected rainfall quantity records
and to take account of the global warming effect while
monitoring the drought conditions.

This paper is organized as follows: Section 2 consists
of materials and methods which includes the overview of
the data, study area as well as methodology which pro-
vides a comprehensive exposition of the theoretical details
behind the product and regression estimation, SPI, and
RIWSDI. We also present the mathematical formula
employing average temperature as auxiliary information
under regional settings. Here we proposed a drought
index employing improved precipitation estimates under
parametric and non-parametric approaches. In Section 3,
we will provide a detailed discussion and results on how
we improved the precipitation estimates and used in SDI
procedure. Here, some temporal plots showing the differ-
ence between simple and improved records will also be
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presented. Finally, a conclusion on the proposed method
will be provided in Section 4.

2. Materials and methods

2.1. Data and study area

Pakistan is located in Southern Asia which is the junction of
Middle East and Central Asia having 23�–37� N latitude and
61�–78�E longitude (Ahmed et al., 2018). It hosts the triple
point (junction) of three world’s famous mountain ranges
Karakoram, Hindukush and Himalayas in its north. Pakistan
lies between 0 to 8611m altitude. Mean temperature as well
as precipitation data are considered as the climatic inputs in
the current study. The highest precipitation (1038.6mm) was
recorded in Islamabad in July, 2001, and minimum precipita-
tion record of (0mm) in several regions were also observed
during the study. There are both anthropogenic and natural
reasons of change in the climate but earlier is the most

leading with a constantly increasing trend since 1940 (the
industrial revolution) (Anwar, 2011). Pakistan shares her bor-
der with four countries; in the west with Afghanistan and
Iran, in the east with India, in the north with China, and the
Arabian sea is located in the south of Pakistan. According to
2016 census, Pakistan has a total population of more than
200 million. Where typically most of the people concerned
with agriculture sectors either directly or indirectly.

This research consists of seven meteorological regions,
and these seven regions contains overall 50 stations, situated
in different climatic regions of Pakistan. Figure 1 shows the
chosen meteorological regions. Detailed clustering of the
regions of Pakistan can be seen (Hussain et al., 2011). The
map is generated through Geographic Information System
(GIS). The proposed method, required a time series data of
long-term monthly precipitations, as well as maximum and
minimum temperatures. Consequently, a data ranges from
January 1967 to December 2016 is obtained from – Karachi

Fig. 1. Map of the selected regions.
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Table 1. Statistics of the selected stations.

Precipitation (mm) Temperature (�C) Coordinates

Regions Stations Mean Min Max Mean Min Max Lat (N) Lon (E) Altitudes (m)

Astor 39.4 21.6 72.8 9.9 8.3 11.3 35.3570� 74.8624� 2546
Bunji 13.3 5.1 28.3 17.6 15.9 19.4 35.6431� 74.6342� 1532

C1 Chilas 15.8 3.0 47.4 20.3 19.0 21.4 35.4222� 74.0946� 1265
Gilgit 11.7 3.4 22.3 15.8 14.6 16.9 35.8819� 74.4643� 1500
Gupis 15.9 0.4 56.3 12.6 10.9 14.1 36.2274� 73.4421� 2176
Skardu 19.1 5.7 41.3 11.8 10.1 13.2 35.3247� 75.5510� 2228
Cherat 52.1 16.0 109.4 17.2 14.8 18.9 33.8215� 71.8883� 892
Chitral 37.9 17.8 64.9 16.0 14.7 17.4 35.7699� 71.7741� 1494
Dir 115.6 73.6 179.1 15.5 14.7 18.9 35.1977� 71.8749� 1420
Drosh 47.8 25.1 79.3 17.6 15.3 19.6 35.5684� 71.8038� 1359

C2 Kohat 47.8 19.5 83.3 23.3 22.0 24.4 33.5889� 71.4429� 489
Parachinar 72.2 44.2 184.8 14.4 10.8 16.3 33.9011� 70.0860� 1705
Peshawar 40.2 15.8 75.4 22.9 21.8 24.0 34.0151� 71.5249� 331
Risalpur 55.9 20.6 89.8 22.2 21.2 23.1 34.0751� 71.9876� 309
Zhob 23.5 9.1 41.3 19.3 17.2 20.8 31.3497� 69.4665� 1426
Balakot 131.5 89.1 207.4 18.6 17.4 19.8 34.5482� 73.3532� 3212
Garhidupatta 124.2 77.7 175.9 19.2 17.4 20.6 34.2264� 73.6157� 819
Islamabad 120.6 56.3 192.1 21.7 20.6 23.4 33.6844� 73.0479� 540

C3 Kakul 111.2 78.3 146.6 16.9 15.2 18.7 34.1875� 73.2618� 1300
Kotli 103.9 58.9 160.8 21.9 20.1 22.9 33.5008� 73.9007� 707
Murree 145.1 103.4 202.8 13.0 11.2 14.8 33.9070� 73.3943� 2291
Muzaffarabad 124.1 76.5 179.4 20.6 19.2 21.9 34.3551� 73.4769� 737
Bahawalnagar 19.9 4.8 43.6 25.1 23.8 26.6 30.0025� 73.2412� 163
Bahawalpur 15.2 0.9 55.9 25.7 24.6 26.8 29.3544� 71.6911� 214
DI Khan 26.1 11.6 63.0 23.7 22.4 24.8 31.8626� 70.9019� 165
Faisalabad 32.5 14.4 67.2 23.5 22.3 24.7 31.4504� 73.1350� 184

C4 Lahore 55.3 27.8 103.9 24.0 22.7 25.0 31.5204� 74.3587� 217
Mianwali 45.6 11.4 90.5 23.7 22.8 24.7 32.6645� 71.4774� 210
Multan 17.9 6.9 42.8 24.9 23.8 26.9 30.1575� 71.5249� 122
Sargodha 39.9 21.1 63.9 23.8 22.8 25.0 32.0740� 72.6861� 190
Sialkot 83.1 45.4 157.2 22.4 21.1 23.5 32.4945� 74.5229� 256
Badin 18.6 0.0 76.2 26.8 25.8 27.8 24.6459� 68.8467� 10
Chhor 19.1 0.4 45.8 26.5 25.4 27.6 25.5114� 69.7823� 4
Hyderabad 13.2 0.4 43.7 27.7 26.8 28.9 25.3960� 68.3578� 13
Jacobabad 11.2 1.2 48.6 27.2 26.2 28.1 28.2823� 68.4472� 56

