
The impact of climate indices on precipitation
variability in Baluchistan, Pakistan

By ERUM AAMIR�, and ISHTIAQ HASSAN, Civil Engineering Department, CUST,
Islamabad, Pakistan

(Manuscript Received 5 May 2020; in final form 3 October 2020)

ABSTRACT
Pakistan’s biggest province in terms of area, Baluchistan appears to have been affected from the climate
variability since last few decades. No substantive research works have been carried out in analyzing the
precipitation variability in Baluchistan and linkage to large-scale teleconnection. The goal of this paper is to
determine possible linkages of precipitation with large scale atmospheric and oceanic circulation indices in
the months which have shown changes in precipitation trends in Baluchistan. These climate indices may be
the possible predictors for the precipitation in Baluchistan in the respective months. Mann-Kendall (MK)
statistical test was used to identify the monthly significant precipitation trends in thirteen meteorological
stations located in four regions of Baluchistan. The noteworthy trend out of significant trends is selected
using Theil and Sen’s slope (TS). Decreasing trend is identified in January whereas increasing trend is
identified in June mostly in stations located in North Eastern region of Baluchistan (Region1). The changes
in the significant trend in January and June under the influence of climate indices are then determined by
Partial Mann-Kendall (PMK). Empirical Orthogonal Function (EOF), Principal Component Analysis (PCA),
correlation technique between Principal Components (PC) of Region1 precipitation and climatic Indices are
used to filter out the relevant climatic indices. It is found out that North Atlantic Oscillation (NAO),
Equatorial Indian Ocean Zonal Wind Index (EQWIN), ENSO Modoki Index (EMI) on annual scale whereas
Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO) on decadal scale are
influencing the January precipitation. It is also found out that El Nino Southern Oscillation-Multivariate
ENSO Index (ENSO-MEI), EMI, NAO, PDO and AMO are influencing the June precipitation. These are
the dominating indices explains the precipitation variability in January and June in this Region1. This
research will impart awareness in the society from the impact of precipitation trend variability.
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1. Introduction

Numerous studies have been done on the climate of
Pakistan; however, it is not significant as compare to
Pakistan’s vulnerability to get affected from adverse cli-
mate change (Eckstein et al., 2019; Jamro et al., 2019;
Naz et al., 2020). According to Global Climate Risk
Index (GCRI) report Pakistan is not only among the
most vulnerable countries but its vulnerability is also
increasing with the passage of time. GCRI report 2020
has upgraded Pakistan from 8th position to 5th position
as the most affected and most vulnerable country
(Eckstein et al., 2019). Furthermore, the report states that
Pakistan has lost 9,989 lives, faced financial loss of $3.8
billion and confronted 152 extremes events from

1999–2018, yet not enough measures are taken by the
concerned to handle the challenge and associated
risks ahead.

Precipitation and droughts around the globe are
strongly related to climate indices through atmospheric
linkages or teleconnection (Jamro et al., 2019; Naz et al.,
2020). Throughout the world, these climate indices link
nearby regions predominantly through large scale, Qausi
stationary atmospheric Rossby waves, as a result of
which some regions receive more precipitation or are hot-
ter than the prevailing global scale changes (IPCC, 2014).
One of the main reasons for climate variation is due to
large scale ocean circulations, atmospheric circulations,
moisture transportation and heat fluxes. Large scale
ocean circulations are studied under the influence of tele-
connections (Wallace and Gutzler, 1981; Tomingas, 2002;�Corresponding author. e-mail: Erum21@hotmail.com
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Afzal et al., 2013; Athar et al. 2015; Dogar et al. 2019)
which shows the oceanic and atmospheric pattern of our
climate (Vermeer and Rahmstorf, 2009; Lucas-Picher
et al., 2011). Study of teleconnections patterns, its evolu-
tion and influence yields better interpretation of climate
change (Verworn et al., 2008; Chaouche et al., 2010;
Krichak et al., 2014; Iqbal and Athar, 2018). Some of the
climatic indices that are known to affect Pakistan’s cli-
mate are North Atlantic Oscillation (NAO), Arctic
Oscillation (AO), Atlantic Multi-decadal Oscillation
(AMO), Indian Ocean Dipole-Dipole mode index/Indian
Ocean Dipole-Equatorial Indian Ocean Zonal wind index
(IOD-DMI/IOD-EQWIN), Pacific Decadal Oscillation
(PDO) and El Ni~no Southern Oscillation (ENSO) includ-
ing Multivariate ENSO Index/ENSO Modoki Index
(ENSO-MEI/EMI) (Bastiaanssen and Ali, 2003; Webster
et al., 2011; Liu et al., 2012; Ahmad et al., 2015; Athar,
2015; Iqbal and Athar, 2018).

Mann Kendall (MK) test was extensively used in previ-
ous studies for identifying trend. It is well established
statistical test to find the precipitation trends on monthly,
seasonal, and annual scales in climatology (Latif et al.,
2016). Ahmad et al. (2015) studied precipitation trends
on Swat river basin by using MK test and Spearman’s
rho test. Iqbal and Athar (2018) also selected MK test
for trend analysis and most recently Naz et al. (2020)
used MK test to find the drought trends in Baluchistan.
The changes in precipitation’s trends in the presence of
climate indices are determined by using Partial Mann-
Kendall, which is the best one step method that do the
adjustment for the covariate and trend detection at the
same time (Abraham et al., 2001; Burn and Elnur, 2002;
Libiseller and Grimvall, 2002; Yue et al., 2002; Libiseller,
2004; Machiwal and Jha, 2009; Scarpati et al., 2011; Liu
et al., 2012; Yang et al., 2012; Ahmad et al., 2015; Hajani
et al., 2017).

Furthermore, Empirical Orthogonal Functions (EOFs)
and Principal Component Analysis (PCA) are used in
several studies for computing the influence precipitation
variability and link to large-scale dynamics on Pakistan
(Hannachi et al., 2007; Ahmad et al., 2015; Latif et al.,
2017; Myoung et al., 2018). Haroon and Rasul (2009)
used PCA, they identified the major modes of oscillation
present in Outgoing longwave radiation (OLR) data dur-
ing the summer season and inter-annual variability of
summer precipitation over Pakistan. They also suggested
that OLR has strong negative correlation with leading
PC of summer precipitation, which is an indication of
presence of clouds. Ahmad et al. (2015) used EOF tech-
nique to find out the relation of Winter Spring
Precipitation (WSP) index with atmospheric circulations
and global sea surface temperature. They found out that
the positive (negative) NAO mode strengthens/weakens

WSP in Pakistan. ENSO, NAO and AO could be poten-
tial predictors for WSP in Pakistan. In another research
vertically integrated moisture movement over Arabian sea
was studied by using EOF, which shows distinct increas-
ing/decreasing pattern of Monsoon rainfall over South
Asia and particularly over Pakistan. Conclusion was fur-
ther validated when dipole pattern was obvious over the
region by regression analysis (Latif et al., 2017).

Studies emphasize that ENSO and NAO have affected
the weather of Pakistan regionally and locally. It was sug-
gested that the impact of ENSO has increased as com-
pared to NAO (Yadav et al., 2009). ENSO has
substantial influence on Hadley and Walker circulation.
ENSO induced strengthening and weakening of Hadley
cell causes significant impact over South Asia Monsoon
precipitation (Dogar et al., 2017). Iqbal and Athar (2018)
investigated the influence (IOD, NAO, AO, ENSO, PDO,
AMO, and QBO) over Pakistan by Pearson’s correlation
at 5%, 10% and 15% significant level. They found out
that on monthly basis IOD has very strong to strong cor-
relation with precipitation in Baluchistan, AO has strong,
and PDO has moderate correlation in Baluchistan. AMO
has moderate correlation on annual basis and ENSO has
very strong correlation but on seasonal basis. A recent
study on ENSO Modoki was carried out using ICTP-
AGCM (SPEEDY), study reported that ENSO Modoki
has substantial influence not only over South Asian
Region, but also on Pacific, Atlantic, North American,
South American and African Regions. The positive/nega-
tive Phase of ENSO (EL-Nino/La Nina) encourageous/
discourages Hadley Cell, which consequently has signifi-
cant impact on South Asian Region (Dogar et al., 2019).
Adnan et al. (2020) used highly correlated PCs to input
in multiple regression model to study the variability and
predictability of Monsoon precipitation over Pakistan on
inter- and intra-annual basis. The model proficiently vali-
dated the result for 2014–2015 and produced profound
outputs in predicting inter-annual Monsoon precipitation.
No study has been carried out using DMI and EQWIN
climate indices, this research gap has been addressed in
the study fervently.

This research is focused on the variability of precipita-
tion trend in Baluchistan, through statistical analysis and
validated it through advanced Empirical Orthogonal
Functions (EOFs) approach. The study area i.e.
Baluchistan is selected for this investigation as it is the
most vulnerable province among all the four provinces of
Pakistan (Jamro et al., 2019; Naz et al., 2020), faced
many severe droughts (Ashraf et al., 2014; Ashraf and
Ashfaq, 2017), and is already under drought warning by
Pakistan metrological department (Islamic Relief
Pakistan, 2018). Recently few drought studies have been
conducted on Baluchistan, but no focused study has been
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carried out on the precipitation variability and its link to
large scale dynamics. Additionally, it is worth noting that
substantial length of China Pakistan Economic Corridor
(CPEC) and Gwadar port is also located in this province,
such overlook might put CPEC, Gwadar port, foreign
investment of $62 billion and infrastructure of this prov-
ince at risk (CPIC Global, 2020).

2. Methodology

2.1. Study area

Baluchistan is the biggest province of Pakistan, covering
an area of 347,200 square kilometers which is nearly 45%
of Pakistan’s totals land area (Shahid et al., 2004; Ashraf
and Ashfaq, 2017) and forms the southwestern part of
the country as shown in Fig. 1. Baluchistan is arid, rug-
ged with both plain and mountainous areas (Butt and
Iqbal, 2009; Ali et al., 2020). The climate is hot desert
type with extreme heat and cold. The study area is div-
ided into 04 climatic regions as shown in Fig. 1.

The weather of Pakistan is mainly affected by
Monsoon and the Western Disturbance (Salma et al.,
2012). Western Disturbances, the low-pressure cells in the
Westerlies, are the source of moderate to light showers in
southern areas of the country while heavy to moderate

showers with substantial snowfall in the northern areas of
the country occurs in the winter months typically. In
almost whole Pakistan excluding Chitral, Gilgit–Baltistan,
Western KPK and Western Baluchistan, Monsoon occurs
in summer from June till September (Maida and Ghulam,
2011; Hanif et al., 2013; Hussain and Lee, 2014). These
monsoon rains are heavy in nature and can cause signifi-
cant flooding if they interrelate with western disturbance,
especially in the Northern areas of the country. Tropical
Storms usually form in pre-monsoon months from late
April till June and then from September till November
mainly affect the coastal areas. The weather of
Baluchistan is mainly affected by Western Disturbances
in winter and spring months. It is less affected by
Monsoon in summers and to some extent with tropical
storms in coastal areas in autumn (Ahmed et al. 2015;
Ashraf and Routray, 2015; Aamir and Hassan, 2018;
Gadiwala and Burke, 2019). Furthermore, contemporary
significance of Baluchistan is far more than ever before
due to Gwadar port that is the crown jewel of CPEC pro-
ject. Additionally, a considerable portion of land routes
of One Belt One Road (OBOR) and of CPEC is also
stretches through Baluchistan terminating at the port.
Therefore, conducting precipitation trend analysis on the
study area is of utmost significance in this day and age.

