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ABSTRACT

The paper investigates the possibility that blocking may be one of the multiple steady states that
are possible in a low-order nonlinear system based on wave-wave interaction rather than zonal-
wave interaction. The model is based on an equivalent barotropic system forced by a Newtonian
forcing and dissipated by boundary layer friction. Three waves are permitted to interact in a non-
linear way giving a system of six nonlinear equations since each wave has a sine and a cosine
component. The multiple steady states are determined by a mixture of analytical and numerical
methods. The kinetic energy of each of these states is calculated, and the structure of the stable
steady states is shown. It may be concluded that wave-wave interaction, just as interaction
between the zonal flow and the waves, is a possible mechanism for the formation of blocking pat-
terns. However, both mechanisms, expressed as interaction in low order systems, have difficulties
in providing at the same time a fair comparison between theory and observations with respect
to horizontal scale and levels of kinetic energy.

1. Introduction

Blocking is one of the well known quasi-station-
ary patterns in atmospheric flows. It is described
from a synoptic point of view by Elliott and
Smith (1949) and Berggren et al. (1949) and later
also by a climatological and statistical study
by Rex (1950). More recent observational studies
of blocking in the northern and southern hemi-
spheres have been conducted by Lejends and
Okland (1983), and Lejends (1984). An overview
of the recent state of observational, numerical and
theoretical research on blocking may be found in
Benzi et al. (1986). Early studies of blocking and
related phenomena have been carried out by Egger
(1978) who considered flow with and without inter-
actions between the zonal flow and the eddies. The
study by Vickroy and Dutton (1979) emphasized
bifurcations and catastrophies in quasi-geo-
strophic flow under the influence of forcing and
dissipation.

The first studies of multiple steady states in low-
order, nonlinear systems by Charney and DeVore
(1979) and Wiin-Nielsen (1979) emphasized the

nonlinear interaction between the zonal flow and
the eddies. A closer scrutiny of these solutions
revealed that although a stable, steady state resem-
bling a block could be found such a solution will in
general have a level of kinetic energy that is quite
high compared to the energy level found in real
blocking situations. The same point has been made
by Tung and Rosenthal (1985). This question was
further investigated by Wiin-Nielsen (1984) with
the result that energy levels comparing favorably
with observations may be found, but the param-
eter space in which such solutions exist is quite
small. One may therefore conclude that the zonal-
wave interaction may not be the major mechanism
at work in forming the blocking configuration.
Another possibility within low-order, nonlinear
systems is that a wave-wave interaction may
produce the blocking situation. This possibility
was investigated by Wiin Christensen (1985) with
positive results although the energy levels were too
high when considering large meridional scales.
A preliminary investigation of this idea was
presented by Wiin-Nielsen (1986), but the system
employed for the investigation was reduced to only
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3 nonlinear equations by neglecting the beta-term
in the vorticity equation and working solely with
the cosine components of the waves, meaning that
only the imaginary part of the amplitude is dif-
ferent from zero. Although the results were very
promising, it is a severely restricted system, and
one of the purposes of this paper is to present a
somewhat more general analysis of wave-wave
interactions. Another result of the investigation of
the restricted system was that the topographical
effect is of minor importance compared to the
Newtonian forcing. We shall therefore not include
the mountain effect in the present study. Benzi et
al. (1986) have also investigated wave-wave inter-
actions, but they consider only self-interactions to
obtain the so-called bent resonances.

Legras and Ghil (1985), using models with 20

to 30 degrees of freedom, investigated the con-
nections between persistent anomalies, of which
blocking is an example, and atmospheric predic-
tability. The same connection, but in an opera-
tional setting, was studied by Tracton (1990)
because of errors in some global predictions
models with respect to the formation and duration
of blocks. Buzzi et al. (1986) reinvestigated the
Charney-DeVore model to provide observational
evidence for the multiple steady state theory and
improved the model to contain the bent resonance
by including selfinteraction by waves.
The synoptic development leading to blocking was
already described by Berggren et al. (1949), and
from that description one may easily see that at
least some blocking situations appear to develop
as a series of developing and interacting waves
move across the Atlantic gradually producing the
blocking situation in the eastern part of the
Atlantic or over Scandinavia. However, the role of
the zonal flow in these developments is unknown.
Similar data studies were included in the paper by
Tracton (1990) referenced above.

