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ABSTRACT

A relationship between observed variability in large-scale climate and salinity in the German
Bight is sought using a multivariate statistical approach. It is found that on an annual timescale,
90% of the observed salinity variability is in-phase and correlated with a lag of several months
to large-scale air pressure. The statistical model is used to estimate annual salinity anomalies
from large-scale air pressure back to 1900. The correlations between estimated and observed
salinities range from r=0.4 to r=0.7, depending on the position. It is shown that advective
precipitation is the mechanism that links air pressure and salinity anomalies. Advection of
Atlantic Water has only a minor impact on the annula mean in the examined coastal zone. If
air pressure data from a climate change experiment is used as predictor, a slight drop of the
mean salinity level in the range of 0.2 to 0.3 psu is predicted for the near future.

1. Introduction disagreed on the mechanism. While Schott (1966)

found evidence that the surface salinities in the
The goal of this paper is to seek a link between entire North Sea are dominated by large-scale

salinity in the German Bight and the large-scale atmospheric advection via precipitation, Dickson
atmospheric circulation. If such a link can be (1971) believes that advection of haline Atlantic
found, it becomes possible (i) to reconstruct Waters is the main cause.
historical salinities and (ii ) to estimate the impact Despite the fact that the German Bight is a
of climate change on salinity. The reason is that coastal region with several estuaries, salinities
the large-scale features of the atmospheric circula- >34.8 psu are observed occasionally, clearly
tion are (i) well known back to 1900 (while local indicating an inflow of Atlantic Water through
data is often gappy or does not exist), and (ii ) the English Channel (Kalle, 1937; Deutsches
realistically reproduced by General Circulation Hydrographisches Institut, 1984; Becker et al.,
Models (GCMs). One reason for the interest in 1992; Becker and Dooley, 1995). Atlantic Water
salinity is that anomalies in salinity are supposed entering the North Sea from the north mainly
to coincide with observed changes in the eco- recirculates in the Dooley Current or north of
system, e.g., in species abundance and composi- the Doggerbank (Svendsen et al., 1995) and
tion (Nehring, 1994; Lindeboom et al., 1995). therefore does not influence the German Bight.

Hydrographical studies by Schott (1966) and In addition, the colonization of Atlantic
Dickson (1971) revealed a connection between zooplankton in the German Bight was observed
salinity variations in the North Sea and the after strong inflows through the Channel
atmospheric circulation, though both authors (Nehring, 1994) with significant impact on the

local fauna (Zeiss and Kröncke, 1997; Kröncke

* Corresponding author. et al., 1998).
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2. Data 2.2. Other data

Sea level air pressure on a 5°×5° grid (analysis
2.1. Salinity data

data from the National Center for Atmospheric

Research, Boulder, USA, hereafter NCAR;Monthly mean surface values from 9 light ves-
Trenberth and Paolino, 1980) are used as large-sels and the island of Helgoland are used (data
scale predictor. The selected box covers 70°W tofrom the Federal Maritime and Hydrographic
15°E and 30°N to 70°N.Agency, Hamburg, FRG, hereafter BSH). The

The climate scenario data comes from the globalpositions are shown in Fig. 1. Salinity was meas-
coupled ocean-atmosphere ECHAM3/LSGured with interruptions between 1908 and 1995.
model* with T21 resolution (#5.6°×5.6°, dataDuring this period, most light vessels were relo-
from the Deutsches Klimarechenzentrum,cated several times, leading to inconsistencies in
Hamburg, FRG, hereafter DKRZ; Cubasch et al.,the records. A homogenization is difficult, since
1995). The chosen experiment starts in 1880 andthe relocations were often only a few months
is forced with observed greenhouse-gas and aero-apart, making it impossible to check whether they
sol concentrations until 1985; afterwards the ‘busi-led to changes in the observed mean or standard
ness as usual’ scenario from the Intergovernmentaldeviation.
Panel on Climate Change (IPCC) is assumed untilTo find a statistical relationship between climate
2049. This scenario considers a yearly increase ofand salinity, only the light vessels LV Borkumriff,
CO2 by 1.3% and estimated future aerosol concen-LV Weser, LV Elbe1 and LV P11/P8 were used.
trations (Hasselmann et al., 1995).The first three were selected because they possess