Fig. 1. Study area and location of selected PMD stations in Baluchistan with regional distribution (Pakistan Climate Map, 2013).
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2.2. Data sources and data processing

2.2.1. Precipitation data. Monthly Precipitation data in
millimeters, for this research was acquired from Pakistan
Meteorological department (PMD). Thirteen stations
namely Barakhan, Dalbandin, Jiwani, Kalat, Khuzdar,
Lasbella, Nokkundi, Ormara, Pasni, Punjgur, Quetta,
Sibbi and Zhob throughout Baluchistan were chosen
based on authentic source, completeness and availability
of data. The distribution of stations in different climatic
regions within Baluchistan is shown in Fig. 1. The Study
period constitute of forty-one (41) years from 1977 to
2017 for the selected stations in Baluchistan. Data col-
lected from PMD was on the monthly basis in (mm/
month) for each of the weather stations and was con-
verted into monthly means. The average monthly and
annual precipitation within the study period is tabulated
below in Table 1.

Western parts of Baluchistan such as Dalbandin,
Jiwani, Kalat, Nokkundi, Ormara, Punjgur, Pasni,
Quetta receives most of its precipitation in Winter Season
due to the western disturbance and Eastern parts of
Baluchistan such as Barakhan, Khuzdar, Lasbella, Sibbi
and Zhob receives its most of the precipitation in
Monsoon Season (Table 1). Stations close to coastal
areas also receives scattered precipitation in the post
Monsoon season when continental air prevails.2.2.2.
Teleconnections and climatic indices

The Large-scale teleconnections (teleconnections) are
the spatial pattern in the stratosphere, showing the
atmospheric and oceanic circulation. They are responsible
for remote connection between weather/climate anomalies
over large distances around the globe (Feldstein and
Franzke, 2017). Teleconnections are persistent, they can
last for short as well as long duration like one to two
weeks or, inter-annual to decadal. Climatic indices are
the diagnostic quantitative representation of large-scale
circulation and teleconnection patterns. Climatic index of
teleconnection patterns NAO, AO, AMO, IOD-DMI,
IOD-EQWIN, PDO, ENSO-MEI, ENSO MODOKI
(ENSO-EMI) known to have affected the precipitation in
the study area through teleconnection (Liu et al., 2012;
Afzal et al., 2013; Athar, 2015; Iqbal and Athar, 2018)
are considered. Data of climate Indices are downloaded
from NOAA-ESRL Physical Sciences Division (https://
www.esrl.noaa.gov) except IOD which is downloaded
from JAMSTEC (http://www.jamstec.go.jp/aplinfo/sin-
texf/e/index.html) and listed in Table 2. The brief descrip-
tion of the climate indices is provided in the following
paragraph whereas the domain used to define the telecon-
nection pattern is provided in Table 2.

The North Atlantic Oscillation (NAO) index is based
on the sea-level surface pressure anomaly between the
Subtropical (Azores) High and Sub polar (Iceland) Low.
In the positive (stronger) phase above-normal pressure

Table 1. Average precipitation from 1977–2017.

Red color shows the histogram of monthly precipitation among stations, brown color shows the histogram of monthly precipitations
among region, green color shows seasonal whereas blue color shows annual precipitation.
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over the Azores and below normal pressure over Iceland
prevails. In negative phase weak high pressure over
Azores and weak low pressure over Iceland prevails. The
Positive phase leads to increased westerlies which follows
the northern track resulted in cool summers and mild,
wet winters in Central Europe. The negative phase of
NAO leads to suppressed westerlies, and as a result
northern European area suffer cold dry winters. The
storms track southwards toward the Mediterranean Sea
and much into northern Asia.

The Arctic Oscillation (AO) is a form of atmospheric
circulation over the Northern Hemisphere, particularly
from mid-to high. In positive phase low air pressure on
the Arctic and high air pressure over the Atlantic Oceans
and Northern Pacific is observed. The regions on the
mid-latitudes experience less cold air outbreaks (CAOs).
Positive phase is associated with strong polar vortex
which constrained the cold Arctic air to North. Jet
stream remains zonal and storm tracks in North East dir-
ection. During the negative phase, higher air pressure on
the Arctic and lower air pressure over the Atlantic
Oceans and Northern Pacific is observed. Negative phase
is associated with weaker polar vortex allows the cold air
to invade USA and Europe. The regions on mid-latitudes
can undergo waves of chilly air. Jet stream takes more
meridional path with trough over USA/Europe and crest
over North Atlantic. Storms follows more direct and East
ward path often called Nor’easters.

The Atlantic Multi-decal Oscillation (AMO) is charac-
terized by an SST anomaly in the North Atlantic and con-
sists of the warm phase and cool phases with periods of
20–40years approximately. From early 1960s to the mid
1990s AMO index shows a relatively cool phase, and from
1997 AMO has been in a warm phase. AMO has positive
correlation with the monsoon rainfall. The AMO may influ-
ence the monsoon through the summer North Atlantic oscil-
lation (NAO) and further through the equatorial zonal

winds increasing the moisture flow over the sub-continent
region by enhancing the southwesterly flow.

The Dipole Mode Index (DMI) is the ocean segment of
Indian Ocean Dipole (IOD) and depends solely on Sea
Surface Temperature (SST) inconsistencies. DMI esti-
mates the contrast between SST peculiarities in 02 locales
of IOD: West Equatorial Indian Ocean (WEIO), 50�E-
70�E and 10�S-10�N and East Equatorial Indian Ocean
(EEIO): 90�E �110�E and 10�S-0�. During the positive
phase, water in the eastern region is cooler and it is
warmer in the western Indian Ocean as compared to the
usual temperature. This positive phase benefits the sub-
continent region by directing Monsoon towards it.
During the negative phase, water in the eastern region is
warmer and it is cooler in the western Indian Ocean as
compared to usual the temperature. This negative IOD
has been found over the study area during several dry
spell years.

Equatorial Indian Ocean Oscillation (EQUINOO) is
the atmospheric segment of IOD and is the fluctuation of
atmospheric cloudiness between the Eastern Equatorial
Indian Ocean (EEIO) & Western Equatorial Indian
Ocean (WEIO). The index that describe EQUINOO is
EQWIN which is the negative of the standardized zonal
wind anomaly over the Central Equatorial Indian Ocean
(CEIO) region. The EQWIN index is highly correlated
with the difference between the OLR of WEIO and
EEIO. In the Positive phase of EQUINOO, enhanced
cloudiness is observed over the WEIO as compared to
the EEIO and was favorable to the Monsoon. A favor-
able EQUINOO is believed to have effects on the influ-
ence of the El-Nino through tele-connection.

The periodic variability every 2 to 7 years in sea surface
temperature (El Ni~no) and the air pressure of the super-
imposing atmosphere (Southern Oscillation across the
equatorial Pacific Ocean is called ENSO. El Ni~no and its
contrary La Ni~na both have a disturbing effect on

Table 2. Description of climate indices.

Climate indices Source Domain to define index

NAO www.esrl.noaa.gov Icelandic Low: 50N-320, 55N-320; 75N-360, 70N-360; approx.
Azores High: 25N-315, 30N-315, 45N-355, 50N-355; approx.

AO www.esrl.noaa.gov Artic Poles; North of 20N
AMO www.esrl.noaa.gov 0-60N; 280–360 approx.
DMI www.jamstec.go.jp/aplinfo/sintexf/e/index.html EEIO; 0-10S; 90–110

WEIO; 10N-10S; 50–70
EQWIN www.esrl.noaa.gov CEIO: 5N-5S; 60–90
ENSO-MEI www.esrl.noaa.gov 30N-30S; 100–290
ENSO-MODOKI www.esrl.noaa.gov MODOKI-A (Right): 10N-10S; 165–240

MODOKI-B (Center): 5N-15S; 250–290
MODOKI-C (left): 20N-10S; 125–145

PDO www.esrl.noaa.gov Pacific Ocean; North of 20N
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Monsoon Climatic condition in many different parts of
the world as well. Tropical Pacific’s 6 important parame-
ters, namely sea surface temperature (S), sea-level pres-
sure (P), surface air temperature (A), zonal (U) and
meridional (V) components of the surface wind and lastly
the total cloudiness fraction of the sky (C) combine
together to form the Multivariate ENSO Index MEI,
which incorporates most information than any
other indices.

ENSO Modoki Index (EMI-MODOKI) describe the
distinctive SST anomalies in tropical Pacific Ocean. It has

two phases La Nina Modoki: colder central Pacific
flanked by warm eastern and western Pacific, El Nino
Modoki: warm anomaly of the central Pacific when bor-
dered by cold anomalies on both east and west sides of
the ocean. Latest research reveals that ENSO Modoki
has distinct teleconnections that has far flung reaching
influences. It even affects the precipitation over sub-con-
tinent and South Africa.

The Pacific Decadal Oscillation (PDO) is the common
climate disparity in the SST and SLP of the Pacific basin
adjacent to North America. It has two phases: warm or

Table 3. Monthly significant increasing (decreasing) trends in precipitation – individual stations.

Stations Parameters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Barakhan S �177 �70 �144 �57 �1 175 �76 44 �79 7 �211 �74
p 4.62% 43.14% 10.57% 52.20% 99.10% 4.93% 39.33% 62.12% 37.49% 93.32% 1.07% 38.76%
TS �0.205� �0.206 �0.478 �0.187 0.000 0.832� �0.767 0.354 �0.291 0.000 0.000 0.000

Dalbandin S �132 �43 �79 �53 �98 �21 �42 �67 13 �24 �91 �208
p 13.74% 62.70% 37.29% 54.73% 22.36% 76.83% 49.35% 27.46% 74.52% 71.94% 23.49% 1.64%
TS �0.240 �0.027 �0.113 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 �0.051

Jiwani S �13 �158 �72 �93 �30 �59 �34 �58 0 �32 �72 �245
p 88.23% 6.31% 39.71% 19.20% 20.49% 30.99% 57.93% 41.59% 0.00% 48.30% 24.04% 0.37%
TS 0.000 �0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 �0.074

Kalat S �43 47 28 �35 23 68 �167 �68 9 �68 66 �114
p 62.89% 59.72% 75.22% 69.12% 78.48% 39.87% 5.41% 43.02% 89.95% 28.97% 42.94% 18.86%
TS �0.079 0.130 0.004 0.000 0.000 0.000 �0.117 0.000 0.000 0.000 0.000 �0.049

Khuzdar S �97 �67 28 �47 28 31 �20 �59 30 �93 �151 �178
p 27.45% 45.12% 75.27% 59.65% 75.21% 72.56% 82.22% 50.75% 73.06% 21.50% 6.45% 4.01%
TS �0.117 �0.242 0.092 �0.011 0.000 0.000 �0.067 �0.380 0.000 0.000 0.000 �0.094

Lasbella S 9 �120 58 41 133 78 �92 �60 105 �84 �90 �57
p 91.68% 16.84% 50.54% 63.79% 13.09% 37.58% 29.86% 49.69% 16.15% 23.88% 19.32% 39.36%
TS 0.000 �0.046 0.000 0.000 0.292 0.004 �0.225 �0.150 0.000 0.000 0.000 0.000

Nokkundi S 62 8 �2 12 20 59 �48 �63 0 39 �26 �72
p 47.94% 92.72% 98.19% 87.98% 77.89% 24.13% 34.06% 11.52% 0.00% 52.48% 68.56% 37.15%
TS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ormara S �19 �28 �73 �67 �205 108 82 66 5 �407 �20 �19
p 82.81% 74.38% 37.14% 31.60% 0.63% 7.82% 30.15% 35.46% 92.09% 0.01% 69.13% 82.32%
TS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 �0.005 0.000 0.000

Panjgur S �28 �93 �56 �32 135 18 �195 �78 �5 �76 �90 �176
p 75.17% 29.40% 52.60% 70.43% 8.89% 80.07% 2.28% 31.75% 93.79% 13.13% 17.80% 3.51%
TS 0.000 �0.131 �0.019 0.000 0.000 0.000 �0.083 0.000 0.000 0.000 0.000 0.000