Thompson (1957) has contributed to the under-
standing of the long term velocity variations in
barotropic flow by providing a theory for the
time variations of the zonal flow as influenced by
the statistics of the eddy behavior. The theory
is entirely internal in the sense that heating,
topographical effects and friction play no role in it.
Additional comments on the theory may be found
in the paper by Wiin-Nielsen (1986) containing
examples of integrations of Thompson’s equation
in time for various cases. It is evident that jets with
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sufficiently strong horizontal shear will in time
be divided in jets containing two branches. The
theory provides therefore a mechanism that is
capable of producing the split in the jet stream that
is also an important feature of the blocking
pattern. On the other hand, the theory does not
give a complete description of the formation of the
blocking high simply because it deals entirely with
the zonally averaged flow.

It is well known that an analytical-numerical
study of nonlinear systems becomes very cumber-
some as soon as the number of components
increases. The major problem is the determination
of the multiple steady states. In this study, we
shall therefore restrict ourselves to the interaction

- between three waves in a equivalent barotropic

system with Newtonian forcing. In the real domain
we will thus have a system of six nonlinear equa-
tions. The determination of the steady states
is cumbersome, but it can be accomplished by
characterizing the waves by the amplitude and the
phase replacing the amplitudes of the sine and
cosine components of the wave. Furthermore, the
analysis is simplified if we assume that the forcing
is restricted to only two of the three components.

Using such a limited system we cannot hope to
describe the details of blocking phenomena. We
may hope to show that the wave-wave interaction
is a definite mechanism at work in the formation of
some of the quasi-stationary flow patterns that we
call blocking situations. As we shall see in the
description of the investigation, it is at the same
time difficult to obtain the energy levels and the
horizontal scales characteristic of blocking but in
spite of the difficulty the theory does describe some
major aspects of the phenomenon.

2. The model

The basic equation is the equivalent barotropic
vorticity equation. Using the radius of the Earth, a,
as the length scale and Q! as the time scale, with
Q denoting the angular velocity of the rotation of
the Earth, we may write the basic equation in the
form:

OVHY[or=J(Vy, ) —2(0y/0 1)
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where  is the streamfunction, y* the forcing
streamfunction and I" the intensity of the New-
tonian forcing. (2.1) is transformed to the wave
number space following Platzman (1962) and
using his notation results in the spectral equation:

“K(V, B.a)Ygy.

),

dy, 1
dz‘2'§§

21,
+1.F?'l’y_r('//7”'//;‘)’ (2.2)

where K(y, f, «) is the interaction coefficient, | the
nondimensional wavenumber and ¢ =n(n + 1).
The components in the series development of the
streamfunction are of the form:
Y =JP,(n) e™, (23)
where the amplitude is a complex number that we
shall write in the form:
¥=34x—ip), (24)
from which it follows that the longitude dependent
part of the wave can be written as:
x cos(lA) + y sin(/A) (2.5)
As Platzman (1962), we shall make use of the
complex wave number recalling that both wave
number and its conjugate should be inctuded in the
model. We select three waves in such a way that
the selection rules are satisfied. After some calcula-

tions we obtain the following six equations in the
real domain:

dx 1

d—tl=—Egl(xzya‘st’Z)—‘c"%"r(xl—xi"),
(2.6)

d 1

% 5 gi(x2x3+y2y3) + =Ly —»f),
(2.7)

dx 1 21

d_t2= _Egz(leb_xs}’l)—gz)&—r(xz—xf),
(2.8)

dy, 1 21,

dt2 282(X1X3+}’1y3)+ x;=T(y,—y3),
(2.9)
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dx, 1 21