To understand the physical mechanisms thatthe longest observational records, the latter was
link large-scale air pressure and salinity, the fol-included to obtain a more regular spatial distribu-
lowing datasets are used:tion of stations. The records of these 4 vessels

$ Monthly means of precipitation (data fromcontain the following obvious inhomogeneities.
NCAR). 7 stations with less than 100 missing(a) Pre-war salinity observations at LV
values between 1924 and 1988 were selectedBorkumriff are about 0.5 psu (which corresponds
(Fig. 1).to #1 standard deviation s that station) higher

$ Monthly means of river transports (data fromthan post-war observations. The reason is the
the Global Runoff Data Centre, Koblenz, FRG,relocation in March 1954, 20 km eastward from
hereafter GRDC). 5 stations were selected that

its pre-war position.
measured between 1924 and 1988 without longer

(b) In 1972 the observed mean salinity at LV
interruptions (Fig. 1).

P11/P8 increases by about 0.9 psu (#1.2s) while
$ The North Atlantic Oscillation (NAO) Index

the s decreases by about 25%. Simultaneously LV
(Hurrell, 1995). This yearly index gives the differ-

P11/P8 was moved 50km westward.
ence between the air pressure at Lisbon and

(c) At LV Elbe1 the observed pre-war salinity
Stykkisholmur (Iceland) in winter. A high index

mean is about 0.5 psu (#0.5s) lower than the
is generally associated with westerly winds and

post-war one. LV Elbe1 was withdawn in August
mild winters in Europe.

1939 and reestablished in August 1945 3km south-
$ Daily air pressure (data from NCAR) was

west from its pre-war position. Relocations within
used to estimate wind stress on the sea surface via

the same distance took place 7 times between 1924
an empirical bulk formula (Duun-Christensen,

and 1988, but the discrepancy between pre- and
1975).

post-war salinity levels is the only obvious
$ The variance of air pressure (data from

inhomogeneity in the time series of LV Elbe1.
NCAR) on the 2.5 to 6 days frequency band was

For the following calculations, the inhomogen-
calculated as a proxy for storm activity

eities at LV Borkumriff and LV P11/P8 were
(Blackmon, 1976).

roughly corrected by setting them to a constant

mean and s. The reason for the inhomogeneity at

LV Elbe1 is unknown, therefore no correction * European Center HAMburg/Large Scale
Geostrophic.was applied.
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Fig. 1. Salinity (top). Black vessels were used for the establishing of the model, white vessels for additional validation.
Dashed circles indicate the range within which relocations took place. A: LV Borkumriff, B: LV P11/P8, C: LV
Weser, D: LV Elbe1, E: LV P15/P12, F: LV Bremen, G: LV Ausseneider, H: LV Elbe4, I: LV Amrumbank, J:
Helgoland Roads. Precipitation (rain drop symbol): Aberdeen, Paris, De Bilt, Oslo, Kopenhagen, Potsdam,
Kremsmünster (from west to east). River transports (wave symbol): Montjean (Loire), Paris (Seine), Lith (Maas),
Köln (Rhein) and Intschede (Weser) (from west to east).
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3. Method lag, the model is built as follows: Firstly, Empirical
Orthogonal Functions (EOFs, also called
Principal Components) of air pressure and salinityThe steps of the applied method are as follows:

(1) A relationship is sought between the anom- anomalies are calculated. Secondly, a Canonical
Correlation Analysis (CCA) is performed betweenalies of air pressure and salinity by fitting a

statistical model for different combinations of tim- the leading EOFs of both parameters. For details

on EOFs and CCA see Preisendorfer (1988) orescales and time lags. For the fit, data from 4 light
vessels and the period 1955 to 1974 is used. Data von Storch (1995).