Pasni S �52 �64 �60 0 �35 15 10 �116 6 �50 49 �91
p 55.68% 46.03% 48.35% 100.00% 38.15% 81.53% 89.61% 12.19% 89.54% 27.30% 42.43% 28.44%
TS �0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Quetta S �224 �44 �157 130 165 206 �33 �12 153 8 76 �169
p 1.19% 62.11% 7.78% 14.38% 6.07% 1.26% 70.15% 88.99% 3.14% 91.50% 37.77% 5.74%
TS �1.223� �0.265 �0.966 0.200 0.019 0.000 0.000 0.000 0.001 0.000 0.000 �0.543

Sibbi S �69 23 �91 �42 154 186 22 21 153 �57 �61 �63
p 43.55% 79.55% 30.66% 62.80% 6.78% 2.59% 80.46% 81.35% 6.70% 32.66% 43.44% 45.50%
TS �0.031 0.000 �0.185 0.000 0.000 0.000 0.042 0.069 0.000 0.000 0.000 0.000

Zhob S �201 �19 �132 �39 38 161 56 �122 77 �38 �39 �160
P 2.39% 83.08% 13.81% 66.12% 66.85% 7.04% 52.93% 17.06% 38.20% 61.98% 64.03% 6.63%
TS �0.417� �0.029 �0.655 �0.078 0.044 0.250 0.264 �0.559 0.029 0.000 0.000 �0.056

Figures in bold represents significant correlations at 5% confidence level. � shows noteworthy Theil Sen Slope (TS). Where S is Mann
Kendall statistic, p is significance probability (p-value) and TS is Theil Sen Slope.
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cold that may last for 20 to 30 years. During positive
phase SLPs are below average over the North Pacific or
SSTs are inconsistent cool in the interior North Pacific
and warm along the Pacific Coast of North America.
During negative phase SLPs over the North Pacific is
above average or warm SST anomalies in the interior and
cool SST anomalies along the North American
coast prevails.

2.2.3. Climate variables. Atmospheric and oceanic cli-
mate variables such as Sea Surface Temperature (SST),
Sea Level Pressure (SLP), Zonal Winds at surface (ZW-
Surface) and Geo-potential Heights at 500 hpa level
(GPH500) are considered to determine Empirical
Orthogonal Maps (EOF) and their relationship with the
precipitation variability. HADISST v1.1 1� 1 degrees
gridded data are downloaded from Met Office Hadley
Center (https://climatedataguide.ucar.edu/climate-data/sst-
data-hadisst-v11.) whereas NCEP/NCAR Reanalysis
2.5� 2.5 degree gridded data of SLP, GPH, Zonal Wind
and OLR are downloaded from the NOAA-ESRL
Physical Sciences Division website (https://www.esrl.
noaa.gov).

2.3. Statistical analysis

Trends are examined using Mann-Kendall Tests in the
monthly time series precipitation data of each of 13 sta-
tions. The slope of the trend is calculated using Theil
Sen’s Slope which is recommended for metrological ana-
lysis (Gujarati, 2009). The influence of climate indices
on precipitation trends is assessed by the Partial Mann-
Kendall test. The analysis is performed on individual
stations for monthly time series data. Empirical
Orthogonal Function (EOF) and principal component
analysis (PCA) is used for calculating the precipitation
variability in Baluchistan Region. The association
between precipitation-climate indices and precipitation-
climatic variables is determined by Pearson’s correlation
(Zhang et al., 2017).

2.3.1. Mann-Kendall for trend detection. The Mann-
Kendall (MK) test was largely used in identifying trends
in climate variables (Libiseller and Grimvall, 2002;
Bastiaanssen and Ali, 2003; Arif et al., 2004; Webster
et al., 2011; Kreft and Eckstein, 2013; Ahmad et al.,
2015; Eckstein et al., 2019; Naz et al., 2020). The MK
test is a non-parametric test based on ranks and is not
sensitive to sudden breaks in the uneven data. The rea-
sons for adopting the Mann-Kendall test is that it is
strong and insensitive to the data with gaps and best for
the data that is not normally distributed. The MK test is
one of the strong methods of identifying monotonic

trends in precipitation data where the data is skewed and/
or where data is either consistently increasing or decreas-
ing in a time series and is not suitable when there are
recurring trends. The Mann-Kendall statistic Sx of the
series x is given (Yue et al., 2002) as:

Sx ¼
Xn�1

i�l

Xn
j¼iþl

sgnðXj � XiÞ

sgnðXj � XiÞ ¼
þ1 ðXj � XiÞ > 0

0 if ðXj � XiÞ ¼ 0

�1 ðXj � XiÞ < 0

8>><
>>:

where, i and j are the rank of observation of the Xi and
Xj of the time series. The variance associated with Sx is
given as

Var ¼ nðn� 1Þð2nþ 5Þ �Pg
i¼1 tiðti � 1Þð2ti þ 5Þ

18

where g is the groups of tied rank and t is ties in the
group. For a sample size of n> 10 or larger, the MK sta-
tistics Zmk is computed by

Zmk ¼
Sx�1
r

Sxþ1
r

0

for Sx > 0

for Sx < 0

for Sx ¼ 0

8>><
>>:

Positive Zmk values show increasing trends, while nega-
tive Zmk values reflect decreasing trends. If jZmkj is
greater than Z1-a/2 for the chosen value of significance
level (a) then the trends are considered significant or
when p-value is smaller than the significance level (a), the
null hypothesis (Ho) of no trend is rejected in favor of
the alternative hypothesis (Ha) and the trend is consid-
ered as a significant trend in the time series. Z1-a/2 and p-
value are obtained from the standard normal distribu-
tion table.

2.3.2. Theil Sen’s slope (TS). TS is used to compute
the magnitude of the trend. It is more robust than the lin-
ear regression since it limits the influence of outliers and
performs better even for the case of normally distributed
data (Gujarati, 2009; Chervenkov and Slavov, 2019).
According to TS method, the overall slope S� is the
median of N values of slope S and is given by

S� ¼ SNþ1

2
, If N is odd

S� ¼
SN

2
þ SNþ2

2

2
, If N is even

where, S is the slope between any two values of a time
series x. For a time series x having n observations, there
are a possible N¼ n�(n-1)/2 values of S that can be calcu-
lated using
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S ¼ xk � xj
k� j

, where k 6¼ j

2.3.3. Partial Mann-Kendall for examining the influence
of climatic indices on precipitation trends. The influence of
large-scale climate indices on the precipitation time series
is examined by partial Mann-Kendall (PMK) test
(Libiseller and Grimvall, 2002; Yue et al., 2002;
Libiseller, 2004; Ahmad et al., 2015; Iqbal and Athar,
2018). PMK is one of the best one step procedures that
do the adjustment for covariates (influencing variables)
and trend testing simultaneously. Pearson correlation
measures the strength of linear association between two
variables. PMK is another approach to study the changes
in trends in precipitation in the presence of climate indi-
ces which are the covariates. Trends in precipitation
(response variable) can be assessed in the presence of the
relevant covariates through PMK when the effect of the
explanatory variable is removed (Libiseller and Grimvall,
2002). In PMK, the effect of explanatory variables is
studied on the response variable and the influence is cal-
culated using the conditional mean and the conditional
variance of the response variable. The test statistic for
response variable y, with its covariate x being the
explanatory variable is given by

PMK ¼ Sy � q
_ Sxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� q
_ Þ

q
nðn� 1Þð2nþ 5Þ=18

where, Sy is the Mann-Kendall statistics of response vari-
able, Sx is the Mann-Kendall statistics of explanatory
variable, q

_ denotes the conditional correlation between
the MK statistics Sx and Sy. The PMK statistic is nor-
mally distributed with mean 0 and standard deviation 1.

Multicollinearity, if present in variates then it reduces
the precision of the estimate of coefficients and weakens
the statistical power of the regression model. In case of
multi collinear variates, PMK method is different from
Multiple linear regression (Dogar et al., 2017; Dogar and
Sato, 2018, 2019) in the sense that PMK method doesn’t
account for the dependence or influence of one variable
on the other as it treats each input variable separately.

2.3.4. Empirical orthogonal analysis or principal
component analysis. Empirical Orthogonal Analysis also
called as the Principal Component Analysis finds the
independent orthogonal variables (EOFs) that describe
the maximum variability of a two-dimensional data set.
First dimension being the spatial location in which the
EOF is being found and the second dimension is the
time, which represents the dimension in which realizations
of this structure are sampled. EOF analysis is performed
on precipitation and climate variables to determine the

influencing climate indices of large-scale teleconnection
patterns. Mathematical expression is provided in appen-
dix B1.

3. Results and discussions

3.1. Spatial and temporal trends in precipitations

Monotonic Trends in monthly precipitation from 1977 to
2017 at 13 stations of Baluchistan are found through
Mann-Kendall tests at individual stations. Out of 15 stat-
istically significant trends, 10 were decreasing trends
whereas 5 were increasing trends (Table 3). This indicates
that decreasing trend is dominating in most of the sta-
tions in Baluchistan, which explains the declining precipi-
tation occurrences in Baluchistan during the last couple
of decades. The slope of the significant trend is calculated
by the TS method.The TS of the significant trends in the
Table 3 which are noteworthy are shown with ‘�’ whereas
others although their trends are significant, but their
slopes are almost flat can be ignored. Therefore, it can be
inferred that generally the decreasing trends of precipita-
tion in January are dominant with a noticeable average
slope of 0.615mm/year whereas increasing trends of pre-
cipitation in June are prevailing with a noticeable average
slope of 0.832mm/year. The average precipitation in the
month of January and June is 18.7mm and 11.8mm
(Table 1) respectively. Thus, a significant decreasing trend
having slope 0.615mm/year in January is quite obvious
which may create dryness whereas significant increasing
trend in June having slope 0.832mm/year may create
some heavy downpour conditions respectively. It may
also be noted that the significant trend (increasing/
decreasing) is found in stations located in Region1. On
the contrary no trend, is found in stations located regions
2,3 and 4.

3.2. Influence of climatic indices on
precipitation trends

The climatic indices pertinent to Baluchistan which would
have influenced these decreasing (increasing) precipitation
trends in January (June) are determined. The changes in
precipitation trends in the presence of influencing varia-
bles NAO, AO, AMO, IOD-DMI, IOD-EQWIN, PDO,
ENSO-MEI and EMI-MODOKI is determined through
the PMK on monthly precipitation at individual station
and is tabulated in the Tables A2–A9. The Influence
determined through the PMK is classified in to weak,
moderate and strong influence as described in the Table
A1. The results of the variation in precipitation trends
for the significant decreasing (increasing) trends of
January (June) are tabulated in Table 4. It can be seen from
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the Table 4 that all the climatic variables mentioned above
have weak influence on precipitation trends except EQWIN
and ENSO-MEI and EMI-MODOKI which have moderate
to strong influence on precipitation trends.

3.3. Influence of climate indices on precipitation
variability

It is found through MK and TS that precipitation trends
are significant in the month of January and June. The
stations in which the precipitation trends came out sig-
nificant situated in the Region1 of Baluchistan. As it can
be seen in Table 1, Region1 comparatively receives a
larger portion of Baluchistan precipitation whereas other
regions receive less precipitation and remain dry. It can
also be seen in Table 1 that the major share of precipita-
tion is in winter (December, January and February) fol-
lowed by Monsoon (June, July, August and September)
in summer. As such, we focus our attention on to the
month of January (June) in which the stations in Region1
show decreasing (increasing) trends in order to determine
the relationship of this precipitation variability with the
teleconnection patterns. The influence of teleconnection
patterns on the January (June) precipitation variability is
determined through the following steps
a. Variability patterns (modes) in the Region1 precipitation

are identified through principal component analysis and
their corresponding time series (PCs) are constructed

b. Correlation analysis is performed between time series
of Region1 precipitation (PCs.) and climate Indices to
check their relevance.

c. EOF analysis is performed on SST, SLP and ZW-
Surface to find out the dominated teleconnection
patterns prevailing in the months of January and
June which may have influenced the precipitation of
Region1 in Baluchistan and explains the precipitation
variability.

d. Correlation analysis is performed between time series of
Region1 precipitation and SST anomalies, atmospheric
circulations such as SLP, Geopotential Heights
(500hpa), Zonal winds (surface), OLR to observe their
relationship and influence with Region1 precipitation.