j=§g3(x1y2+xzyl)—f}h—r(xs—x?)’
(2.10)

d 21

Ef= “Egs(xlxz—yl)h)‘*‘éxs—r(,% ¥

The following symbols have been introduced:

o, —C
f=SE Ok
1
C,—C
g = 3c LK, (2.12)
2
c,—C
g;= IC ’K.
3

The first problem is to search for the steady state
solutions of the coupled nonlinear equations. It
turns out that the most convenient procedure is to
replace the two amplitude components by a single
amplitude and a phase angle by writing

x=Rcos b,

x* = R* cos 0%,

y=Rsin 6,

) (2.13)
y* = R* sin 0*,
with the proper subscripts in each case. In addition
we introduce the notations:

21
F==. 2.
C (2.14)

It is then a straightforward matter to derive the
equations for the rate of change of the amplitudes
and the phase angles. In this connection it is an
advantage to introduce the notation:
¢=0,+0,—10,. (2.15)

The first system of 6 equations is then replaced
by another system with the same number of equa-
tions. They are:

dR, 1 .

Ft—l=§glR2R3 sin ¢
—TI'R, +TRf cos(8F —6,), (2.16)
dg, 1

R, d—tl=581R2R3 cos ¢
+F,R, +TR}¥sin(6F —6,), (2.17)
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dR, 1 .
d—12=§g2R1R3 sin ¢

—T R, +TR¥ cos(6% —6,),

dg, 1
Rzaz=§g2R,R3 cos ¢

+F2R2 + rR;‘ Sln(e; - 02),

dr, 1
-d—t3=—g3R1R3 cos ¢

—I'Ry+TR¥ cos(0F —05),

dé 1
3d—t3: _EgsRle cos ¢

+F3R;+TR¥ sin(0F —6,).

(2.18)

(2.19)

(2.20)

(2.21)

The steady state equations have been solved in a
special case only. It has been assumed that the
forcing is nonzero on only two of the waves, while
the third has been assumed to vanish. In the case
treated below it has been assumed that the middle
component forcing is zero. In that case it follows
from (2.18) and (2.19) that

2F,R,
cosp=— ,
&R R,
(2.22)
2r
sin ¢ = Rs
8RRy _
It is seen from (2.22) that
. &T2+F2) R?
sin? g +cos?p=——"—2 21,
g  RiR;
(223)
tan ¢ = —F

The strategy is then to introduce the expres-
sions in (2.23) in (2.16), (2.17), (2.20) and (2.21).
Denoting

= *—-—0
71="0] 15 (2.24)
}’3:9;"‘03,
and
_ T8
Q=i Ry
(2.25)

0,= — 8283
PT A2+ F2Y
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We may first write the 4 equations in the form:

R} cosy,=R{(1+ Q,R?%),
R¥siny,= —R(F,/T + Q,F,RYT),
R¥ cos y3=R,(1 + Q3 R?),
R sin y; = —Ry(F3/T — Q; F, R}T).

(2.26)

Squaring and adding the first two and thereafter
the last two equations in (2.26) and denoting

2 22 F:; F, » z
N°=(1+QsRY}) +F l—Q3F-R1 , (227)
3

we may finally write an equation having only one
unknown. It is:

*2\ 2
(o)

Fz F. R*Z 2
(o)) -
! (2.28)

The procedure of solution is then first to solve
(2.28) for the variable Z using a standard root
finding routine. For each of the roots in (2.28) we
proceed to find the remaining variables from the
following expressions:

R3;=R}/N,

—F, 1+ Q,F,R}/F,
tan 1= 2 3

r 1 R

TR (2.29)

—F31—Q3F,R}/F;

tan y; = — s 2
T  140:R;

r
tan ¢ = o
0,=0f~7y,
Oy =0%—y, (2.30)
0,=¢+0,—-0,
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3. Results