The characteristic of EOFs is that their leadingfrom the years 1924 to 1954 and 1975 to 1988 are

used for validation. eigenmodes (also called ‘‘patterns’’ and ‘‘time
series’’) represent the major part of the variance(2) The combination with the best skills in the

fit and the validation period is selected. of the depicted parameter. For example, the dom-

inating atmospheric mode in the selected air pres-(3) The selected model is validated with data
from 6 additional stations. sure box is the NAO, which accounts for ca. 40%

of air pressure variance in the monthly mean.(4) To find the physical explanation for the

identified relationship, associated patterns of wind, Therefore, the 1st EOF-pattern of air pressure
describes the spatial structure of the NAO, i.e.,precipitation, etc. are calculated.

(5) Large-scale pressure data from a General low air pressure at the northern stations and high

air pressure at the southern stations (or vice versa).Circulation Model (GCM) climate change experi-
ment is used as input for the statistical model. The 1st EOF-time series modulates this pattern.

Only the leading eigenmodes of air pressureThe resulting salinity estimates are compared to
historical observations with respect to changes in and salinity are used in this study for the following

reasons: Firstly, historical climate data will bemean and variability.

Details about these steps are given in the follow- used to reconstruct the salinity record. While
historical data might be gappy or inhomogeneousing subsections.
at single stations, its spatial structure can be

estimated more reliably using data from many
3.1. Searching for a relationship

stations. Secondly, GCM scenario data will be
used. Though GCMs are capable of reproducingA relationship between air pressure and salinity

was sought, using 1-, 3-, 6-, 9-, 12- and 15-monthly the main features of the atmospheric fields, their
information on single gridpoints is unreliableaverages of (i) air pressure at the 18×9 grid

points (see above) and (ii) salinity at the 4 light (Robinson and Finkelstein, 1991). Thirdly, it is

certainly not possible to reconstruct every salinityvessels LV Borkumriff, LV P11/P8, LV Weser and
LV Elbe1. Since the interannual variability is to variation at each station in detail, but it might be

possible to reconstruct the main features of thebe examined, the seasonal cycle was subtracted.

For each specific combination of seasons, a differ- variability in that area. Fourthly, the truncation
of trailing eigenmodes keeps the degrees of free-ent statistical model was built, since it is not

certain whether climatic influence on salinity is dom of the model low, minimizing the danger of

high correlations due to overfitting.constant throughout the year (for example, one
model was built between January air pressure and For air pressure, the eigenmodes were calculated

from the covariance matrix, therefore atmosphericDecember to February salinity, another model

between February air pressure and December to structures with high variance dominate the leading
eigenmodes. We expect that such structures, e.g.,February salinity). A possible delay of up to

24 months between the signal in air pressure and the NAO, will cause the largest effects on the local

climate. Four EOFs are used, which representthe impact on salinity was taken into account.
80% to 90% of monthly air pressure variability.

The eigenmodes of salinity were calculated from
3.2. T he statistical model

the correlation matrix, to account for the differ-
ences in variance between the light vessels. OnlyThe statistical model follows the idea of ‘‘statist-

ical downscaling’’ by von Storch et al. (1993). For the 1st EOF was used, that represents more than
90% of monthly salinity anomalies.each tested combination of mean, season and time
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The CCA identifies a linear combination of air [tobs−tmod]/Var[tobs], with tobs and tmod being
the observed and modeled time series, and Var[z]pressure-eigenmodes and a linear combination of

salinity-eigenmodes that are maximum correlated being the variance of z. b=1 means that model

and observation are identical, b=0 that the errorwith each other. This property allows to search
for relationships, even if it is not known for which of the model has the same size as the variance of

the observations.timescale, season and time lag they might exist.