3.4. Linkages of January precipitation variability
with climate indices

3.4.1. Modes of Region1 precipitation for the month of
January. PCA is performed on the R1JANP for the
period 1977 to 2017. First three (3) EOFs explain 88.7%
variation, capable enough to explain the precipitation
variability in Region1 (Table 5) and these three (3) PCs
are then used to perform the correlation analysis with cli-
mate indices. The correlation between time series of PCs
and R1JANP is shown in Table 5. The selected PCs are
shown as highlighted. The spatial and temporal distribu-
tion of Region 1 precipitation, EOFs and PCs are shown
in Appendix C.

3.4.2. Correlation of Region1 precipitation for the month
of January with climate indices. In order to find out the
association of R1JANP with climate indices, correlation
is performed between time series of Region1 precipitation
PC (R1JANP-PCs) and the climate indices for the
respective month of January. The results are presented in
Table 6. Large scale teleconnection circulation patterns
NAO and AO shows insignificant correlation with
Region1 precipitation. Atlantic Multi Decadal Oscillation
index (AMO) is positively correlated to PC3 at 7.91%
confidence. Indian Ocean Dipole mode index DMI is
positively correlated to PC2 at 12.39% confidence. Indian
Ocean Circulation pattern defined by EQWIN is signifi-
cant at 1.15% and positively correlated to PC1. Large
scale Teleconnection pattern ENSO-MEI is negatively
correlated to PC2 at 16.52% confidence. ENSO-
MODOKI Index (EMI-MODOKI) is positively corre-
lated to PC2 at 21.81% confidence whereas it is positively
correlated to PC3 at 4.82% confidence also. Pacific Ocean
decadal oscillation (PDO) is negatively correlated to PC1
at 20.51% confidence.

3.4.3. Leading modes of teleconnection patterns for the
month of January. EOF analysis is performed on SST,
SLP and ZW-Surface for the month of January. The
leading modes of EOFs are selected based on their distin-
guishability within their uncertainties. The non-degener-
acy of eigen-spectrum is an important property and can
be used for the selecting leading modes of EOFs. The

Table 4. Influence of climatic variables on precipitation trends.

Months Stations NAO AO AMO DMI EQWIN PDO MEI EMI-MODOKI

January Barakhan Weak (�) Weak (�) Weak (�) Weak (�) Strong (�) Weak (�) Weak (�) Strong (�)
Quetta Weak (�) Weak (�) Weak (�) Weak (�) Moderate (�) Weak (�) Weak (�) Strong (�)
Zhob Weak (�) Weak (�) Weak (�) Weak (�) Strong (�) Weak (�) Moderate (�) Strong (�)

June Barakhan Weak (þ) Weak (þ) Weak (þ) Weak (þ) Strong (þ) Weak (þ) Weak (þ) Strong (þ)

(þve) shows increasing trends whereas (-ve) shows decreasing trends.
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uncertainty estimates of January eigenvalues spectrum of
covariance matrix of SST and SLP are calculated by
North et al. (1982) rule of thumb. Two eigenvalues of
SST and three eigenvalues of SLP are well distinguishable
from the rest of the spectrum as shown in Fig. 2a,b.
Therefore, three leading modes for each of teleconnection
patterns are considered for the analysis.

Leading three modes EOF1(18%), EOF2(13%) and
EOF3(6%) of SST explained about 37% cumulative vari-
ability and shows the patterns of PDO in North Pacific
Ocean, EL-NINO, EMI-MODOKI (warm center flanked
by cold sides or vice-versa) in Central Pacific Ocean,
DMI pattern (though weak) in Indian Ocean whereas
AMO and NAO (associated SST pattern) in North
Atlantic Ocean. Leading modes of SST are shown in Fig.
3a–c, respectively. Fig. 4a–c shows three leading modes
of SLP. EOF1 (17%), EOF2 (13%), EOF3 (11%) of SLP
explained about 41% cumulative variability and shows
the patterns of ENSO, NAO and AO. EOF1 of SLP
shows anti-cyclonic circulation over Region1 indicative of
negative association with influencing indices whereas
EOF2, EOF3 show cyclonic circulation indicative of posi-
tive association with influencing indices.

Leading modes of ZW-Surface are shown in Fig. 5a–c,
respectively. EOF1(10%), EOF2(7%) and EOF3(6%) of
ZW-Surface explained about 23% cumulative variability.
Since EQWIN is highly correlated with the difference of
Outgoing Longwave Radiation (OLR) in Eastern

Equatorial Indian Ocean (EEIO) and Western Equatorial
Indian Ocean (WEIO) regions therefore the occurrence of
EQWIN can easily be detected by identifying the
enhanced/suppressed convection (cloudiness) in WEIO/
EEIO region. EOFs of OLR are shown in Fig. 6a–c.
EOF1 and EOF3 show weak whereas EOF2 shows mod-
erate pattern of EQWIN.

From the EOF analysis as above, it is clear that patterns
of NAO (weak), AO (moderate to weak), AMO (moder-
ate), DMI (moderate), EQWIN (moderate), ENSO-MEI
(moderate), EMI-MODOKI (strong) and PDO (moderate)
are found in the three leading modes of January.

3.4.4. Relationship of Region1 precipitation with SST
anomalies for January. Figure 7 below shows the distribu-
tion of correlation coefficient between PCs (1, 2 and 3)
and standardized SST for the month of January. In trop-
ical areas, PC-1 is positively correlated with central-
Eastern pacific whereas it is negatively correlated with
western pacific (Fig. 7a). This surface SST anomaly is
indicative of linkages of precipitation with ENSO-MEI,
but the correlation is mostly insignificant with some sig-
nificant areas and may be considered as weak which is in
line with the findings in Table 6. Figure 7b,c show nega-
tive correlation in the central area for EMI-MODOKI
and positive correlation in flank areas marked by red
boxes, which is indicative of linkages of PC2 and PC3
with the EMI Index. At mid and high latitudes, PC3 is

Table 5. Region1 Precipitation Modes (EOFs) and Corresponding PCs for the Month January.

EOFs % Variability explained Cumulative PCs Correlation Coeff. p-value

EOF1 53.80% 53.80% PC1 0.972 0.001
EOF2 18.75% 72.55% PC2 0.177 0.267
EOF3 16.15% 88.70% PC3 0.142 0.375
EOF4 6.94% 95.64% PC4 �0.024 0.882
EOF5 4.36% 100.00% PC5 �0.047 0.768

Bold figure represents significant correlations at 5% confidence and the shaded rows indicated the selected modes.

Table 6. Correlation between R1JANP-PCs and climate indices.

Indices

R1JANP-PC1 R1JANP-PC2 R1JANP-PC3

Corrl. coeff. p-value Corrl. coeff. p-value Corrl. coeff. p-value

NAO �0.1488 0.3532 �0.1284 0.4236 �0.1039 0.5178
AO 0.0517 0.7483 �0.1479 0.3561 0.1278 0.4258
AMO �0.1020 0.5257 0.0269 0.8674 0.2774 0.0791*

DMI 0.0546 0.7345 0.2442 0.1239 �0.0698 0.6644
EQWIN 0.3758 0.0155* �0.1089 0.4981 0.0352 0.8271
ENSO-MEI 0.0102 0.9497 �0.2209 0.1652 �0.1444 0.3678
EMI-MODOKI �0.0948 0.5554 0.1966 0.2181 0.3105 0.0482*

PDO �0.2021 0.2051 �0.0328 0.8386 �0.0924 0.5654

Bold with asterick figures indicate significant correlation at 7% confidence whereas highlighted figures indicate correlation up to
20% confidence.
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negatively and positively correlated with SSTs analogous
to PDO index (Fig. 7c).

In tropical Indian ocean, PC1 is negatively correlated
with SST. PC2 and PC3 are positively correlated with
SST in Western Equatorial Indian Ocean (WEIO) and
negatively correlated with SST in Eastern Equatorial
Indian Ocean (EEIO) regions which is indicative of link-
ages with IOD-DMI, but the correlation appears moder-
ate to weak with some significant positive
correlated areas.

In Northern Atlantic Ocean, PC1 and PC2 (Fig. 7a,c)
correlations with SST anomalies are analogous to the
NAO associated SST pattern, thus indictive of association
with NAO. Figure 7c shows positive correlation with SST
in Northern Atlantic which is indicative of AMO linkage
with PC3.

3.4.5. Relationship of Region1 precipitation with
atmospheric circulation anomalies for January. The rela-
tionship of Region1 precipitation with atmospheric circu-
lations is studied by conducting the correlation analysis
between PCs and atmospheric circulations SLP, GPH500.
Figure 8 below shows the distribution of correlation coef-
ficient between PCs (1, 2, 3) and standardized SLP for
the month of January. In tropical region, the pacific
warm pool remains stabilized and does not show any sig-
nificant correlation with Region1 precipitation.
Responding to PC1, the center tropical region shows
negative correlation with SLP and positive correlation in
flank areas marked by red boxes. This surface SLP anom-
aly is indicative of linkages with ENSO-MODOKI, but
the correlation is mostly insignificant with some signifi-
cant areas. PC3 shows positive correlation over most of
the tropical region with significant positive correlations in
central tropics and negative correlation in flank areas

marked by red boxes which is la-Nina EMI-
MODOKI pattern.

In Indian ocean, responding to SLP, PC1 shows sig-
nificant positive correlation while PC-2 remains nega-
tively correlated both without showing any
distinguishable opposite anomalies similar to DMI.
However, PC-3 exhibits slightly insignificant positive and
negative anomaly between Western Equatorial Indian
Ocean (WEIO) and Eastern Equatorial Indian Ocean
(EEIO) region similar to DMI pattern.

In Northern Atlantic Ocean, high pressure anomaly is
present over Iceland whereas significant low-pressure
anomaly is present over Azores in response to correlation
of PC1 with SLP. This surface SLP anomaly is indicative
of strong (-) NAO pattern. This NAO anomaly is also
accompanied by a low-pressure anomaly over Artic and
high-pressure anomaly in northern Atlantic and Pacific
Ocean analogous toþAO pattern but the correlation
remains insignificant (weak). Responding to SLP, PC2 is
positively correlated with Azores region and negatively
correlated with Iceland region but the correlations remain
insignificant (moderate to weak). This SLP anomaly is
indicative ofþNAO mode. PC2 correlation with SLP
does not show any distinguishable anomaly pattern simi-
lar toþAO pattern in Arctic. PC3 again shows positive
correlation with Azores and negative correlation with
Iceland with insignificant correlations (moderate to
weak). But responding to SLP, strong Low-pressure
anomaly exist with significant negative correlation and
high-pressure anomalies with significant positive correl-
ation in Northern Atlantic and insignificant positive cor-
relation in North Pacific Ocean somewhat similar
toþAO mode.