The formulation given in the previous section
can be applied to any combination of three waves.
Using the selection rules it is necessary to obtain
an interaction coefficient that is different from
zero, since otherwise the system is linear and thus
uninteresting for the purposes of the present
investigation. The system has been studied (Wiin
Christensen, 1985) with respect to the horizontal
scales of the three components. It became evident
that if the three components are of large meridi-
onal scale the resulting solutions will have kinetic
energy amounts far exceeding those observed in
real blocking situations (Schilling, 1986). This
feature of the solutions is understandable from
the fact that a blocking high has a limited size in
the meridional direction. Due to the divided
jetstream with branches going north and south of
the blocking high one finds low geopotential
regions to the north and the south of the middle
latitude high. Combined with the fact that the
tropical region is undisturbed it is necessary to
select associated Legendre functions with several
zeroes between pole and equator.

At the same time as shown from observations by
Austin (1980) it appears likely that blocking situa-
tions are created by an interaction between the
planetary longitudinal wave numbers 1, 2 and 3
representing a triplet satisfying the longitudinal
part of the selection rules. The second index in
the associated Legendre function must then be
selected in an appropriate way. We shall follow
this strategy. Based on these considerations and
the earlier experiments we have selected a triplet
where the indices on the associated Legendre func-
tions are (3, 13), (1, 10) and (2, 12) listed in this
order because we choose to have the forcing on
longitudinal wave numbers 3 and 2 with no forcing
on wave number 1. These selections are very
realistic when compared to the real atmosphere
since the basic selection of (1, 10) gives 5 zeroes
between pole and equator. This can be interpreted
as representing a classical blocking situation.
Experiments show that the kinetic energy levels
are sensitive to the choice of the coefficient I'. The
results obtained here used a value for the non-
dimensional coefficent I' = 0.005.

The equations needed to calculate solutions to
the problem are (2.27)-(2.30). To solve the steady
state problem we must find solutions to (2.28)
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using the expression in (2.27). The first difficulty is
to obtain an understanding of the conditions
under which (2.28) has multiple solutions. For this
to be possible it is seen that the function on the left
hand side of (2.28) should have at least one maxi-
mum and one minimum. If, we, for a given value of

23, = R¥?, (3.1

can find the maxima and minima of the left hand
side of (2.28) we then know the interval of

le=R;“2 (3'2)

for which multiple solutions are possible.

It is furthermore seen that the function in ques-
tion is an entirely positive function since z by
definition is positive and the quantity in square
brackets is a sum of squared quantities. The
function is furthermore zero for z =0, and it will
therefore have a positive derivative for z=0. The
determination of the positions of the maxima and
minima are obtained by an elementary calculation
of the derivative followed by a numerical deter-
mination of the roots of the equation obtained by
setting the derivative equal to zero. Standard
numerical root finding routines are used for this
purpose.

It would be possible to determine all positive
roots in the equation, but we shall limit ourselves
to the roots corresponding to relatively small values
of the kinetic energy in the three components. The
kinetic energy of a given component, expressed in
energy per unit area, is obtained by integrating the
kinetic energy per unit mass over the whole area of
the sphere and dividing the result by the total area:
4ra®. After integration we obtain:

1
K=-20 202 cz,

8¢
c=n(n+1), (3.3)
z=R?

Evaluating the formula in (3.3) for the compo-
nent with the largest value of ¢ we find that it will
be sufficient to look for roots with a value less than
4, when we scale the value of z by the factor 1075,
Looking first at the positions and the values of the
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extrema of the function we find that multiple solu-
tions are possible only when
z3 2 18. (3.4)

Fig. 1 shows the values of the maxima and the
minima as a function of zs,. The values of z,;, must
for each value of z,, be selected between the mini-
mum and the maximum values to obtain multiple
solutions. It will be seen that close to the limit
given by (3.4) there are narrow limits for the selec-
tion of z,,, but as z;, increases a much wider choice
is available for the selection of the intensity of the
forcing given by z,,. It would thus appear that
blocking situations may be created by a large num-
ber of combinations of forcing functions. However,
this statement is acceptable only if the necessary
condition that the energy amounts of a given
solution are of the same order of magnitude as
the amounts shown by data studies. Due to the
simplicity of the model, one cannot expect a close
agreement with the observed situations.