In the following, we will refer to the correlation
coefficent r and the model error b as the ‘‘skill

3.3. Regression
factors’’ or ‘‘skill of the model’’.

Let G(x, t) and L (x, t) be the observed anomalies
of air pressure and salinity in the fitting period at

3.5. Associated patterns
station x and time t. Assume that the leading eigen-
modes of G(x, t) and L (x, t) are already known. The If it is suspected that the relationship between
CCA identifies i patterns C

i
, L

i
and i normalized predictor and predictand is indirect, associated

time series c
i
, l

i
, which are linear combinations of patterns (Heyen et al., 1996) may help to identify

the eigenmodes of G(x, t) and L (x, t). r
i

is the the missing link. The missing link should be highly
correlation between the ith pair of time series. Let correlated with the identified CCA-time series l
G∞(x, t) be air pressure data from the independent (or c). Therefore, a potential link D is tested by
period. The goal is to estimate salinity L̂ (x, t) for minimizing the Euclidean distance
this period from G∞(x, t). This is done as follows:

(1) Assume that G(x, t) and G∞(x, t) share the LD(y, t)− ∑
I

i=1
[D

i
(y)×l

i
(t)]L ,

same C. Projecting G∞(x, t) onto C, the Euclidean
distance where D(y, t) are the observations of the tested

variable at station y and time t, and D
i

is theLG∞(x, t)− ∑
I

i=1
[C
i
(x)×c∞

i
(t)]L sought associated pattern of D with respect to l

i
.

If D(y, t) is the sought link, D
i
should explain a

is minimized to calculate the new time series c∞. high amount of variance. ‘‘Explained variance’’ is
(2) Assuming that c∞

i
is correlated to a time defined analogously to b: For example, assuming

series l∞
i
in the same manner as c

i
and l

i
were, l∞

i that D consists of n stations y, the explained
is estimated as l∞

i
=r

i
×c∞

i
. variance v(y) at station y computed as

(3) If L̂ (x, t) and L (x, t) share the same L, the

best guess is v(y)=A1−Var[D(y, t)−D(y)×l(t)]

Var[D(y, t)] B×100 .

L̂ (x, t)= ∑
I

i=1
[L

i
(x)×l∞

i
(t)] .

The ‘‘explained variance of the pattern D◊ is

then v:=n−1Sn
y=1 v(y). A practical application is

The same method was used by Heyen et al.
given in Subsection 4.2.

(1996).

3.4. Selection of one specific combination 4. Results

Three criteria are used to select one specific
4.1. An optimized statistical relationship

combination of mean, season and time lag. Firstly,
a high correlation r during the fitting period The statistical model was built with 4 air pres-

sure EOFs and 1 salinity EOF. These explainis needed to indicate a possible relationship.

Secondly, a high correlation r during the valida- 80% to 95% of air pressure and salinity variance
for all tested averages and seasons. The structuretion period should exist, indicating that the rela-

tionship is stable. Finally, the error of the model of the obtained results can be seen in Fig. 2. A
high model skill is found for averages of approxi-b should be small, to ensure the model is useful

for reconstructions or predictions. b is also known mately one year or longer. A salinity mean cent-

ered around the summer months is correlated toas the ‘‘Brier-based score against the relative
climatology’’ (Livezey, 1995): b=1−Var an air pressure mean about 6 to 18 months earlier.
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Fig. 2. Skill r of the model for different combinations of averages (top to bottom: 3-, 9- and 15-month averages of
salinity; left to right: 3-, 9- and 15-month averages of SLP), salinity season (y-axis) and time lag (x-axis, negative
values mean that SLP is leading). High correlations are found for long averages. The highest correlation (arrow)
exists between a 15-month average of salinity, centered around the summer months, and a 15-month average of
SLP, approximately 12 months earlier.

Within this range, the skill of the model is rela- form sign. This means that 94% of all variability in

the annual mean occur in-phase at all 4 light vessels.tively unsensitive against the chosen season and
time lag, probably due to the long averages that The CCA-patterns (Fig. 3) show a positive pres-

sure anomaly of typically 2 hPa over Europe thatare used.