In order to understand the linkages of the observed
signals of teleconnection including EMI-MODOKI,

Fig. 2. (a) Eigenvalue spectrum (%) of the covariance matrix of January SST. The vertical bar shows uncertainty estimates based on
North et al. (1982) rule of thumb. The leading 25 eigenvalues out of 41 are shown. (b) Eigenvalue spectrum (%) of the covariance
matrix of January SLP. The vertical bar shows uncertainty estimates based on North et al. (1982) rule of thumb. The leading 25
eigenvalues out of 41 are shown.
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Fig. 3. EOFs of standardized SST for January over 1977–2017. (a) EOF1 shows the pattern of ENSO and PDO in Pacific Ocean. (b)
EOF2 shows the pattern of AMO in Atlantic Ocean and pattern of DMI in Indian Ocean. (c) EOF3 shows PDO, EMI-MODOKI and
NAO (SST associated pattern). Black boxes show Western Equatorial Indian Ocean (WEIO) and Eastern Equatorial Indian Ocean
(EEIO) region whereas green box shows Central Equatorial Indian Ocean (CEIO) region in Indian Ocean. Red boxes show ENSO-
MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 4. EOFs of standardized SLP for January over 1977–2017. (a) EOF1 shows the pattern of ENSO-SOI and NAO pattern though
not very distinguished. (b) EOF2 shows the pattern of AO. (c) EOF3 shows patterns of ENSO and NAO pattern though not very
distinguished. Black boxes show Western Equatorial Indian Ocean (WEIO) and Eastern Equatorial Indian Ocean (EEIO) region
whereas green box shows Central Equatorial Indian Ocean (CEIO) region in Indian Ocean. Red boxes show ENSO-MODOKI regions
whereas magenta box shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 5. EOFs of standardized SZW for January over 1977–2017. (a) EOF1 shows weak patterns of EQWIN. (b) EOF2 shows
moderate pattern of EQWIN whereas (c) EOF3 shows weak patterns of EQWIN. Black boxes show Western Equatorial Indian Ocean
(WEIO) and Eastern Equatorial Indian Ocean (EEIO) region whereas green box shows Central Equatorial Indian Ocean (CEIO) region
in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean. Blue
boxes show NAO region in Atlantic Ocean.
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ENSO-MEI in Pacific Ocean, DMI in Indian Ocean,
NAO, AO in Atlantic Ocean with Region1 precipitation

through atmospheric circulations, the correlation of PCs
(1, 2, 3) is performed with GPH500 as shown in Fig. 9.

Fig. 6. EOFs of standardized OLR for January over 1977–2017. (a) EOF1 shows weak patterns of EQUINOO. (b) EOF2 shows
moderate pattern of EQUINOO whereas (c) EOF3 shows weak patterns of EQUINOO. Black boxes show Western Equatorial Indian
Ocean (WEIO) and Eastern Equatorial Indian Ocean (EEIO) region whereas green box shows Central Equatorial Indian Ocean (CEIO)
region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean.
Blue boxes show NAO region in Atlantic Ocean.
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Fig. 7. Correlation between PCs of Region1 precipitation and standardized SST for January over 1977–2017. (a) PC1 shows weak
correlation with DMI. (b) PC2 shows moderate correlation with DMI and weak correlation with EMI-MODOKI. (c) PC3 shows weak
correlation with NAO and DMI, moderate correlation with AMO, EMI-MODOKI and PDO. Black boxes show Western Equatorial
Indian Ocean (WEIO) and Eastern Equatorial Indian Ocean (EEIO) region whereas green box shows Central Equatorial Indian Ocean
(CEIO) region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific
Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 8. Correlation between PCs of Region1 precipitation and standardized SLP for January over 1977–2017. (a) PC1 with SLP. (b)
PC2 with SLP. (c) PC3 with SLP. Black boxes show Western Equatorial Indian Ocean (WEIO) and Eastern Equatorial Indian Ocean
(EEIO) region whereas green box shows Central Equatorial Indian Ocean (CEIO) region in Indian Ocean. Red boxes show ENSO-
MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
Red ‘þ’ and Black ‘.’ stipples show significant positive and negative correlation at 5% confidence, respectively.
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Fig. 9. Correlation between PCs of Region1 precipitation and standardized GPH500 for January over 1977–2017. (a) PC1 with
GPH500. (b) PC2 with GPH500. (c) PC3 with GPH500. Black boxes show Western Equatorial Indian Ocean (WEIO) and Eastern
Equatorial Indian Ocean (EEIO) regions. Black boxes show WEIO and EEIO region whereas green box shows Central Equatorial
Indian Ocean (CEIO) region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI
region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean. Red ‘þ’ and Black ‘.’ stipples show significant positive and
negative correlation at 5% confidence, respectively.
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The precipitation favorable counter part of surface low
pressure is high pressure at mid troposphere (500 hpa)
which is indicative of cyclonic circulation whereas the
high pressure at surface and low pressure at mid tropo-
sphere (500 hpa) is indicative of anti-cyclonic circulations.
In response to correlations of PC1 with SLP and
GPH500, Fig. 8a shows low surface pressure at region1
whereas Fig. 9a depicts positive height anomaly (at
GPH500) which is indicative of cyclonic conditions.
Positive/negative SLP anomaly in Iceland/Azores with its
counterpart negative/positive anomaly at 500 hpa extend-
ing all the way to Mediterranean and Middle East
Region which is indicative of linkages with NAO.
Further in the tropical pacific region positive/negative/
positive SLP anomaly with its counterpart negative/posi-
tive/negative in EMI-MODOKI regions indicative of tele-
connection with EMI-MODOKI Index. However,
cyclonic condition exists in Indian Ocean represented by
high SLP anomaly and low mid altitude anomaly at
500 hpa. For PC2 correlations with responding SLP and
GPH500, Figs. 8b and 9b shows that the pressure condi-
tions at surface is not supportive of its counterpart pres-
sure conditions at mid altitude. Lastly, for PC3
correlations with SLP and GPH500, Figs. 8c and 9c
shows anti-cyclonic conditions over Region1 in response
to anti-cyclonic condition at SLP and cyclonic condition
at mid heights over tropical Indo-pacific region and north

Atlantic region which is indicative of reduced
precipitation.

To ascertain the linkages of atmospheric circulations
with Region1 precipitation, EOF modes of GPH500 are
calculated. The target area is 30S � 90N and 0� 360
where the teleconnection pattern under consideration are
shaped. The corresponding time series of the three lead-
ing modes (G1, G2, G3) which explains 50.31% combined
variability are extracted. The correlation matrix between
G1, G2, G3 with PCs of Region1 precipitation (PC1,
PC2, PC3) is shown in Table 8. The matrix is formulated
to determine the PCs of GPH500 which have significant
influence on the Region1 precipitation through telecon-
nection via atmospheric circulations. Table 7 indicates
that only G1 and G2 have significant correlations with
Region1 precipitation PCs (PC1 or PC3) and therefore
are considered for further analysis. The leading EOF
modes (EOF1, EOF2) and the correlation of PCs of
Region1 precipitation (PC1, PC2) is shown in Fig. 10.The
correlation analysis is performed between the G1, G2 and
climate indices to determine the influencing indices of
Region1 precipitation. The results are shown in Table 8
which indicates that Region1 precipitation is linked to
NAO, AMO, DMI, EQWIN, EMI-MODOKI through
atmospheric circulations.

3.4.6. Relationship of Region1 precipitation with surface
wind anomalies for January. Figure 11 below shows the
distribution of correlation coefficient between PCs (1, 2
and 3) and standardized Zonal Winds at Surface (ZW-
Surface) for the month of January. As mentioned above,
EQWIN being highly correlated to EQUINOO, correla-
tions of PCs with OLR is calculated to identify the influ-
ence of EQWIN index easily (Fig. 12). In tropical Indian
Ocean at WEIO and EEIO regions, OLR anomalies are
significantly correlated with the PC1, PC3 of Region1
precipitation which is indicative of correlation with sur-
face zonal winds whereas association with PC-2 remains
insignificant. This surface zonal wind anomaly is indica-
tive of EQWIN significant positive correlation with
R1JANP. (For EQWIN index the negative anomaly of
OLR is to be multiplied with �1).

Table 8. Correlation between PCs of GPH (G1, G2, G3) and
climate indices.

Indices

G1 G2

Corrl. coeff. p-value Corrl. coeff. p-value

NAO �0.1475 0.3576 0.2284 0.1508
AO �0.0369 0.8188 0.1591 0.3203
AMO �0.4251 0.0056 �0.0742 0.6449
DMI �0.1188 0.4595 �0.2821 0.0739
EQWIN 0.3237 0.0390 0.0147 0.9272
ENSO-MEI 0.0650 0.6865 0.0366 0.8204
EMI-MODOKI �0.2029 0.2033 0.0631 0.6953
PDO �0.1510 0.3461 �0.1802 0.2595

Bold and highlighted figures indicate significant correlation at
20% confidence.

Table 7. Correlation matrix between PCs of GPH (G1, G2, G3) and PCs of Region1 precipitation (PC1, PC2 and PC3).

GPH-principal
components

R1JANP-PC1 R1JANP-PC2 R1JANP-PC3

Corrl. coeff. p-value Corrl. coeff. p-value Corrl. coeff. p-value

G1 0.3532 2.35% 0.1062 50.88% �0.2619 9.81%
G2 �0.2594 10.15% 0.1453 36.46 % �0.1598 31.83%
G3 �0.0693 66.88% �0.1881 23.90% 0.2259 15.56%

Bold figures indicate significant correlation at 10% confidence.
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3.4.7. Time-lag relationship of PCs with climate indices
for January. Figure 13 shows the time-lag relationship of
correlation coefficient of PCs with the climate indices. As
mentioned earlier, three PCs of Region1 precipitation are
considered. Time-lag relationship of only those PC-Climate
Index relationship is considered which is most significant.
For example, out of the three relationships between PCs
and NAO; only PC1-NAO is most significant which is
shown in Table 6. Time-lag relationship indicates that
except NOA all the other climate indices (AO, AMO, DMI,
EQWIN, ENSO-MEI, EMI-MODOKI and PDO) are at
their maximum significance level with the respective princi-
pal mode (PC) preceding to the month of January. NAO
attains its maximum negative significance in December of
the year preceding the month of January. Time-lag relation-
ship also shows that NAO, AO, ENSO-MEI and PDO are
negatively correlated whereas AMO, DMI, EQWIN and
ENSO-MODOKI are positively correlated with their
respective principal modes of precipitation.

3.4.8. Results of analyses for January. The results
obtained from all the above analyses are summarized in the
Table 9 below along with the comparison with the previously
obtained results of correlation and Partial Mann-Kendall

analyses. Thus, from the analysis, it can be concluded that
influence of NAO and AO on Region1 precipitation is insig-
nificant (weak). Since none of the previous studies were
focused on Baluchistan as such there is not much literature
available to support the argument that NAO mode enhances
(reduces) the precipitation in Baluchistan. However, Ahmed
et al. (2015) found out that the positive (negative) NAO
mode strengthens (weakens) winter spring precipitation in
Pakistan similarly Athar et al. (2015) found out that NAO
shows a correlation with Baluchistan without mentioning
whether the correlation is positive or negative. Therefore, it
can be stated that NAO and AO have weak influence on the
January precipitation in Baluchistan. The influence of AMO,
DMI, ENSO-MEI and PDO is significant up to 20% confi-
dence (may be considered as moderate). Lastly, the influence
of EQWIN and EMI-MODOKI is significant up to 5% con-
fidence (may be considered as strong).