C5 Khanpur 10.5 0.7 32.9 25.4 23.4 26.7 28.6332� 70.6574� 80
Nawabshah 12.3 0.0 55.3 26.9 25.9 28.2 26.2447� 68.3935� 29
Padidan 10.1 0.2 45.6 26.5 25.4 27.8 26.7724� 68.2922� 46
Rohri 9.1 0.2 37.7 29.6 27.1 30.7 27.6687� 68.8943� 62
Sibbi 14.4 0.0 31.7 30.3 26.9 31.9 29.5532� 67.8808� 130
Dalbandin 6.7 0.3 17.0 22.6 20.4 23.9 28.8854� 64.3964� 843
Kalat 15.3 0.0 81.4 14.6 12.9 16.6 29.0523� 66.5879� 2007
Khuzdar 21.3 4.4 49.6 21.8 19.4 23.3 27.8165� 66.6057� 1237

C6 Lasbela 15.6 0.7 61.6 26.6 25.3 28.0 25.8700� 66.7129� 241
Nokkundi 2.9 0.0 15.6 24.5 22.6 26.1 28.8259� 62.7500� 679
Panjgur 8.3 1.4 25.4 22.4 20.4 23.7 26.7303� 64.1478� 980
Quetta 21.4 5.2 79.2 16.8 14.4 18.9 30.1798� 66.9750� 1679
Jiwani 8.6 0.3 32.2 25.7 24.1 26.9 25.0538� 61.7707� 57

C7 Karachi 16.3 0.0 59.4 26.6 25.6 27.7 24.8607� 67.0011� 8
Pasni 8.3 0.0 29.7 25.3 22.6 26.5 25.2510� 63.4154� 10
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Data Processing Centre (KDPC) – via Pakistan
Meteorological Department (PMD). The regions have sig-
nificant high variability in rainfall and temperature during
different seasons. Table 1 reveals the statistics of the selected
stations for 50years (1967–2016).

2.2. Methodology

In order to assess and compute the comparative ascer-
tainment of drought indices based on RIWSDI, second-
ary time series data of average temperature and monthly
total precipitation (1967–2016) is used.

In the current study, we evaluate 32 probability distri-
butions using an R package i.e. Propagate (Tellinghuisen
and Spiess, 2014). Here, various types of fitness criterion
e.g. Anderson-Darling, Kolmogorov-Smirnov and Chi-
Square tests were used in order to figure out the candi-
date distribution among others, for each individual indi-
cator. For standardization of each study region and all
the stations included in the regions, a CDF of the distri-
butions, having a minimum value of BIC, are subse-
quently selected. To portrait different results in tables
some regions has been chosen randomly i.e. Region-
1,3,6,7. In this research, we are handling the problem of
updating and improving regional precipitation estimates.
A step-by-step procedure can be observed from the flow

chart by analyzing Fig. 2. Here, the average temperature
is suggested as an auxiliary information. In previous
work, various surveys indicate that there is a positive cor-
relation between rain and temperature. Zhao and Khalil
(1993) examine the relationship between precipitation and
temperature for eight regions including the USA. Their
survey indicates that there is a positive correlation
between these variables in all the seasons. At the Guliya
ice core, detailed analyses of the precipitation index (gla-
cier accumulation) and the temperature proxy recorded in
since 300 years BP show that precipitation correlates with
temperature in this region (Yang et al., 2006). Rajeevan
et al. (1998) found that temperature and rainfall were
positively correlated during January and May but nega-
tively correlated during July. Sneva (1977) found a posi-
tive month-wise correlation between temperature and
rainfall in southeastern Oregon.

As the temperature is a globally representative environ-
mental variable and homogeneous in nature has a strong
association with precipitation. Thus, the use of tempera-
ture as auxiliary data is logically valid. Here the auxiliary
variable is the mean monthly temperature. The following
equations were used to incorporate auxiliary information,

�yr ¼ �yi þ b1ð �X j��xiÞ (1)

and,

�yp ¼ �yi
�xi
�X i

� �
(2)

In Eqs. (1) and (2) �yr and �yp are the updated regression
and product means of the study variable respectively, �X j is
the overall mean auxiliary variable of station, �xi is the sam-
ple mean of the ith month of the auxiliary variable. In Eq.
(1) b1 is the regression slope between the study variable and
auxiliary variable. After assessing theoretical support about
the positive and negative correlations between precipitation
and average temperature, this study suggests average tem-
perature as a piece of auxiliary information to improve
annual meteorological records of precipitation. So, before
defining drought characteristics and precipitation deficient,
we utilized the concepts of regression and product estimator
to improve the annual estimates of precipitation using aver-
age temperature as auxiliary information. The mathematical
structures of regression and product estimator employing
monthly mean temperature as auxiliary information for the
estimation of the total monthly amount of precipitation are
as follows,

IWPr ¼ �pi þ b1ð�Tj��tiÞ (3)

and,

IWPp ¼ �pi
�ti
�Tj

 !
(4)

Fig. 2. Flow chart. Precipitation (P), Average Temperature
(AT), Correlation coefficient (r), Product Estimator (PE),
Regression Estimator (RE), Improved Precipitation (IP),
Probability Distributions (PDs).
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where, IWPr and IWPp are the improved weighted precipita-
tion estimates of mean using regression and product estima-
tor respectively, for the improvement of original series of
precipitation, where, simple precipitation records are weighted
by the dependence characteristics of average temperature
with precipitation. From Eqs. (3) and (4) �pi and �ti is the
mean precipitation and mean of average temperature of the
ith region, respectively, whereas �Tj is the overall mean of the
average temperature of a region for the jth month. In Eq. (3)
b1 is the regression slope between the study variable (precipi-
tation) and auxiliary variable (average temperature).

2.2.1. Comparative statistics and quality measures. In
this study, we encompass a well-known correlation statis-
tic ‘Pearson Product-Moment Correlation coefficient r’,
commonly called the correlation coefficient, for the com-
parison of the outcomes of our proposed index with that
of existing indices. Correlation coefficient r is most widely
used test statistic and measures the collinearity between
two series. Formula for r is in Eq. (5)

r ¼
P

x� �xð Þ y� �yð ÞP
x� �xð Þ2 y� �yð Þ2

(5)

where, in Eq. (5) x and y representing the two series with
n number of elements, �x and �y representing mean values
of the two series. The range –1 to 1 contains the values
of r. Positive values close to 1 indicates a strong positive
correlation between two series, on the other hand nega-
tive values indicate an inverse correlation.