The criteria for the selection of one specific is correlated with a positive salinity anomaliy of
typically 0.5 psu in the German Bight. Table 1result are (i) a high skill and (ii ) as short averages

as possible, in order to identify the time lag and depicts the skill of the model at the 4 stations for

the fitting and the validation period. The differ-the underlying processes more precisely.

We selected a 12-month average of salinity, ences in obtained skill will be adressed in the
discussion section.centered around August, and a 9-month average

of air pressure, centered around the previous Fig. 4 shows the observed and estimated salinity

time series. The model reproduces the interannualNovember. The features of this relationship are

as follows: variability fairly well. The correlation between
estimated salinity and observation data from otherThe 4 leading eigenmodes of air pressure explain

88% of variability. The 1st leading eigenmode of stations (Fig. 5, Table 1) indicates that the major

part of the variability is in-phase across the entiresalinity explains 94% of variability and has a uni-
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associated patterns of storm activity, wind stress,

precipitation and the NAO-index are calculated

with respect to the time series of the SLP CCA-

pattern from Fig. 3.

The associated pattern of storm activity explains

only 10% of variance over Europe and the North

Atlantic. This means that the overwhelming por-

tion of storm activity is not correlated to the

occurrence of the CCA air pressure pattern from

Fig. 3. The correlation between NAO-index and

the time coefficients of the CCA air pressure

pattern is r=0.2. It can be concluded that neither

variability in storm activity, nor variability in the

NAO can explain the found relationship between

air pressure and salinity. The associated pattern

for the west-east component of the wind stress

explains 50% of variance over the English

Channel, a westerly wind stress coincides with low

salinities. The associated pattern for the north-
south component explains 70% of variance over

Fig. 3. 1st pair of CCA-patterns between July to March
the northern North Sea, a northerly wind stressair pressure anomalies (top) and of following March to
coincides with low salinities. This result is notFebruary salinity anomalies (bottom). A positive pressure
shown, since it follows from the air pressureanomaly of typically 2 hPa above northern Europe occurs

together with positive salinity anomalies of typically pattern in Fig. 3.
0.5 psu in the German Bight. The time series of both pat- The associated pattern of precipitation shows
terns are correlated with r=0.7 within the fitting period. that 72% (De Bilt), 61% (Potsdam, Kopenhagen),

32% (Oslo), 30% (Paris), 24% (Aberdeen) and
German Bight and, hence, that the estimated time

9% (Kremsmünster) of precipitation variance are
series is valid for the entire region.

associated with the air pressure pattern in Fig. 3.

The depicted anticyclone over northern Europe
4.2. Physical mechanism

coincides with low precipitation and high

salinities.To determine the causes for the statistical rela-
tionship between air pressure and salinity, the It is concluded that the anticyclonic air pressure

Table 1. r and b of the model for the fitting period (left columns), the validation period (middle columns),
and the entire period (right columns; the r and b are given for 1- and 2-year running averages); numbers
in brackets indicate the number of available years; in case of the 6 lower stations b was optimized by
multiplying the modeled salinity with a constant

Fit. period Val. period 1-yr, 2-yr averages
1955–1974 24–54, 75–88 1924–1988

LV Borkumriff 0.65/0.42 (20) 0.60/0.34 (32) 0.63/0.39, 0.76/0.54 (52)
LV P11/P8 0.75/0.53 (20) 0.47/−0.86 (10) 0.61/0.24, 0.71/0.22 (30)
LV Weser 0.53/0.24 (20) 0.46/0.06 (30) 0.51/0.22, 0.63/0.31 (50)
LV Elbe1 0.63/0.38 (20) 0.26/−0.26 (37) 0.41/0.16, 0.40/0.13 (57)
LV P15/P12 — — 0.60/0.32, 0.58/0.27 (33)
LV Bremen — — 0.62/0.33, 0.67/0.33 (21)
LV Ausseneider — — 0.54/0.16, 0.60/0.05 (17)
LV Elbe4 — — 0.53/0.22, 0.61/0.26 (20)
LV Amrumbank — — 0.50/0.21, 0.56/0.26 (17)
Helgoland Roads — — 0.52/0.24, 0.57/0.28 (66)
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Fig. 4. Estimated (thin) and observed (thick) annual salinity. The hatched area indicates the fitting period of the
model.