Fig. 2 gives the energy levels for the blocked
state as the dashed curve. They are high, but of the
correct order of magnitude. The non-blocked state
is given in the same diagram as the full curve. The
energies displayed by the curves is the sum of the
energies on all three components contained in

259

the steady state. Fig. 3 shows a different case where
the value of z,, has been reduced from z,;=50.0
(scaled value) to z,,=30.0. It is seen that the
energy levels for the blocked state are considerably
lower in the case of lower forcing.

The stability of the various steady states is
important. As seen from Fig. 1 it is necessary to
have z;; at a sufficiently high level before multiple
steady states will appear. When they do we find in
general three steady states for values of z; < 4. To
investigate the stability one may return to the
original 6 equations, i.e., (2.6) to (2.11). Following
standard procedures for linearization one may
derive the perturbation equations for small devia-
tions from a given steady state. Writing all the
perturbation variables in the form:
(3, ¥) = (X0, yo) exp(v1), (3.5)
one may reduce the stability problem to a standard
eigenvalue problem that has been solved numeri-
cally by standard procedures. The main result of
the stability investigations is that the steady states
corresponding to the smallest and the largest
values of z, are stable, while the middle value is
unstable. We stress that to perform the stability
investigation it is necessary to calculate the values
of z, and z; as well as the phase angles correspond-

region of multiple steady states

60 T T

50 |-

40 -

30 (-

20 |-

max. and min. of fct. for steady states

10

T T T T

15 20 25

0
z3s non. dim,

35 10 15 50

Fig. 1. The region of multiple steady states is between the two curves. The ordinate is also the forcing on wave compo-

nent 1.
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Energy amounts
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Fig. 2. Energy levels. Dashed curve is for the blocked states, full curve for the stable unblocked states.

Energy levels

5000 T

4000

3000 |-

K1, K3 (kj m?)

2000

1 1 1 1

40 41 42 43 44 45
r3s non.dim.

Fig. 3. As Fig. 2 except that the forcing on wave component 1 has been reduced from 50 to 30 units (scaled values).
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ing to all three values of z. The formulas are given
in Section 2. It has not been found necessary to
reproduce all the calculations here, but it may be
of interest to give an example.

Fig. 4, calculated with z,,=50.0 and z,,=
21.025, shows the position of the three roots as
the intersections with the zero line. The kinetic
energies corresponding to the first stable steady
state are K1 =931kIm~2 K2=210kJm~2 and
K3=882kIm~2 while those attached to the
second stable steady state are K1 =1628 kI m~2
K2=679kIm~? and K3=1634kIm~2 The
blocking case has thus a total energy amount
corresponding to almost twice the amount in the
non-blocked case. In Fig. 5 we show the blocking
case at 40 N together with the forcing (dashed
curve). Wave numbers 2 and 3 cooperate to form
the largest ridge in the middle of the figure. Only
small amplitude ridges are formed to the west and
the east of the large amplitude ridge. Fig. 6 is the
non-blocked case with smaller amplitudes located
at almost the same longitudes. The present case
corresponds to a single block of the Pacific type
according to Austin (1980), since the forcing
amplitudes are large on wavenumbers two and
three. It happens when the largest forcing is 40 to
50° to the west of the position of the block in this

det.
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case. Figs.5,6 have r; =50, 6,,=—90° and
r3s =21.025, 0;,= —45°, where the r values are
given in scaled form. Figs. 7, 8 show in a similar
arrangement a case, where r; =r;, =30, while
0= —90 and 6,,= —55° The latter case dis-
played in Figs. 7,8 show a larger difference
between the blocked and the non-blocked case.
Due to the stability present in the two solutions
with the smallest and the largest energy levels the
system will display a form of hysteresis. To
demonstrate this we start an integration (Fig. 9)
with a forcing so small that only one stable low
energy state exists. We let the forcing in the experi-
ment increase slowly with time. It will after a while
be so large that three steady states will be possible,
but the low energy state is stable, and the system
will therefore stay in that state. However, when the
forcing becomes so large that the system moves out
of the region with multiple steady states, there will
be only one steady state, i.e. the high energy stable
steady state. At this point we discontinue the
increase in the forcing. The system will therefore
fall into this steady state after some additional
time. The calculation is then continued with
decreasing values of the forcing. The system will
also stay in the high energy state through the
region of multiple steady states. When the forcing

of steady states

20 T T T

(z)