2.2.2. Methodology for standardized precipitation index
(SPI). The SPI is a common indicator of drought that
does not require information about land surface conditions
and needs only precipitation data to compute drought prop-
erties. According to McKee et al. (1993) and Wu et al.
(2007), the SPI can be calculated in a given year ‘o’, a calen-
dar month ‘p’ and for time scale q, by the following steps;
� The long-term record of precipitation is fitted to a

probability distribution, which is then transformed
into a normal distribution.

� The 1st step is the computation of the cumulative pre-
cipitation data, Xq

opðo ¼ 1, 2, 3, :::,nÞ for a period of
interest p.

� The 2nd step is to fit a cumulative probability distri-
bution (commonly gamma distribution function), but
in the current study different distributions have been
applied. The PDF of gamma is defined as;

fðxÞ ¼ 1
baCðaÞ x

a�1e�
x
b, for x � 0 (6)

� A cumulative probability distribution for the particu-
lar time scale and given month of the observed pre-
cipitations event,

F ðxÞ ¼
ðx
0
fðxÞdx ¼

ðx
0

1
baCðaÞx

a�1e�
x
bdx (7)

� The cumulative probability of each observed precipi-
tation event xi can be derived by Eq. (7). An equi-
probability transformation is then made from the
cumulative probability to the standard normal ran-
dom variable Z with zero mean and unit variance,
where the SPI takes on the value of Z.

SPI ¼ u�1 F ðXÞ½ � (8)

� The distribution of precipitation may contain zeros.
For instance, taking a special case of Gamma distri-
bution, suppose the probability of all zero values in
a time series of IWP(r,p) is denoted by q. Let m be
the number of all zero values and n is the total num-
ber of observations contained in IWP(r,p) time series,
therefore, q can be estimated by the ratio of m and n
i.e. m/n,

HðxÞ ¼ q þ 1� qð ÞF ðxÞ (9)

� As precipitation is not distributed normally, so an
equiprobability transformation is done from the
CDF of the mixed distribution to CDF of a standard
normal distribution, with zero mean and variance 1,
which is given by;

SPI ¼ u�1 HðXÞ½ � (10)

� Because the SPI is normalized, wetter and drier cli-
mates can be represented in the same way, and wet
periods can also be monitored using the SPI.

� The 3rd step is to show the adequacy of the selected
distribution, using some numerical or graph-
ical methods.

� The 4th step is to verify the normality of SPI using
numerical or graphical techniques.

2.3. Proposing a hydrological drought index:
regionally improved weighted standardized drought
index (RIWSDI)

In this study, we used IWP(r,p) weights in the placement
of generally simple precipitation series in the SDI

Table 2. Categories of SPI and RIWSDI.

S. No. SPI and RIWSDI values Categories

1. 2.00 and above Extremely wet
2. 1.50 to 1.99 Very wet
3. 1.00 to 1.49 Moderate wet
4. –0.99 to 0.99 Near normal
5. –1.00 to –1.49 Moderate drought
6. –1.50 to –1.99 Severe drought
7. –2.00 and less Extremely drought

REGIONAL DROUGHT ASSESSMENT 7



Fig. 3. Comparison of precipitation records.
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technique. As the estimates IWP(r,p) are representative
more regionally which encounter direct effect of max-
imum and minimum temperatures in the estimation stage.
Consequently, the inclination of using IWP(r,p) estimates
in place of simple precipitation records is logically
adequate. Therefore, to achieve the SDI, follow the
instruction of Stagge et al. (2015) on the parametric
standardization approach, the current study integrates the
probability distributions, that fits well on the specified
temporal series of IWP(r,p) estimates. Furthermore, this
research incorporates different probability plotting (PP)
methods for the assessment of the coherence and validity
of IWP(r,p) estimates in non-parametric approach. The
following are the brief descriptions of both the methods.

2.3.1. Parametric mechanism: selection of optimal
probability distributions. In parametric approach, we
arrange a list of different, 32 candidate distributions
among various commonly available probability distribu-
tions. Although, the study suggests the probability distri-
butions having multiple-parameters, for instance, in
place of a Weibull and Gamma distributions having two-
parameters, a goodness of fit must be applied to a four-
parameter Weibull and three-parameter Gamma, respect-
ively. Where the lowest value of Bayesian Information
Criteria (BIC) Schwarz (1978) indicates the optimal prob-
ability distribution.

In the experimental and computational analysis, we
incorporate Tellinghuisen and Spiess (2014) an r package
to achieve the optimum probability distribution BIC for
all SPI-3 and 12 – and RIWSDI-3 and 12. The study con-
sist of 32 highly parametric distributions, for example;
gumbel distribution, generalized extreme value, and gen-
eralized normal distribution, etc. Chi-square, Anderson
Darling, and Shapiro Wilk tests are used for the nomin-
ation of the optimal distributions. Whereas, a Levenberg-
Marquardt algorithm using minpack.lm Elzhov et al.
(2010) an r package, is used to estimate the parameters of
each chosen distribution. Furthermore, the Cumulative

Distribution Function (CDF) of the selected optimal dis-
tribution is then converted using the method in Eq. (9).

In researches related to hydrology, particularly in pro-
posing a new drought index as well as their comparative
assessment, r is the most frequently used statistical tech-
nique (Tsakiris and Vangelis, 2005; Ali et al., 2017).
Although, the existing various drought indices bounds to
choose optimum and most pertinent drought indices. In
the previous researches, numerous authors proposed new
drought indices related to hydrology including Cumbie-
Ward and Boyles (2016); Jain et al. (2015); Naumann
et al. (2014) and Ye et al. (2016) and compared those
indices with the well-known index: Standardized
Precipitation Index (SPI) (McKee et al., 1993). RIWSDI
is mainly based on a long-term rainfall (precipitation) ser-
ies as well as on average temperature as auxiliary vari-
able, and is used to highlight the insufficiency in the
amount of precipitation for various time scales (1, 3, 6, 9,
12, 24, 48) at a particular chosen station. Initially, the
RIWSDI method is based on the standardization of CDF
of the chosen distribution from 32 different candidate dis-
tributions. Where negative and positive values of
RIWSDI respectively show less than or greater than the
median precipitation.

Here, the study finds out that for defining drought
related to hydrology, RIWSDI at 3 and 12-month time
scale procedure uses, respectively, three- and twelve-
months’ average data of monthly precipitation records as
well as the auxiliary variable. Therefore, a comparative
analysis of RIWSDI with SPI at 3 and 12-month time
scale, is considered. Habibi et al. (2018) stated that most
of the researches related to drought monitoring and
hydrology, SPI-3 and SPI-12 are most extensively, effi-
cient and effective used indicators for highlighting
drought related to hydrology. Furthermore, characteriza-
tion of drought based on 3 and 12-month timescale show
an overview of the seasonal drought and an overall
behaviour of hydrological conditions related to regions
(Gumus and Algin, 2017).