pattern from Fig. 3 leads to easterly winds over observations. Also, the mean salinity drops slightly
after the model year 2000.western Europe that hinder a large-scale advection

of marine air to Europe and cause reduced precip- A comparision between observed and estimated

mean and variability for different periods is givenitation (or vice versa). This connection is strongest
in the southern North Sea region. Reduced precip- in Table 2. The loss of variance is an artefact of

our model, since it occurs in the estimations fromitation leads to higher salinity levels (or vice versa).

The time lag between the occurrence of the air historical data and GCM data. The drop in the
mean after the year 2000 is due to a signal in thepressure pattern and changes in the salinity leads

to the conclusion that the impact of precipitation GCM data. Analysis of different GCMs by the

IPCC showed that these models predict anis indirect, i.e., via runoff.
This hypothesis can be proved when 12-month increase of precipitation in high latitudes in winter

(Houghton et al., 1996). Thus, the results of theaverages of river transport are correlated with the

salinity observations. The closer the river estuaries statistical model are consistent with these results.
are situated to the German Bight, the higher the
correlation and the shorter the lag (Fig. 6).

5. Discussion

4.3. Climate change scenario
Three points are addressed in this discussion:

the differences in skill for the different light vesselsThe model is capable of reconstructing interan-
nual variability, therefore it makes sense to run it and the reasonableness of the found time lag.

Finally, the presented results will be comparedwith air pressure data from a climate change
experiment in order to determine whether system- with the results of Schott (1966) and Dickson

(1971).atic changes will occur. Comparing Fig. 7 with

Fig. 4 it can be seen that the estimated salinity Diffferences in skill (between r=0.7 and r=
0.4, depending on the station) show that localtime series has a smaller variance than do the

Tellus 50A (1998), 4
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Fig. 5. Estimated (thin) and observed (thick) annual salinity. The scale of the y-axis varies.

salinity variations exist beside the simultaneous body is moved by winds and tides. In addition,

any relocation causes inhomogeneities. Hence,rise and fall. We think that local orography and
dynamics lead to these differences: Some of the salinity records from different stations contain

different processes and possess a different degreestations, e.g., LV Borkumriff, are situated in a

well-mixed water mass, hence, advection by winds of homogeneity.
The length of the found time lag leads to theand tides or even modest relocations do not

disturb the measurements much. Other stations, conclusion that precipitation effects the salinity

indirectly via river discharge. Fig. 6 shows that asuch as LV Elbe1, are situated within the inner
German Bight where mesoscale eddies and frontal signal in the transport needs several months to

reach the German Bight. This is reasonable, sincesystems with high horizontal gradients up to
0.4 psu/km occur (Dippner, 1992 and 1995). LV in the near-coastal zone the signal travels with the

speed of the tidal residual current, which is typic-Elbe4 is situated in an estuary with no mesoscale

eddies, but high gradients. High gradients cause a ally 1 cm/s to 2 cm/s (Maier-Reimer, 1977) and
several 100km lie between the river estuaries andhigh variability in the measurements if the water

Tellus 50A (1998), 4
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the German Bight. Another factor of delay may
be that winter storage as snow delays the runoff

of precipitation into the rivers.