-20 |-

~30 |-

40 |

T T T T

1 L i L

-50

z,

2 2.5 3 3.5 4
non.dim.

Fig. 4. Anexample of the determination of the three steady states. The curve is calculated for r,, = 50 and r5,= 21.025

(scaled values)
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Fig. 5. The streamfunction as a function of latitude at 40 N together with the forcing streamfunction (dashed curve)

for the blocked case (r)s =50, r3; =21.025).
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Fig. 6. As Fig. 5, but for the stable, unblocked case.
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9 forcing and respounse, 40 N
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Fig. 7. As Fig. 5, but with r ;= r; = 30.
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Fig. 8. As Fig. 7, but for the unblocked case.
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llysteresis
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o
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26 28 30 - - " |

z3s, non.dim

Fig. 9. The hystereris experiment with forcing on the abscissa and kinetic energy on the ordinate.

becomes so small that the system leaves the region
of multiple steady states only the low energy stable
steady state will exist. The system will therefore
finish in this state whereby the loop is closed.

In the hysteresis experiment we come from a low
to a high energy state and vice versa by increasing
and thereafter decreasing the forcing. This
mechanism is different from the proposals made by
Speranza (1986) who considers the problem of
how the system can come from the unblocked to
the blocked steady state under constant forcing. In
such a case it is proposed that stochastic distur-
bances are necessary to move the system from one
state to another. The exit times computed from the
stochasic considerations are quite realistic, and it
may very well be that both mechanisms are at
work.

4. Other solutions

The solutions considered in the previous sec-
tions have emphasized the multiple steady states
with similarities to blocking. It has been noted that
such solutions require a special specification of the
forcing parameters. Such solutions are the excep-
tions rather than the rule for the system. In most

cases one will obtain a single stable, steady state.
Such solutions are easily obtained by either a long
term numerical integration of the system or by
using a form of Newtons method applicable to
systems of equations. The latter method is to be
prefered since it in principle can provide multiple
solutions although it is well known that these
numerical methods require a good first guess to
obtain a given steady state.

In searching for multiple steady states it was dis-
covered that for certain values of the forcing
parameters the system goes into a state which can
best be described as a limit cycle. We shall
illustrate this behavior by an example. Let the
forcing parameters be x}=-1.0, x¥=19.0 and
Xx3+=29.0, while all forcing quantities on the
y-components are zero. A numerical integration of
this system from an initial state where all com-
ponents are zero will finish in a limit cycle. Fig. 10
shows the components x; and y, as a function of
time. The figure indicates clearly that the system
for these two components will end in a closed
curve. The same is the case for the components x,,
¥y, and x3, y; as shown in Figs. 11, 12. An inspec-
tion of the time dependence shows that the period
in the cycle is about 36 days. Plaut and Vautard
(1994) have found a similar oscillation with a

Tellus 48A (1996), 2



BLOCKING AS A WAVE-WAVE INTERACTION 265

Limit cycle, x1* =-1.0, x2*= 19.0, x3*= 29.0; all init.val. =0.0;
T

T T T T T

y1

Fig. 10. Limit cycle for the following forcing. x} = —1.0, x} =19.0, x3. =29.0, y¥ =y¥ =y =0. Initial conditions.
all variables equal to zero. Variables along axes are x; and y,.

Limit cycle, x1* =-1.0, x2*=19.0, x3*= 29.0; all init.val. =0.0;
.
T T

T T T T

y2

Fig. 11. As Fig. 10, but for x, and y,.