Table 3. Statistics of the selected clusters (Regions).

Regions Mean P(MA) (mm) S.D C.V Mean IP(MA) (mm) S.D C.V Mean AT(MA)(�C) S.D C.V

1 19.2 5.8 30.5 18.3 5.0 27.5 14.7 0.5 3.7
2 55.7 10.0 17.9 51.9 9.1 17.5 18.7 0.5 2.7
3 120.4 17.4 14.5 117.4 15.1 12.9 18.8 0.5 2.8
4 37.3 9.5 25.5 34.9 7.4 21.3 24.7 0.5 2.0
5 13.2 8.1 61.9 12.4 7.3 58.6 26.8 0.5 1.7
6 13.1 5.9 45.0 12.9 5.6 43.6 24.7 0.5 2.0
7 11.0 6.7 61.3 11.3 7.3 64.7 25.9 0.4 1.6

Precipitation Monthly Annual (P(MA)), Improved Precipitation Monthly Annual (IP(MA)), Average Temperature Monthly Annual
(AT(MA)), Standard Deviation (SD), Coefficient of Variation (CV).
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In computational and experimental analysis, it has
been shown that the utilization of Gamma distribution is
appropriate for modelling precipitation records at differ-
ent time scales across all accumulation periods and

regions within Europe (Stagge et al., 2015). That study is
for Europe, as a result, a PDF is required among the
enlisted probability functions for the regions under study.
In the current study, we are following guidelines of

Table 4. Top-notch distributions with their parameters for Region-1.

RIWSDI/SPI SPI3 SPI12

RIW1 Function
parameters
BIC

Generalised Normal
a¼ 33.40, n¼ 45.92, j ¼ �0.57
–1099

Gumbel
m ¼ 195.04, b¼ 53.50
–736.81

Astor Function
parameters
BIC

Gamma
k¼ 1.77, h¼ 0.014
–1289.66

Triangular
a¼ 160.30, b¼ 469.96, c¼ 766.18
–913.50

Bunji Function
parameters
BIC

Generalised-normal
a¼ 27.88, n¼ 26.21, j ¼ �0.70
–827.59

Laplace
m ¼ 151.19, b¼ 77.90
–692.36

Chilas Function
parameters
BIC

4P Beta
a1 ¼ 0.98, a2 ¼ 6.93, a¼ 2.50, b¼ 410.24
–815

Laplace
m ¼ 187.10, b¼ 102.14
–1335.20

Gilgit Function
parameters
BIC

Gamma
k¼ 1.11, h¼ 0.03
–836.32

Inverse Gamma
a¼ 7.28, b¼ 934.80
–1261.47

Gupis Function
parameters
BIC

Gamma
k¼ 0.78, h¼ 0.02
–1270.42

Johnson SB
n¼ 98.74, k¼ 51.22, c ¼ �0.60, d¼ 0.79
–940.08

Skardu Function
parameters

Generalised extreme value
m ¼ 27.35, n¼ 28.08, r¼ 0.38

Gamma
k¼ 5.30, h¼ 0.02

BIC –656.22 –1032.46

Table 5. Top-notch distributions with their parameters for Region-3.

RIWSDI/SPI SPI3 SPI12

RIW3 Function
parameters

Gumbel
m ¼ 254.36, b¼ 160.12

Inverse Gaussian
m ¼ 1412.11, k¼ 0.00

BIC –1187.93 –1119.06
Balakot Function

parameters
Gumbel
m ¼ 283.18, b¼ 186.72

Generalised extreme value
m ¼ 1428.91, n¼ 249.33, r¼ 0.19

BIC –1780.05 –1224.08
Garhidupatta Function

parameters
BIC

Logistic
m ¼ 331.46, r¼ 115.38
–1728.47

Cosine
m ¼ �33873.65, r¼ 803.06
–1030.12

Islamabad Function
parameters

Gamma
k¼ 1.52, h¼ 0.004

Normal
m ¼ 1426.21, r¼ 368.42

BIC –1046.01 –1435.98
Kakul Function

parameters
BIC

Triangular
a ¼ �31.70, b¼ 201.11, c¼ 796.58
–1176.07

Inverse Gaussian
m ¼ 1344.88, k¼ 0.00
–1476.64

Kotli Function
parameters
BIC

Generalised extreme value
m ¼ 200.89, n¼ 150.87, r¼ 0.28
–1487.17

Cosine
m ¼ 1237.87, r¼ 724.98
–1721.01

Murree Function
parameters
BIC

Gumbel
m ¼ 312.41, b¼ 222.11
–1609.62

Inverse Gaussian
m ¼ 1756.46, k¼ 0.00
–1188.48

Muzaffarabad Function
parameters

Gumbel
m ¼ 267.78, b¼ 178.14

Gumbel
m ¼ 1372.88, b¼ 232.52

BIC –1547.78 –1072.52
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Stagge et al. (2015) in the process of estimation. Hence, a
general expression of RIWSDI index can be written as
follows,

IWP r, pð Þ �PDF Parameter 1,Parameter 2, :::,Parameter nð Þ
(11)

where IWP(r,p) is the monthly cumulative total of either
using regression or product type estimator for the
improvement of rainfall data, and PDF shows the

optimum probability function with n parameters.
Estimation of the values of RIWSDI can be done by nor-
malizing CDF of the pertinent selected PDF, which are
fitted to the time series records of improved monthly
cumulative precipitations.

In Eq. (9), a small amendment is made in the CDF
to fully adjust the adverse effect of non-precise values
of the series. Furthermore, following McKee et al.
(1993) and Ali et al. (2017), quantitative records of

Table 6. Top-notch distributions with their parameters for Region-6.