It should be noted, too, that the found lag is

only a rough estimation. The signal in Fig. 2 is
fuzzy and high skills can be obtained for a couple

of neighbouring combinations. The reason is prob-

ably that the precipitation signal reaches the

German Bight with different delays, depending on

the traveled distances. The different delays explain,

too, why an annual average was necessary to
Fig. 6. Correlation r between annual means of observed detect the signal.
transport and salinity in dependence from the distance Schott (1966) estimated the quantities of
between estuary and German Bight ( y-axis) and time lag Atlantic advection, freshwater advection, precip-
(x-axis, negative values mean that river transport is lead-

itation and evaporation for different regions in theing). The shorter the distance, the higher the correlation
North Sea. In addition, he cross-correlated salinityand the shorter the lag.
anomalies in different regions with each other and

with river runoff, precipitation and the west wind

Fig. 7. Estimation of annual mean salinity anomalies (against the mean of the fitting period) at LV Borkumriff for
the climate change scenario ‘‘business as usual’’. The thick line represents the 10-year running mean. The given years
are model years and cannot be transferred to calendar years.

Table 2. Mean and standard deviation (upper and lower value) of the observed and estimated salinity
anomaly

Model (GCM)
Observed Model
1924–1988 1924–1988 1880–1930 1939–1989 1999–2049

LV 0.04 0.07 0.00 0.02 −0.14
Borkumriff 0.38 0.26 0.25 0.25 0.27

LV 0.13 0.08 0.00 0.02 −0.16
P11/P8 0.50 0.29 0.28 0.29 0.31

LV 0.09 0.10 0.00 0.02 −0.18
Weser 0.48 0.33 0.32 0.32 0.35
LV −0.02 0.13 0.00 0.03 −0.25

Elbe1 0.66 0.46 0.44 0.45 0.49

The reference level for the salinity anomalies is the fitting period; the negative mean at LV Elbe1 during the
observation period is the result of the discussed inhomogeneity. The change in sign for the mean salinity after the
model year 2000 is obvious.
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component. He found correlations between river pattern may be partly explained by the fact that
Dickson used a preclassified pattern (Namias,runoff and long-term salinity anomalies across the

entire North Sea. This led him to the conclusion 1964 and 1965), while the CCA-pattern is optim-

ized. Partly it may be due to the fact that Dicksonthat the observed anomalies in the surface salinity
are driven primarily by large-scale precipitation used charts of the 500 mbar and 700 mbar level

and had to guess the surface displacements of thethat are induced by anomalies in the west wind

component. Dickson (1971) presented a specific troughs and ridges, since no surface charts were
available at his time.atmospheric circulation pattern with a trough

centered over the North Atlantic and a ridge over To conclude, the identified CCA-pattern rather

supports Schotts’ theory of increased westernwestern Europe that occurred together with
increased salinity levels in the North Sea. He advection. Also, the increasing lag in the correla-

tions between salinity anomalies and river dis-argues that this pattern causes the advection of

more (or more haline) Atlantic Water to the North charges (Fig. 6) shows that freshwater impact on
salinity is strong, what supports Schott, too.Sea. Since he found an increased lag for salinity

anomalies from the English Channel to the However, since the presented model was optimized

for stations that lie mainly between the coast andGerman Bight, he concluded that oceanic advec-
tion dominates the long-term salinity anomalies the tidal mixing front, it allows no general conclu-

sions about other regions in the North Sea.in the entire North Sea.

The air pressure CCA-pattern identified in this
study (Fig. 3) is different to the the pattern of

Dickson (1971). One difference is the position of 6. Acknowledgements
the isobars above the English Channel. While in
Dicksons’ pattern anticyclonic activity above west- The authors are indebted to Hans von Storch

and Eduardo Zorita for the fruitful discussionsern Europe favours a geostrophic transport
through the Channel into the North Sea, anitcy- shedding light on new aspects on the above

subject. Thanks to E. Schamidatus (BSH),clonic activity in Fig. 3 will rather block an

inflow — as the associated patterns revealed, more Dr. W. Grabs (GRDC) and Dr. J. Hurrel (NCAR)
for their unbureaucratic provision of data. Finally,than 50% of variance of westerly wind stress over

the English Channel and northerly wind stress many thanks to the unknown crews who took the

samples under all weather conditions. The projectover the northern North Sea are associated with
lower salinities, contradicting the theory of advec- was funded by the European Community under
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