3.5. Linkages of June precipitation variability with
climatic indices

3.5.1. Modes of Region1 precipitation for the month of
June. PCA is performed on the R1JUNP for the period
1977 to 2017. First three (3) EOFs explain 90.82%

Fig. 10. EOF modes of standardized GPH at 500hpa in January and correlation with PCs of Region1 Precipitation. (a) EOF1 mode
of GPH500. (b) EOF2 mode of GPH500. (c) Correlation between PC1 with GPH500. (d) Correlation between PC2 with GPH500. Black
boxes show Western Equatorial Indian Ocean (WEIO) and Eastern Equatorial Indian Ocean (EEIO) region whereas green box shows
Central Equatorial Indian Ocean (CEIO) region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box
shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 11. PCs of standardized ZW-Surface for January over 1977–2017. (a) PC1 shows strong patterns of EQWIN. (b) PC2 shows
weak pattern of EQWIN whereas (c) PC3 shows weak pattern of EQWIN. Black boxes show WEIO and EEIO region whereas green
box shows CEIO region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in
Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 12. EOFs of standardized OLR for January over 1977–2017. (a) EOF1 shows strong patterns of EQWIN. (b) EOF2 shows weak
pattern of EQWIN whereas (c) EOF3 shows patterns of EQWIN. Black boxes show WEIO and EEIO region whereas green Box shows
CEIO region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific
Ocean. Blue boxes show NAO region in Atlantic Ocean.
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variation, capable enough to explain the precipitation
variability in Region1 (Table 10) and these three (3) PCs
are then used to perform the correlation analysis with

climate indices. The correlation between time series of
PCs and R1JUNP is shown in Table 10. The selected
PCs are shown as highlighted.

Fig. 13. Time-lag correlation coefficient between most significant PCs and Climate Indices. January is considered as the pivot month
with a value “0” represented by a vertical line whereas negative/positive values along x-axis (Months) indicates preceding/following
months from January. Upper and lower limit represents the significance level of 5%.
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3.5.2. Correlation of region1 precipitation with climate
indices for June. In order to find out the association of
R1JUNP with climate indices, correlation is performed
between time series of Region1 precipitation PC
(R1JUNP-PCs) and the climate indices for the respective
month of June. The results are presented in Table 11.
Large scale teleconnection circulation patterns NAO is
positively correlated to PC2 at 7.95% confidence. AO is
positively correlated to PC2 at 18.30% confidence.
Atlantic Multi Decadal Oscillation index (AMO) is nega-
tively correlated to PC3 at 13.42% confidence. Indian
Ocean Dipole mode index DMI is positively correlated to
PC1 at 13.89% confidence. Indian Ocean Circulation

pattern defined by EQWIN is positively correlated to
PC1 at 21.19%. Large scale Teleconnection pattern
ENSO-MEI is positively correlated to PC3 at 6.02% con-
fidence. ENSO-MODOKI Index (EMI-MODOKI) is
negatively correlated to PC3 at 2.55% confidence. Pacific
Ocean decadal oscillation (PDO) is negatively correlated
to PC2 at 4.26% confidence.

3.5.3. Leading modes of teleconnection patterns for the
month of June. EOF analysis is performed on SST, SLP
and ZW-surface for the month of June also. The uncer-
tainty estimates of June eigenvalues spectrum of covari-
ance matrix of SST and SLP are calculated and is used

Table 9. Summary of analysis results for Region1 precipitation and climate indices for January.

Indices/
Teleconnection

Partial
Mann-Kendall

Correlation b/w
PCs and Climate Indices

EOF
analysis

Correlation b/w PCs and anomalies of

SST
Atmospheric
circulation

Zonal
winds/OLR

NAO Weak Insignificant Weak Weak Moderate –

AO Weak Insignificant Moderate to Weak – Weak –

AMO Weak Significant at 7.9% Moderate Moderate – –

DMI Weak Significant at 12.4% Moderate Moderate – –

EQWIN Strong to Moderate Significant at 1.5 % Strong – – Strong
ENSO-MEI Moderate to Weak Significant at 16.5 % Moderate Weak – –

EMI-MODOKI Strong Significant at 4.8 % Strong Strong – –

PDO Weak Significant at 20.5 % Moderate Moderate to Strong – –

Where ‘–’ means not applicable.

Table 11. Correlation between R1JANP-PCs and climate indices.

Indices

R1JUNP-PC1 R1JUNP-PC2 R1JUNP-PC3

Corrl. coeff. p-value Corrl. coeff. p-value Corrl. coeff. p-value

NAO �0.2530 0.1105 �0.0091 0.9549 �0.0521 0.7463
AO �0.1120 0.4858 0.0179 0.9114 �0.0406 0.8011
AMO �0.0625 0.6978 �0.0371 0.8178 0.0629 0.6958
DMI 0.1503 0.3483 0.1437 0.3699 �0.0520 0.7470
EQWIN 0.4397 0.0040* �0.0111 0.9449 �0.2191 0.1687
ENSO-MEI 0.0257 0.8732 0.0970 0.5464 �0.1468 0.3597
EMI-MODOKI 0.1170 0.4662 �0.0295 0.8549 0.1264 0.4309
PDO 0.1338 0.4044 �0.3139 0.0457* �0.1096 0.4951

Bold with asterick figures indicate significant correlation up to 8% confidence whereas bold figures indicate correlation up to
20% confidence.

Table 10. Region1 precipitation modes (EOFs) and corresponding PCs for the month June.

EOFs Variability explained Cumulative PCs Correlation coeff. p-value

EOF1 58.61% 58.61% PC1 0.7793 0.0001
EOF2 16.19% 74.80% PC2 �0.5306 0.0003
EOF3 16.02% 90.82% PC3 0.1521 0.3425
EOF4 5.68% 96.50% PC4 �0.1578 0.3246
EOF5 3.50% 100.00% PC5 �0.2188 0.1693

Bold figure represents significant correlations at 5% confidence and the shaded rows indicated the selected modes.
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for selecting leading modes of EOFs. Two eigenvalues of
SST and four eigenvalues of SLP are well distinguishable
from the rest of the spectrum as shown in Fig. 14a,b.
Therefore, three leading modes for each of teleconnection
patterns are considered for the analysis.

Three leading modes EOF1(15%), EOF2(12%) and
EOF3(7%) of SST explained about 34% cumulative vari-
ability and shows the teleconnection patterns of ENSO,
EMI-MODOKI (warm center flanked by cold sides: cold
center flanked by warm sides) in Central Pacific Ocean,
AMO in North Atlantic Ocean, NAO (associated SST
pattern) in North Atlantic Ocean, DMI pattern (though
weak) in Indian Ocean. Leading modes of SST are shown
in Fig. 15a–c, respectively. Fig. 16a–c shows three leading
modes of SLP. EOF1 (17%), EOF2 (11%) and EOF3(9%)
of SLP explained about 37% cumulative variability and
shows the patterns of ENSO, NAO and AO (though not
very distinguishable).

Leading modes of ZW-Surface are shown in Fig.
17a–c, respectively. EOF1(9%), EOF2(7%) and
EOF3(6%) of ZW-Surface explained about 23% cumula-
tive variability. As mentioned above, EQWIN is highly
correlated with the difference of OLR in EEIO and
WEIO regions therefore the occurrence of EQWIN can
easily be detected by identifying the enhanced/suppressed
convection (cloudiness) in WEIO/EEIO region. EOFs of
OLR are shown in Fig. 18a–c. EOF1 and EOF2 depicts
weak pattern whereas EOF3 shows moderate pattern
of EQWIN.

From the EOF analysis as above, it is clear that pat-
terns of NAO (weak), AO (None), AMO (moderate),
DMI (weak), EQWIN (strong), ENSO-MEI (moderate to
strong), EMI-MODOKI (weak) and PDO (moderate to
strong) are found in the three leading modes of June.

3.5.4. Relationship of region1 precipitation with SST
anomalies for June. Figure 19 below shows the distribu-
tion of correlation coefficient between PCs (1, 2 and 3)
and standardized SST for the month of June. In tropical
areas, PC-1 and PC-3 are negatively correlated with central-
Eastern pacific whereas they are positively correlated with
western pacific (Fig. 19a,c). This surface SST anomaly is
indicative of linkages of precipitation with ENSO-MEI, but
the correlation is mostly insignificant with some significant
areas and may be considered as weak which is in line with
the findings in Table 6. Figure 19b show positive correlation
in the central area for EMI-MODOKI and negative correl-
ation in flank areas marked by red boxes but with weak
strength, which is indicative of weak linkages of PC2 with
the EMI-MODOKI Index. At mid and high latitudes, PC1
and PC2 are negatively and positively correlated with SSTs
analogous to PDO index (Fig. 19a,b). The correlation of
PC1 with PDO may be considered as moderate but it may
be considered as strong with PC2. PC3 shows correlation
analogous to PDO pattern but not very distinguished.

In tropical Indian ocean, PC1 does not show any dis-
tinguishable positive/negative correlations in WEIO/EEIO
region. Both PC2 and PC3 are positively/negatively corre-
lated with SST in WEIO/EEIO but the correlation is
weak. These SST anomalies over WEIO/EEIO region is
indicative of linkages with DMI but the correlation
appears weak with some significant positive correlations.

In Northern Atlantic Ocean, PC1 (Fig. 19a) is corre-
lated with SST anomalies analogous to the NAO associ-
ated SST pattern, thus indictive of association with
NAO. PC2 show no correlation pattern similar to NAO
but the correlation is weak. Figure 19c shows moderate
positive correlation with SST in Northern Atlantic which
is indicative of AMO linkage with PC3.

Fig. 14. (a) Eigenvalue spectrum (%) of the covariance matrix of June SST. The vertical bar shows uncertainty estimates based on
North et al. (1982) rule of thumb. The leading 25 eigenvalues out of 41 are shown. (b) Eigenvalue spectrum (%) of the covariance
matrix of June SLP. The vertical bar shows uncertainty estimates based on North et al. (1982) rule of thumb. The leading 25
eigenvalues out of 41 are shown.
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Fig. 15. EOFs of standardized SST for June over 1977–2017. (a) EOF1 shows the Pattern of EMI-MODOKI in central Pacific Ocean
though weak in one of the flank and AMO in North Atlantic Ocean. (b) EOF2 shows the patterns of NAO (associated SST pattern;
though weak) in North Atlantic Ocean, ENSO-MEI in central Pacific and PDO in North Pacific. (c) EOF3 shows weak patterns of
DMI, EMI-MODOKI and NAO (associated SST pattern). Black boxes show WEIO and EEIO region whereas green Box shows CEIO
region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean.
Blue boxes show NAO region in Atlantic Ocean.
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Fig. 16. EOFs of standardized SLP for June over 1977–2017. (a) EOF1 shows the Pattern of NAO though not very distinguished. (b)
EOF2 shows the pattern of NAO. (c) EOF3 shows patterns of ENSO-MEI and AO though not very distinguished. Black boxes show
WEIO and EEIO region whereas green box shows CEIO region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas
magenta box shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 17. EOFs of standardized ZW-surface for June over 1977–2017. (a) EOF1 shows weak patterns of EQWIN. (b) EOF2 shows
weak pattern of EQWIN whereas (c) EOF3 shows patterns of EQWIN. Black boxes show WEIO and EEIO region whereas green box
shows CEIO region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in
Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 18. EOFs of standardized OLR for June over 1977–2017. (a) EOF1 shows weak patterns of EQUINOO. (b) EOF2 shows weak
pattern of EQUINOO whereas (c) EOF3 shows moderate patterns of EQUINOO. Black boxes show WEIO and EEIO region whereas
green box shows CEIO region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI
region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
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Fig. 19. Correlation between PCs of Region1 precipitation and standardized SST for June over 1977–2017. (a) PC1 shows weak
correlation with NAO (associated SST pattern) and ENSO-MEI whereas moderate correlation with PDO. (b) PC2 shows weak
correlation with EMI-MODOKI and string correlation with PDO. (c) PC3 shows weak correlation with DMI and ENSO-MEI but
moderate correlation with AMO. Black boxes show WEIO and EEIO region whereas green box shows CEIO region in Indian Ocean.
Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO
region in Atlantic Ocean.
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Fig. 20. Correlation between PCs of Region1 precipitation and standardized SLP for June over 1977–2017. (a) PC1 with SLP. (b) PC2
with SLP. (c) PC3 with SLP. Black boxes show WEIO and EEIO regions. Black boxes show WEIO and EEIO region whereas green
box shows CEIO region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in
Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean. Red ‘þ’ and Black ‘.’ stipples show significant positive and negative
correlation at 5% confidence, respectively.
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Fig. 21. Correlation between PCs of Region1 precipitation and standardized GPH500 for June over 1977–2017. (a) PC1 with
GPH500. (b) PC2 with GPH500. (c) PC3 with GPH500. Black boxes show WEIO and EEIO regions. Black boxes show WEIO and
EEIO region whereas green box shows CEIO region in Indian Ocean. Red boxes show ENSO-MODOKI regions whereas magenta box
shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean. Red ‘þ’ and Black ‘.’ stipples show
significant positive and negative correlation at 5% confidence, respectively.
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3.5.5. Relationship of Region1 precipitation with
atmospheric circulation anomalies for June. The relation-
ship of Region1 precipitation with atmospheric circula-
tions is studied by conducting the correlation analysis
between PCs and atmospheric circulations SLP, GPH500.
Figure 20 below shows the distribution of correlation
coefficient between PCs (1, 2, 3) and standardized SLP
for the month of June. In tropical region, the pacific
warm pool shows some significant correlation with
Region1 precipitation. Responding to PC3, the Eastern-
Central tropical region shows negative correlation with
SLP whereas western tropical region shows positive cor-
relation analogous to ENSO pattern. Similarly, respond-
ing to PC1 the center tropical region shows negative
correlation with SLP and positive correlation in flank
areas marked by red boxes. This surface SLP anomaly is
indicative of linkages with ENSO-MODOKI, but the cor-
relation is mostly insignificant with some significant
areas. Responding to PC2, central Indian and Pacific
Ocean shows negative correlation with some significant
correlated areas.