RIWSDI/SPI SPI3 SPI12

RIW6 Function Gamma Trapezoidal
Parameters k¼ 1.14, h¼ 0.03 a ¼ �5.40, b¼ 153.4, c¼ 102.5, d¼ 325.37
BIC �906.97 �655.33

Dalbandin Function 3P Weibull Gumbel
Parameters m ¼ 0.82, a¼ 0.48, b¼ 42.48 m ¼ 51.24, b¼ 45.21
BIC –820.47 –1031.25

Kalat Function 4P Beta Trapezoidal
Parameters a1 ¼ 0.38, a2 ¼ 2.56, a¼ 2.42, b¼ 302.62 a¼ 6151, b ¼ �6170.14, c¼ 145, d¼ 457.65
BIC –918.54 –1365.03

Khuzdar Function 4P Beta Gamma
Parameters a1 ¼ 0.97, a2 ¼ 8.15, a¼ 2.50, b¼ 714.26 k¼ 4.95, h¼ 0.02
BIC –933.31 –818.74

Lasbela Function 4P Beta Gamma
Parameters a1 ¼ 0.45, a2 ¼ 77.80, a¼ 1.49, b¼ 9769.92 k¼ 2.01, h¼ 0.01
BIC –1204.54 –848.40

Nokkundi Function Generalised normal Gamma
Parameters a¼ 226.14, n¼ 71.56, j ¼ �3.20 k¼ 0.86, h¼ 0.02
BIC –873.31 –882.77

Panjgur Function 3P Weibull Logistic
Parameters m ¼ 0.99, a¼ 0.84, b¼ 50.57 m ¼ 84.07, r¼ 32.69
BIC –767.37 –588.99

Quetta Function 3P Weibull Laplace
Parameters m ¼ 2.49, a¼ 0.79, b¼ 130.59 m ¼ 215.85, b¼ 134.21
BIC –1364.30 –1075.69

Table 7. Top-notch distributions with their parameters for Region-7.

RIWSDI/SPI SPI3 SPI12

RIW7 Function 4P Beta Rayleigh
Parameters a1 ¼ 0.46, a2 ¼ 2.96, a¼ 1.18, b¼ 247.03 m ¼ �40.46, r¼ 131.59
BIC –752.57 –775.79

Jiwani Function Generalised Normal Gamma
Parameters a¼ 268.56.n¼ 94.80, j ¼ �2.91 k¼ 1.13, h¼ 0.01
BIC –734.53 –739.74

Karachi Function 3P Weibull 3P Weibull
Parameters m ¼ 2.01, a¼ 0.44, b¼ 94.20 m ¼ 25, a¼ 0.98, b¼ 221.30
BIC –1285.18 804.69

Pasni Function 3P Weibull Exponentail
Parameters m ¼ 0.99, a¼ 0.57, b¼ 147.63 k¼ 0.008
BIC –1045.91 –713.748

REGIONAL DROUGHT ASSESSMENT 11



RIWSDI are then classified in accordance to the sever-
ity of drought. The drought characterization for SPI
and RIWSDI can be seen in Table 2.

2.3.2. Non-parametric mechanism: incorporation of
graphical methods. In each of the probabilistic models, as a
result ambiguity repeatedly exists in the precise and accurate

Fig. 4. Comparison of RIWSDI-3 and SPI-3.
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estimation procedures (Parker, 2014). Furthermore, the
selection of the precise probability distributions considering
each indicator is exclusively subjective in its nature. To

avoid these kind of problems, for non-parametric drought
monitoring, Hao and AghaKouchak (2014) gave an idea by
using Probability Position formulas (PP-formula) of

Fig. 5. Comparison of RIWSDI-12 and SPI-12.
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Fig. 6. Correlations of RIWSDI-3 and SPI-3.
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Fig. 7. Correlations of RIWSDI-12 and SPI-12.
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Fig. 8. Observed probability distribution functions for RIWSDI-3 and SPI-3 (Regions 1-4).

16 H. JIANG ET AL.



Gringorten (1963) as an alternative technique of Gamma
distribution for obtaining the SDI. The fact behind the use
of graphical technique is to fascinate the extreme events,
and as a result, to reduce the errors, in precise as well as
accurate estimation of the specified drought index.
Farahmand and AghaKouchak (2015); Ghamghami et al.
(2017) and Zhang et al. (2018) also used a non-parametric
approach for drought monitoring. Although, the behaviour
of data is varying, as it is varied by place to place, therefore,
it is not enough to the incorporate only one probability
plotting position. Stagge et al. (2015) studied that it is not
enough to use only the Gamma distribution to capture and
observe the behaviours of different climatic regions to
acquire the drought indices. Hence, the deployment and use

of different PP-formulas are mandatory for evaluating dif-
ferent behaviours of varies specified probability distributions
(Cunnane, 1978; Vogel, 1986; Shukri Yah et al., 2012). In
the current study rather than utilizing Gingorten PP-for-
mula, we use other six well known non-parametric PP-for-
mulas for the computation of RIWSDI.

3. Results and discussion

3.1. Basic statistics, deviations, and
temporal behaviour

Statistics of each region’s stations is presented in Table 1. It
contains the information of the precipitation and

Fig. 9. Observed probability distribution functions for RIWSDI-3 and SPI-3 (Regions 5-7).
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Fig. 10. Observed probability distribution functions for RIWSDI-12 and SPI-12 (Regions 1-4).
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temperature of all the stations included in different regions.
Coordinates and Altitude(m) can also be seen from Table 1.
Mean, Minimum and Maximum precipitation as well as
temperature can be obtained from this table. For example,
in C1 (Region-1), Astor station has a mean, minimum and
maximum annual precipitation of 39.5(mm), 21.6(mm) and
72.8(mm), respectively. Similarly, it has a mean, minimum
and maximum annual temperature of 9.9(�C), 8.3(�C) and
11.3(�C), respectively. Astor has a latitude (N) and longitude
(E) of 35.3570� and 74.8624�, respectively. Astor is 2546(m)
above the sea level. Similarly, we can see the statistics of
each and every station from Table 1.

SPI-12 is the most commonly used drought index for
annual monitoring and characterization of hydrological
drought (Habibi et al., 2018). In previous research, several
studies proposed hydrological drought indices and compared
it with SPI-12 (Naumann et al., 2014; Jain et al., 2015;
Cumbie-Ward and Boyles, 2016). In this study, SPI-3 and
SPI-12 with the comparison of RIWSDI-3 and RIWSDI-12
have been computed, before the standardization of IWP(r,p),
a little graphical analysis is done by assessing the temporal
behaviour and deviations in improving precipitation records
with those which are used in the SPI-3 and SPI-12. SPI-3
and SPI-12 uses three- and twelve-month average of

Fig. 11. Observed probability distribution functions for RIWSDI-12 and SPI-12 (Regions 5-7).
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monthly precipitation records, respectively. Analogous to
SPI, the proposed structure of precipitation records used in
the IWP(r,p) model has the same mathematical structure and
rationale. Therefore, it is necessary to show how auxiliary
information plays a role in the temporal estimation of pre-
cipitation records. Figure 3 shows the graphical representa-
tion of temporal precipitation records of regionally weighted
and the usual records for all 7 regions (clusters) along with
their stations as well. From Fig. 3 we observed that there
are significant changes, particularly in upper precipitation
record of Astor, Dir, Parachinar, Badin and Dalbandin sta-
tions. These contrasts reveal how drought characterization
and analysis of regional meteorology of climates and their
phenomena can be modified for the betterness by the intro-
duction of advanced estimation techniques. It can be seen
that the improved records in all the stations shows a better
trend. Furthermore, before the standardization of the pre-
cipitation records, we may obtain the assorted proposition
of the appropriate probability distributions for improved
and simple precipitation records. Table 3 summarizes the
statistics of the selected regions (clusters). It is found that
the mean precipitation for simple and improved precipita-
tion are almost the same. But, there is a significant differ-
ence, between the standard deviation (SD) and coefficient of
variation (CV), of the saying records.

3.2. Parametric computation

Analogous to RIWSDI this study also calculates SPI.
Subsequently, for each of the indicator, some sort of list
of probability distributions is equipped in order to check
their optimum fitness. Goodness-of-fit (GoF) test statis-
tics are usually used for confirming validity and for
choosing the best-fit among different distributions for a
specific data set. In the current study BIC is used for
choosing the best-fit. Numerical (BIC) as well as graph-
ical performance (pdf) were used in the current study to
assess and select the best fitted probability distribution
among other 32 candidate distribution. A pdf with lowest
value of BIC is considered as a best fit. The Bayesian
Information Criterion (BIC) Konishi and Kitagawa
(2008); Sakamoto et al. (1986) is applied here. A distribu-
tion, for which the value of BIC calculated by means of

the following Eq. (12) is the lowest, is considered as the
best fit,

BIC ¼ � 2 lnL
N

þ k lnN
N

(12)

where L, k and N is the function of likelihood, number
of the estimated parameters and total number of observa-
tions respectively, for the analyzed data (Kotowski and
Ka�zmierczak, 2013).

Tables 4–7 summarize the CDF of the optimum prob-
ability functions for all the indicators at all study regions
and their associated stations. It also shows the chosen
probability function and their estimated parameters as
well as BIC values. Selection of each probability distribu-
tion is based on (weighted) residual sum-of-squares as the
minimization criterion based on the Levenberg-
Marquardt algorithm. Where, the estimation phase con-
sists of method of moments, method of maximum likeli-
hood estimation and method of L-moments. All these
methods were implemented using lmom R packages.
Especially in SPI and RIWSDI, fitness and selection of
different probability distribution validate the finding of
Stagge et al. (2015). A number of modifications to SPEI
and SPI methodology, and also for assessing SPEI and
SPI an updated procedure based on Shapiro-Wilk test
were proposed by Stagge et al. (2015). They found
gamma distribution and generalized extreme value distri-
bution for SPI and SPEI respectively as the best fitted
distribution in their study.

Figure 4 shows temporal behaviours of RIWSDI-3 and
SPI-3 indices, Fig. 5 shows temporal behaviours of
RIWSDI-12 and SPI-12 indices. Figures 6 and 7 shows
the histograms, Q-Q plots and also provides the values of
correlation coefficients between RIWSDI and SPI,
respectively. In almost all regions the correlation coeffi-
cient is high, which shows the significance of the correl-
ation between RIWSDI and SPI. Whereas some stations
show low correlation i.e. Region-2-Chitral (0.32), Drosh
(0.46) for SPI3, Region-2-Chitral (0.46), Drosh (0.48),
Zhob (0.34) for SPI-12, and Region-6-Nokkundi (0.45)
for SPI-12 as well. This shows that RIWSDI can be rec-
ommended as an alternate drought index which incorpo-
rates auxiliary information-based precipitation data for
characterization of hydrological drought. Figures 8–11
shows the plots of the chosen distributions among 32 dis-
tributions on the basis of the lower value of BIC.

3.3. Non-parametric computation

Beside of cautious determination of probability distribu-
tion, our observed findings exhibit that outliers as well as
extreme values cannot be fully capture by probability
function. Figures 8–11 reveals that for Chilas station 4 P

Table 8. Probability plotting position techniques.

No Formula (Authors) Year Description

PPP-1 Hazen 1914 P(xi) ¼ i�0.5/n
PPP-2 Weibull 1939 P(xi) ¼ i/nþ 1
PPP-3 Beard 1943 P(xi) ¼i�0.31/nþ 0.38
PPP-4 Blom 1954 P(xi) ¼i�0.375/nþ 0.25
PPP-5 Chegodayov 1955 P(xi) ¼ i�0.3/nþ 0.4
PPP-6 Tukey 1962 P(xi) ¼3i�1/3nþ 1

20 H. JIANG ET AL.



Beta distribution is the best fit with low BIC value, does
not capture uncertainty in the significant parts of the
data for SPI-3 model in Region-1. Similar results can be

seen from Figs. 8–11 in some stations. All chosen distri-
butions appeared to inefficient for coverage of extreme
records. Hence, in order to check and validate

Table 9. Non-parametric determination: correlation of RIWSDI-12 and SPI-12.

Regions Stations Hazen Weibull Beard Blom Chegodayov Tukey

Astor 0.81 0.81 0.81 0.81 0.81 0.81
Bunji 0.74 0.74 0.74 0.74 0.74 0.74

C1 Chilas 0.74 0.74 0.74 0.74 0.74 0.74
Gilgit 0.75 0.75 0.75 0.75 0.75 0.75
Gupis 0.64 0.64 0.64 0.64 0.64 0.64
Skardu 0.68 0.68 0.68 0.68 0.68 0.68
Cherat 0.75 0.75 0.75 0.75 0.75 0.75
Chitral 0.45 0.45 0.45 0.45 0.45 0.45
Dir 0.54 0.54 0.54 0.54 0.54 0.54
Drosh 0.47 0.47 0.47 0.47 0.47 0.47

C2 Kohat 0.56 0.56 0.56 0.56 0.56 0.56
Parachinar 0.67 0.67 0.67 0.67 0.67 0.67
Peshawar 0.77 0.77 0.77 0.77 0.77 0.77
Risalpur 0.72 0.72 0.72 0.72 0.72 0.72
Zhob 0.34 0.34 0.34 0.34 0.34 0.34
Balakot 0.71 0.71 0.71 0.71 0.71 0.71
Garhidupatta 0.60 0.60 0.60 0.60 0.60 0.60
Islamabad 0.65 0.65 0.65 0.65 0.65 0.65