In Indian ocean, responding to SLP, PC1 and PC3
show significant negative correlation while PC-2 shows
weak negative/positive correlation at WEIO/EEIO regions
to DMI Index.

In Northern Atlantic Ocean, high pressure anomaly is
present over Iceland whereas significant low-pressure
anomaly is present over Azores in response to correlation
of PC1 with SLP. This surface SLP anomaly is indicative
of strong (-) NAO pattern. Responding to SLP, PC2 is
positively correlated with Azores region and negatively
correlated with Iceland region but the correlations remain
insignificant (weak). This SLP anomaly is indicative
ofþNAO mode. PC3 again shows positive correlation
with Azores and negative correlation with Iceland with
insignificant correlations (weak). Responding to SLP,
PC1, PC2 and PC3 does not show any significant correl-
ation analogous to AO pattern although some positive
and negative correlations are present in Arctic region.

In order to understand the linkages of the observed
signals of teleconnection including EMI-MODOKI,
ENSO-MEI in Pacific Ocean, DMI in Indian Ocean,
NAO, AO in Atlantic Ocean with Region1 precipitation

through atmospheric circulations, the correlation is per-
formed between of PCs (1, 2, 3) with GPH500 as shown
in Fig. 21. In response to correlations of PC1 with SLP
and GPH500, Fig. 20a shows positive surface pressure at
region1 whereas Fig. 21a depicts negative pressure anom-
aly (at GPH500) which is indicative of anti-cyclonic con-
ditions with reduced precipitation. Negative/positive SLP
anomaly at Azores/Iceland with its counterpart negative/
positive anomaly at 500 hpa extending all the way to
Mediterranean and Middle East Region which is indica-
tive of linkages with NAO. Further in tropical pacific
region positive/negative/positive SLP anomaly with its
counterpart negative/positive/negative GPH500 anomaly
in EMI-MODOKI regions are not very supportive for
teleconnection pattern of EMI-MODOKI Index. For
PC2 correlations with responding SLP and GPH500,
Figs. 8b and 9b shows that the pressure conditions at sur-
face are supportive of its counterpart pressure conditions
at mid altitude. Similarly, cyclonic condition exists in
Indian Ocean represented by negative SLP anomaly and
positive mid altitude anomaly at 500 hpa which is indica-
tive of enhance precipitation. Lastly, for PC3 correlations
with SLP and GPH500, Figs. 8c and 9c shows anti-cyc-
lonic conditions over Region1 in response to anti-cyclonic
condition at SLP and cyclonic condition at mid heights
over tropical Indo-pacific region and north Atlantic
region which is indicative of reduced precipitation.

To ascertain the linkages of atmospheric circulations
with Region1 precipitation, EOF modes of GPH500 are
calculated. The target area is 30S � 90N and 0� 360
where the teleconnection pattern under consideration are
shaped. The corresponding time series of the three lead-
ing modes (G1, G2, G3) which explains 52% combined
variability are extracted. The correlation matrix between
G1, G2, G3 with PCs of Region1 precipitation (PC1,
PC2, PC3) is shown in Table 12. The matrix is formu-
lated to determine the PCs of GPH500 which have sig-
nificant influence on the Region1 precipitation through
teleconnection via atmospheric circulations. Table 12
indicates that G1 and G2 have significant correlations
with Region1 precipitation PC3 only and therefore are
considered for further analysis. The leading EOF modes
(EOF1, EOF2) and the correlation of PCs of Region1

Table 12. Correlation matrix of p-value between PCs of GPH (G1, G2, G3) and PCs of Region1 precipitation (PC1, PC2 and PC3).

GPH-principal
components

R1JUNP-PC1 R1JUNP-PC2 R1JUNP-PC3

Corrl. coeff. p-value Corrl. coeff. p-value Corrl. coeff. p-value

G1 0.0106 0.9476 �0.3545 0.0230 0.2023 0.2047
G2 0.2456 0.1217 �0.3343 0.0327 0.0941 0.5585
G3 �0.1356 0.3979 0.1822 0.2543 �0.1103 0.4925

Bold figures indicate significant correlation at 10% confidence.
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precipitation (PC1, PC2) is shown in Fig. 22. The correl-
ation analysis is performed between the G1, G2 and cli-
mate indices to determine the influencing indices of
Region1 precipitation. The results are shown in Table 13
which indicates that Region1 precipitation is linked to
AMO, EQWIN and EMI-MODOKI through atmos-
pheric circulations.

3.5.6. Relationship of Region1 precipitation with surface
wind anomalies for June. Figure 23 below shows the dis-
tribution of correlation coefficient between PCs (1, 2 and
3) and standardized Zonal Winds at Surface (ZW-
Surface) for the month of June. As mentioned above,
EQWIN being highly correlated to EQUINOO, correla-
tions of PCs with OLR is calculated to identify the influ-
ence of EQWIN index easily (Fig. 24). In tropical Indian
Ocean at WEIO and EEIO regions, OLR anomalies are
significantly correlated with the PC1, PC3 of Region1
precipitation which is indicative of correlation with sur-
face zonal winds whereas association with PC-2 remains
insignificant and weak. This surface zonal wind anomaly
is indicative of EQWIN significant positive correlation
with R1JUNP. (For EQWIN index the negative anomaly
is to be multiplied with �1).

3.5.7. Time-lag relationship of PCs with climate indices
for June. Figure 25 shows the time-lag relationship of cor-
relation coefficient of PCs with the climate indices. As
mentioned earlier, three PCs of Region1 precipitation are
considered. Time-lag relationship of only those PC-
Climate Index relationship is considered which is most
significant. Time-lag relationship indicates the climate
indices NAO, AO, EQWIN and PDO are at their max-
imum significance level with the respective principal
mode (PC) preceding to the month of June. AMO attains

Fig. 22. EOF modes of standardized GPH at 500 hpa in June and correlation with PCs of Region1 precipitation. (a) EOF1 mode of
GPH500. (b) EOF2 mode of GPH500. (c) Correlation between PC1 with GPH500. (d) Correlation between PC2 with GPH500. Black
boxes show WEIO and EEIO regions. Red boxes show ENSO-MODOKI Regions and Magenta box shows ENSO-MEI Region. Blue
boxes show NAO region. Red ‘þ’ and Black ‘.’ stipples show significant positive and negative correlation at 5% confidence, respectively.

Table 13. Correlation between PCs of GPH (G1, G2, G3) and
climate indices.

Indices

G1 G2

Corrl. coeff. p-value Corrl. coeff. p-value

NAO 0.0926 0.5648 0.0165 0.9184
AO 0.0586 0.7160 0.0282 0.8612
AMO �0.2212 0.1646 �0.0865 0.5908
DMI �0.0652 0.6857 �0.0676 0.6745
EQWIN 0.2216 0.1638 0.2609 0.0995
ENSO-MEI �0.0531 0.7416 �0.1762 0.2704
EMI-MODOKI �0.2356 0.1382 0.0055 0.9725
PDO 0.1245 0.4379 �0.0262 0.8706

Bold figures indicate significant correlation at 20% confidence.
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Fig. 23. EOFs of standardized ZW-surface for June over 1977–2017. (a) EOF1 shows strong patterns of EQWIN. (b) EOF2 shows
weak pattern of EQWIN whereas (c) EOF3 shows strong pattern of EQWIN. Blue box shows WEIO region and red box shows EEIO
region. Black boxes show WEIO and EEIO region whereas green box shows CEIO region in Indian Ocean. Red boxes show ENSO-
MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in Atlantic Ocean.
Red ‘þ’ and Black ‘.’ stipples show significant negative and positive correlation at 5% confidence respectively.
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Fig. 24. EOFs of standardized ZW-surface for June over 1977–2017. (a) EOF1 shows moderate patterns of EQUINOO. (b) EOF2
shows weak pattern of EQUINOO whereas (c) EOF3 shows moderate pattern of EQUINOO. Blue box shows WEIO region and red
box shows EEIO region. Black boxes show WEIO and EEIO region whereas green box shows CEIO region in Indian Ocean. Red boxes
show ENSO-MODOKI regions whereas magenta box shows ENSO-MEI region in Pacific Ocean. Blue boxes show NAO region in
Atlantic Ocean. Red ‘þ’ and Black ‘.’ stipples show significant negative and positive correlation at 5% confidence respectively.
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Fig. 25. Time-lag correlation coefficient between most significant PCs and Climate Indices. June is considered as the pivot month with
a value “0” represented by a vertical line whereas negative/positive values along x-axis (Months) indicates preceding/following months
from June. Upper and lower limit represents the significance level of 5%.
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its maximum negative significance in January of the year
preceding the month of June whereas DMI, ENSO-MEI
and ENSO-MODOKI attains their maximum significance
in preceding month of May. Time-lag relationship also
shows that AMO, DMI, EQWIN and ENSO-MODOKI
are positively correlated whereas NAO, AO, ENSO-MEI
and PDO are negatively correlated with their respective
principal modes of precipitation.

3.5.8. Results of analyses for June. The results obtained
from all the above analyses are summarized in the Table
14 below along with the comparison with the previously
obtained results of correlation and Partial Mann-Kendall
analyses. Thus, from the analyses, it can be concluded
that influence of AO, DMI and EMI-MODOKI on
Region1 precipitation is insignificant (weak). The influ-
ence of NAO, AMO and ENSO-MEI may be considered
as moderate. Lastly the influence of EQWIN and PDO
are significant up to 5% confidence (may be considered
as strong). It is found that the Indian Summer Monsoon
Rainfall (ISMR) is influenced by IOD (Ashok et al.,
2001; Vishnu et al., 2019). As explained in para 2.2.2,
DMI and EQWIN are the oceanic and atmospheric circu-
lation indices that describes Indian Ocean Dipole (IOD).
In this study, EQWIN is found to be more correlated
than DMI having moderate to strong influence on June
precipitation.