C3 Kakul 0.82 0.82 0.82 0.82 0.82 0.82
Kotli 0.72 0.72 0.72 0.72 0.72 0.72
Murree 0.77 0.77 0.77 0.77 0.77 0.77
Muzaffarabad 0.78 0.78 0.78 0.78 0.78 0.78
Bahawalnagar 0.66 0.66 0.66 0.66 0.66 0.66
Bahawalpur 0.66 0.66 0.66 0.66 0.66 0.66
DI Khan 0.57 0.57 0.57 0.57 0.57 0.57
Faisalabad 0.56 0.56 0.56 0.56 0.56 0.56

C4 Lahore 0.73 0.73 0.73 0.73 0.73 0.73
Mianwali 0.67 0.67 0.67 0.67 0.67 0.67
Multan 0.59 0.59 0.59 0.59 0.59 0.59
Sargodha 0.63 0.63 0.63 0.63 0.63 0.63
Sialkot 0.66 0.66 0.66 0.66 0.66 0.66
Badin 0.85 0.85 0.85 0.85 0.85 0.85
Chhor 0.82 0.82 0.82 0.82 0.82 0.82
Hyderabad 0.78 0.78 0.78 0.78 0.78 0.78
Jacobabad 0.77 0.77 0.77 0.77 0.77 0.77

C5 Khanpur 0.65 0.65 0.65 0.65 0.65 0.65
Nawabshah 0.90 0.90 0.90 0.90 0.90 0.90
Padidan 0.83 0.83 0.83 0.83 0.83 0.83
Rohri 0.71 0.71 0.71 0.71 0.71 0.71
Sibbi 0.68 0.68 0.68 0.68 0.68 0.68
Dalbandin 0.72 0.72 0.72 0.72 0.722 0.72
Kalat 0.69 0.69 0.69 0.69 0.69 0.69
Khuzdar 0.82 0.82 0.82 0.82 0.82 0.82

C6 Lasbela 0.62 0.62 0.62 0.62 0.62 0.62
Nokkundi 0.44 0.44 0.44 0.44 0.44 0.44
Panjgur 0.73 0.73 0.73 0.73 0.73 0.73
Jiwani 0.78 0.78 0.78 0.78 0.78 0.78
Quetta 0.52 0.52 0.52 0.52 0.52 0.52

C7 Karachi 0.80 0.80 0.80 0.80 0.80 0.80
Pasni 0.71 0.71 0.71 0.71 0.71 0.71
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furthermore, the current study incorporates six
Probability Plotting Position (PPP) formula, see Table 8.

After standardization the vector of time series based
on the PPP, we see that RIWSDI remains aligned with
SPI. Table 9 summarizes the correlation between

RIWSDI and SPI of the non-parametric approach. There
is a highly positive correlation between the values of SPI
and RIWSDI for all the stations and their respective
regions, under different methods of non-parametric
approach, 3 out of 50 stations have weak but positive
correlation with their respective regions.

4. Conclusion

The new proposed index shows significant advantages
over the former index (SPI) by incorporating apart from
the record of precipitation, an additional meteorological
parameter as an auxiliary variable, the average tempera-
ture. It is figured that although the RIWSDI usually
responds in an identical fashion towards the SPI, it is
more delicate and appropriate in regional drought ana-
lysis. Drought is generally acknowledged as a regional
phenomenon. Even so, facts are accumulated by deter-
mined meteorological stations, which can also be
regarded as representing the regions related to them. This
study advantages drought-observing component by the
incorporation of improved precipitation series in standard
strategies of SDI technique. Whereas, improvement of the
precipitation series is derived from the use of auxiliary
information in the estimation phase of mean rainfall
amount. In this article, the simple regression and product
estimator approaches are utilized to weight the rainfall
amount of each region. Therefore, the current study pro-
posed a new regional hydrological drought index: The
Regionally Improved Weighted Standardized Drought
Index (RIWSDI). Performance of RIWSDI is evaluated
by verifying the direction of the relationship, the form
(shape) of the relationship, and the degree (strength) of
the relationship among the different values of SPI
through Pearson correlation statistics. To check out the
consistency and efficiency of the proposed index

Table 10. Shapiro–Wilk test for Region (1–5).

Time scale-3 Time scale-12

Regions Stations W p-value Med W p-value Med

Region-1 0.99 0.52 0.03 0.99 0.07 0.04
Astor 0.99 0.04 0.04 0.99 0.00 0.06
Bunji 0.99 0.051 0.02 0.99 0.00 0.03

C1 Chilas 0.99 0.00 0.001 0.97 0.00 0.12
Gilgit 0.99 0.29 0.02 0.99 0.002 0.05
Gupis 0.99 0.00 0.007 0.97 0.00 0.06
Skardu 0.99 0.002 0.04 0.99 0.03 0.03
Region-2 0.99 0.003 0.04 0.99 0.09 0.03
Cherat 0.99 0.000 0.02 0.99 0.001 0.06
Chitral 0.99 0.06 0.05 0.99 0.05 0.04
Dir 0.99 0.08 0.02 0.98 0.00 0.04

C2 Drosh 0.99 0.02 0.03 0.98 0.00 0.08
Kohat 0.99 0.005 0.01 0.97 0.00 0.07
Parachinar 0.97 0.00 0.08 0.87 0.00 0.02
Peshawar 0.99 0.13 0.04 0.99 0.004 0.06
Risalpur 0.99 0.73 0.016 0.99 0.000 0.04
Zhob 0.99 0.26 0.008 0.99 0.000 0.12
Region-3 0.99 0.78 0.03 0.99 0.001 0.001
Balakot 0.99 0.61 0.001 0.97 0.000 0.15
Garhidupatta 0.99 0.79 0.03 0.99 0.02 0.03

C3 Islamabad 0.99 0.11 0.005 0.99 0.01 0.08
Kakul 0.99 0.09 0.05 0.99 0.04 0.001
Kotli 0.99 0.49 0.05 0.99 0.001 0.03
Murree 0.99 0.06 0.004 0.99 0.005 0.02
Muzaffarabad 0.98 0.00 0.003 0.98 0.00 0.09
Region-4 0.99 0.08 0.06 0.98 0.00 0.03
Bahawalnagar 0.99 0.004 0.001 0.99 0.001 0.03
Bahawalpur 0.99 0.01 0.04 0.98 0.00 0.04
DI Khan 0.99 0.57 0.006 0.98 0.00 0.04