4. Conclusion

Baluchistan receives its greater portion of the rainfall in
winter and spring months. Decreasing Trends in precipi-
tation are observed in the months of January in Region1,
when the time series data are analyzed from 1977 to 2017
through Mann- Kendall Test, which confirms that the
Baluchistan is receiving lesser rainfall since the past few
decades. The change in trends under the influence of cli-
matic Indices is determined through PMK for the month

of January and June in Region1. EQWIN, ENSO-MEI
and EMI-MODOKI shows moderate to strong influence
on precipitation.

It is determined through correlation of time series of
Region1 Precipitation (PCCs) and climate indices that
NAO, AMO, EQWIN, EMI-MODOKI and PDO are
influencing the precipitation in January and explain the
maximum variability of the precipitation in January.
EQWIN, EMI-MODOKI and AMO are positively corre-
lated with principle modes of January precipitation up to
8% significance whereas PDO and NAO are negatively
correlated with the January precipitation but are insignifi-
cant (their significance is in between 20% to 35%) and
thus can be ignored. NAO was found out to be favorable
for winter and spring precipitation over Pakistan as per
previous studies, but its effect is determined as insignifi-
cant for January precipitation in the Region1 of
Baluchistan. AMO is in its warmer phase since 1997 and
it is observed from the time series that the strength of
NAO and AO is weakened during this time period of
warm AMO phase. The decreasing trend may be due to
the weakening of NAO strength during past few decades
which is negatively affecting the January precipitation.

Slightly increasing trends are found in June precipita-
tion, when the time series data are analyzed from 1977 to
2017 through Mann-Kendall Test. NAO, AMO,
EQWIN, ENSO-MEI and PDO are found to be influenc-
ing the June precipitation as determined through correl-
ation analysis between PCs and climate indices. AMO
may be considered as positively correlated whereas NAO
and ENSO-MEI may be considered as negatively corre-
lated, but their strengths are insignificant to weak. PDO
is negatively correlated to the principle modes of region1
precipitation at 5% significance which means that the
negative phase of PDO is favorable for June precipita-
tion; whereas EQWIN is positively correlated with June
precipitation at 1% significance which means that positive
phase is favorable for June precipitation. It is observed

Table 14. Summary of analysis results for Region1 precipitation and climate indices for June.

Indices/
Teleconnection

Partial
Mann-Kendall

Correlation b/w
PC1 and climate indices EOF analysis

Correlation b/w PCs and anomalies of

SST
atmospheric
circulation

Zonal winds
and OLR

NAO Weak Significant at 11.05% Weak Weak Moderate –

AO Weak Insignificant Weak – – –

AMO Weak Insignificant moderate Moderate – –

DMI Weak Insignificant Weak Weak Weak –

EQWIN Strong Significant at 0.4 % Strong Moderate – Moderate to Strong
ENSO-MEI Weak Insignificant Strong Weak – –

EMI-MODOKI Strong Insignificant Weak Weak Weak –

PDO Weak Significant at 4.57 % Strong Strong – –

Where ‘–’ means not applicable.
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that the average precipitation in June 2007 was high
(86.4mm). During this year PDO (0.09) and AMO
(�0.08) were neutral, NAO (�3.339), ENSO-MEI
(�0.215) were negative whereas EQWIN (0.66) was posi-
tive which confirms the correlation findings as above and
accounts for the slight increasing trend in the June pre-
cipitation. The influencing climatic indices for the months
of January and June over the Region1 of Baluchistan as
identified through EOF maps, PCA and correlation anal-
yses can be used as the possible predictors of precipita-
tion for further studies.
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Appendix A

Table A1. Classification of influence type.

S. No Condition
Statistical significance

of trend Influence type

1 MK shows insignificant trend; after conditioning of
influencing variable through PMK, the trend still
remained statistically insignificant

Insignificant Insignificant

2 MK shows insignificant trend; after the conditioning
of influencing variable through PMK, the trend
becomes statistically significant

Significant C1, C2 or C3

3 MK shows significant trend, ; after the conditioning of
influencing variable through PMK, the trend further
amplified and becomes more statistically significant

Significant C1, C2 or C3

4 MK shows significant trend, ; the conditioning of
influencing variable through PMK, the trend
becomes statistically insignificant

Significant C1, C2 or C3

C1 PMK Conditioning of influencing variable changes the
MK-Statistics by up to 5%.

Significant/Insignificant Weak

C2 PMK Conditioning of influencing variable changes the
MK-Statistics from 5% to 10%.

Significant/Insignificant Moderate

C3 PMK Conditioning of influencing variable changes the
MK-Statistics more than 10%.

Significant/Insignificant Strong
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Table A2. Influence of NAO on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall with

NAO as covariate
Change in

MK-statistics due
to NAO as Covariate

Influence
typep-value MK-statistic Trend type p-value PMK-statistic Trend type

January Barakhan 0.0462 �177 Decreasing 0.048 �174.1 Decreasing 1.64% Weak
Quetta 0.0119 �224 Decreasing 0.0121 �223.4 Decreasing 0.27% Weak
Zhob 0.0239 �201 Decreasing 0.0245 �196.8 Decreasing 2.09% Weak

June Barakhan 0.0493 175 Increasing 0.0576 168.8 Increasing 3.54% Weak

Table A3. Influence of AO on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall
with AO as Covariate

Change in
MK-statistics due
to AO as covariate

Influence
typep-value MK-statistic Trend type p-value PMK-statistic Trend type

January Barakhan 0.0462 �177 Decreasing 0.0397 �179 Decreasing 1.13% Weak
Quetta 0.0119 �224 Decreasing 0.0113 �225.4 Decreasing 0.63% Weak
Zhob 0.0239 �201 Decreasing 0.0268 �196.1 Decreasing 2.44% Weak

June Barakhan 0.0493 175 Increasing 0.0457 176.5 Increasing 0.86% Weak

Table A4. Influence of AMO on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall
with AO as Covariate

Change in
MK-statistics due
to AO as covariate

Influence
Typep-value MK-statistic Trend type p-value PMK-statistic Trend Type

January Barakhan 0.0462 �177 Decreasing 0.0397 �179 Decreasing 1.13% Weak
Quetta 0.0119 �224 Decreasing 0.0113 �225.4 Decreasing 0.63% Weak
Zhob 0.0239 �201 Decreasing 0.0268 �196.1 Decreasing 2.44% Weak

June Barakhan 0.0493 175 Increasing 0.0457 176.5 Increasing 0.86% Weak

Table A5. Influence of IOD-DMI on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall with

IOD as Covariate
Change in

MK-statistics due to
IOD as covariate

Influence
typep-value MK-statistic Trend type p-value PMK-statistic Trend type

January Barakhan 0.0462 �177 Decreasing 0.0338 �188 Decreasing 6.21% Weak
Quetta 0.0119 �224 Decreasing 0.0086 �233.4 Decreasing 4.20% Weak
Zhob 0.0239 �201 Decreasing 0.0124 �221 Decreasing 9.95% Moderate

June Barakhan 0.0493 175 Increasing 0.0485 175.6 Increasing 0.34% Weak

Table A6. Influence of IOD-EQWIN on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall
with PDO as covariate

Change in
MK-statistics due to
PDO as covariate

Influence
typep-value MK-statistic Trend type p-value PMK-statistic Trend type

January Barakhan 0.0462 �177 Decreasing 0.0325 �153 Decreasing 13.56% Strong
Quetta 0.0119 �224 Decreasing 0.021 �202.6 Decreasing 9.55% Moderate
Zhob 0.0239 �201 Decreasing 0.0521 �166.9 Decreasing 16.97% Strong

June Barakhan 0.0493 175 Increasing 0.008 210.9 Increasing 20.51% Strong

42 E. AAMIR AND I. HASSAN



Appendix B

The relationship between the original time series A(x,y,t)
in terms of B(x,y) and Principal Component P(t) is given
by

A x, y, tð Þ ¼
XN
k¼1

P tð Þ þ Bðx:yÞ� �

where,
A(x,y,t) is the original time series as a function of time (t)
and space (x,y). B(x,y) show the spatial structures (x,y) of
the major factors that can account for the temporal
variation of A. P(t) is the Principal Component that tells
how the amplitude of each EOF varies with time.

Table A7. Influence of ENSO-MEI on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall with
ENSO-MEI as covariate

Change in
MK-statistics due to

ENSO-MEI as covariate
Influence

typep-value MK-statistic Trend type p-value PMK-statistic Trend type

January Barakhan 0.0462 �177 Decreasing 0.0437 �182.5 Decreasing 3.11% Weak
Quetta 0.0119 �224 Decreasing 0.0161 �213 Decreasing 4.91% Weak
Zhob 0.0239 �201 Decreasing 0.0362 �183.7 Decreasing 8.61% Moderate

June Barakhan 0.0493 175 Increasing 0.041 181 Increasing 3.43% Weak

Table A8. Influence of MODOKI on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall with
ENSO-MEI as Covariate

Change in
MK-statistics due to

ENSO-MEI as covariate
Influence

typep-value MK-statistic
Trend
type p-value PMK-statistic Trend type

January Barakhan 0.0462 �177 Decreasing 0.1227 �135.3 Decreasing 23.56% Strong
Quetta 0.0119 �224 Decreasing 0.1036 �136.8 Decreasing 38.93% Strong
Zhob 0.0239 �201 Decreasing 0.1798 �112.4 Decreasing 44.08% Strong

June Barakhan 0.0493 175 Increasing 0.1076 140.9 Increasing 19.49% Strong

Table A9. Influence of PDO on precipitation trends.

Months Stations

Mann-Kendall
Partial Mann-Kendall with

PDO as covariate
Change in

MK-statistics due to
PDO as covariate

Influence
typep-value MK-statistic Trend type p-value PMK-statistic Trend type

January Barakhan 0.0462 �177 Decreasing 0.0325 �185.9 Decreasing 5.03% Weak
Quetta 0.0119 �224 Decreasing 0.0097 �228.8 Decreasing 2.14% Weak
Zhob 0.0239 �201 Decreasing 0.0219 �203.5 Decreasing 1.24% Weak

June Barakhan 0.0493 175 Increasing 0.0357 183.4 Increasing 4.80% Weak
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Appendix C

Fig. C1. (a) Spatial distribution – average Region1 precipitation January. (b) Spatial distribution – average Region1 precipitation June.

Fig. C2. (a) Spatial dsistribution of EOF1 of January. (b) Temporal variation of PC-1 of January.

Fig. C3. (a) Spatial distribution of EOF-2 of January. (b) Temporal variation of PC-2 of January.
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Fig. C5. (a) Spatial distribution of EOF-1 of June. (b) Temporal variation of PC-1 of June.

Fig. C6. (a) Spatial distribution of EOF-2 of June. (b) Temporal variation of PC-2 of June.

Fig. C4. (a) Spatial distribution of EOF-3 of January. (b) Temporal variation of PC-3 of January.
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Fig. C7. (a) Spatial distribution of EOF-3 of June. (b) Temporal variation of PC-3 of June. Refer to Fig. C2b the precipitation index
is �0.18 in the year 1983. The EMI-Modoki and NAO index are unusually at �2.98 and þ4.824 respectively in January 1983 which
may be attributed to the post volcanic eruption of Mount El Chichon-Mexico in March 1982. Similarly, refer to Fig. C5b, the negative
precipitation anomaly as is observed in the year June 1982 and June 1991 following the volcanic eruption of Mount El Chichon-Mexico
in March 1982 and Mount Pinatubo-Phillipines in June 1991 may be because of variation in climate patterns unfavorable to
precipitation due to post volcanic eruption changes in EMI-Modoki and EQWIN indices (Dogar et al., 2017; Dogar, 2018; Dogar and
Sato, 2019).
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