C4 Faisalabad 0.97 0.00 0.03 0.99 0.008 0.03
Lahore 0.99 0.06 0.04 0.98 0.00 0.08
Mianwali 0.99 0.88 0.03 0.98 0.00 0.04
Multan 0.99 0.00 0.03 0.99 0.002 0.03
Sargodha 0.99 0.22 0.34 0.98 0.00 0.01
Sialkot 0.99 0.54 0.01 0.99 0.00 0.07
Region-5 0.99 0.33 0.066 0.99 0.00 0.11
Badin 0.98 0.00 0.07 0.97 0.00 0.019
Chhor 0.98 0.00 0.15 0.95 0.00 0.06
Hyderabad 0.98 0.00 0.03 0.99 0.00 0.06

C5 Jacobabad 0.99 0.001 0.02 0.98 0.00 0.08
Khanpur 0.99 0.004 0.02 0.98 0.00 0.02
Nawabshah 0.99 0.001 0.03 0.99 0.001 0.07
Padidan 0.99 0.01 0.08 0.99 0.01 0.01
Rohri 0.98 0.00 0.20 0.99 0.00 0.98
Sibbi 0.98 0.00 0.03 0.99 0.00 0.02

Table 11. Shapiro–Wilk test for Region (6–7).

Time scale-3 Time scale-12

Regions Stations W p-value Med W p-value Med

Region-6 0.99 0.83 0.02 0.99 0.006 0.02
Dalbandin 0.99 0.00 0.23 0.97 0.00 0.07
Kalat 0.98 0.00 0.068 0.97 0.00 0.06
Khuzdar 0.99 0.12 0.04 0.98 0.00 0.04

C6 Lasbela 0.98 0.00 0.01 0.99 0.03 0.01
Nokkundi 0.97 0.00 0.64 0.98 0.00 0.008
Panjgur 0.98 0.00 0.15 0.98 0.00 0.04
Quetta 0.99 0.02 0.02 0.97 0.00 0.04
Region-7 0.99 0.33 0.06 0.98 0.00 0.12
Jiwani 0.98 0.00 0.35 0.98 0.00 0.01

C7 Karachi 0.99 0.01 0.007 0.98 0.00 0.06
Pasni 0.99 0.00 0.30 0.97 0.00 0.07
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RIWSDI, this study contains seven meteorological
regions dispersed in several climatic settings of Pakistan,
see Fig. 1. To compare and compute the values of
RIWSDI and SPI for time scale 3 and 12, estimation
methodology comprises of both the parametric Stagge
et al. (2015) and non-parametric Hao and AghaKouchak
(2014) approaches.

Comparative analysis of improved precipitation
records and simple precipitation records can be observed
from Fig. 3. A significant difference between the prob-
ability distributions of simple and improved precipitation
series can be observed from Tables 4–7, and Figs. 8–11.
As we described previously, parametric distributions
which are used to compute SPI and RIWSDI should be
capable of providing normally distributed SPI and
RIWSDI series. An SPI and RIWSDI series are consider
non-normal if the criteria given below is satisfy simultan-
eously: (a) p-values 	 0.10 and Shapiro–Wilk (W) statis-
tic lower than 0.96; (b) an absolute value of median >

0.05. Further information on W test may be found in
numerous studies including Razali and Wah (2011). W
test result can be found in Tables 10 and 11. By analyzing
Tables 10 and 11, it can be concluded and verified that
all RIWSDI and SPI for time scale-3 and 12 are normally
distributed. For example, taking the values of RIWSDI-3
and RIWSDI-12 of Region-1, all the criterion of distribu-
tion to be normal are satisfied. The confirmation of nor-
mality of RIWSDI and SPI for all other regions and the
stations included in the regions can be confirmed by analyz-
ing the results of W, p-value and absolute median of the
respective regions and stations. Moreover, on the contrary
with the standardization based on various distribution, the
pattern of the records of RIWSDI are very closed to that of
SPI (time scale 3 and 12), see Figs. 4 and 5. It can be
observed that the simple precipitation records within the
regions are relatively different, whereas it can be seen from
Figs. 6–7 that the correlations among the stations are sig-
nificantly low, whereas the correlation between RIWSDI
and SPI (time-scale 3 and 12) for different regions and the
stations within the regions are significantly high. Generally,
comparative evaluation indicates that RIWSDI is signifi-
cantly high correlated with SPI (time-scale 3 and 12) in
both standardization i.e. parametric and nonparametric.
Overall, comparative evaluation indicates that RIWSDI is
strongly correlated with SPI in each parametric and non-
parametric standardization. On the other hand, some of the
discrepancies can be observed in parametric standardization
and show low but positive correlation.

Some extreme values are addressed by incorporating
non-parametric methods for the analysis and comparison
of RIWSDI and SPI. Here, six different probability plot-
ting position formulas are used to handle the extreme val-
ues and outliers, see Table 8. Table 9 shows different

results of the correlation of RIWSDI and SPI under non-
parametric approach. It can be observed that SPI (3–12)
values of all the stations are significantly high correlated
with RIWSDI (3–12) values of the respective regions.

The foremost advantage of RIWSDI is to signify
hydrological drought primarily based on regionally
improved series of precipitation. Though, the limitation
of the current study is that RIWSDI cannot be general-
ized in the settings of multiscales (Edwards, 1997).
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Appendix

Appendix A: Standardization

This step considers a suitable transformation technique
for the standardization of the chosen CDF, as well as
all numeric vectors contains the time series records
primarily based on the PP-formula and CDF. Hence,
following the studies of McKee et al. (1993) and Ali
et al. (2017), the current research employed an
approximate transformation given in Abramowitz and
Stegun (1965) for the transformation of the CDF into
a standard normal distribution, which is as follows:

RIWSDI ¼ � zþ c0 þ c1zþ c2z
2

1þ d1zþ d2z2 þ d3z3

� �
(A1)

for z,
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z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

T ðxÞ� �2
 !vuut , 0<TðxÞ 	 0:5 (A2)

RIWSDI ¼ þ z� c0 þ c1zþ c2z
2

1þ d1zþ d2z2 þ d3z3

� �
(A3)

and also for,

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

1� T ðXÞ� �2
 !vuut , 0:5<TðxÞ 	 1 (A4)

where c0 ¼ 2.515517, c1 ¼ 0.802853, c2 ¼ 0.010328, d1 ¼
1.432788, d2 ¼ 0.985269, and d3 ¼ 0.001308 are constants.

In the above scheme,

T ðxÞ ¼ P ðxÞ if standardization is done under parametric approach
QðxÞ if standardization is done under non�parametric approach

n

here, P(x) and Q(x) are probability vectors, which are
defined respectively in Eq. (9) and in Table 8. After
standardization the records of RIWSDI will contain zero
(0) mean as well as unit (1) variance.
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