Tellus 48A (1996), 2



266 C. WIIN CHRISTENSEN AND A. WIIN-NIELSEN

Limit cycle, x1* =-1.0, x2*= 19.0, x3"= 29.0; all init.val. =0.0;
10 T T T T T T | A

y3
o
T

Fig. 12. As Fig. 10, but for x; and y;.

Non-linear exchange, energy received by wave number 3
6 R T T T T T T

Cni3x10™*-4, non.dim.

1 L 1 1 1 1

-1 L
8000 8500 9000 9500 10000 10500 11000 11500 12000
n, number of timesteps

Fig. 13. Nonlinear exchange energy received by wave number 1.
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Non-linear exchange, energy received by wave number 2
T T

Cal2¢10", non.dim.

-8 -

-9 1 I 1 t L 1 1
8000 8500 9000 9500 10000 10500 11000 11500 12000
n, number of timesteps

Fig. 14. Nonlinear exchange energy received by wave number 2.

Non-tinear exchange, energy received by wave number 1
3.5 T T T T T T T

Call*10

1 1 1 1 1 1 1

.5
8000 8500 9000 9500 10000 10500 11000 11500 12000
n, number of timesteps

Fig. 15. Nonlinear exchange energy received by wave number 3.
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Steady state, x1'=-1.0; x2*'= 19.0; x3"=29.0; all init. val.= 10.0;
T

y1
o
T

T T T

8 10 12

Fig. 16. Same forcing as in Fig. 10, but initial values are 10.0 for all variables. A steady state is obtained.

period of 30-35 days across the Atlantic. The
period cannot be a linear phenomenon because it
is the same for the three components. It should
therefore be connected with the nonlinear
exchange among them. This conclusion is verified
by Figs. 13, 14 and 15 where the curves show the
amount of energy received by a given wave num-
ber by nonlinear exchange with the other two wave
numbers. We notice that energy is received on
wavenumbers 1 and 3, while a loss of energy by
nonlinear interaction takes place from wavenum-
ber 2. The period of the shorter oscillation is the
same (36 days) as we found for the limit cycle.
These figures indicate also that a longer period is
present in the energy exchange. It is most likely
due to the numerical integration scheme where
rather long timesteps of 3 h have been used. A test
calculation with smaller timesteps indicates that
the longer period disappears.

There are, however, other types of solutions for
certain forcing values. Let us for example consider
the solutions for the following forcing values:
x¥=—10, x¥=19.0 and x¥ =29.0, while all the
y-values are zero. Starting from initial values all
equal to 10.0 we find that the solution approaches
a steady state as illustrated by Fig. 16. If we, on the
other hand, start from an initial state, where all the
variables are set to zero we know that a limit cycle

exists (Fig. 10). We have thus very different
behaviors of the system depending on the starting
position. It would be of interest to determine the
set of starting values leading to limit cycles and
those resulting in a steady state. However, such a
mapping of the six-dimensional space is far from
easy and goes beyond the purpose of this paper.

5. Concluding remarks

Several proposals have been made for the crea-
tion of blocking situations since the first studies in
1979. In addition to the various proposals involv-
ing multiple steady states there are suggestions
pointing to solitary waves (modon) models
(Hains, 1987) and dipole models (McWilliams,
1980) as possible mechanisms. All of the proposals
are based on very simple low order models, and
none of them are able to match the specific condi-
tions of natural blocks. Kéllén (1981, 1982) has
shown that results in a low order equivalent
barotropic model with respect to blocking can be
reproduced in a numerical integration of a higher
order model af the same kind. For his experiment
to be realistic it was, however, necessary to
increase the (thermal) forcing, because otherwise
the cascade of energy to the smaller scales would
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prevent creation of the block. This experiment may
indicate why there is such a discrepancy between
the energy levels of the blocked state in low order
models as compared to natural blocks. In low-
order models the energy is trapped in the modes
permitted in the model, while a high-order model
will cascade energy to the larger wave numbers. In
an operational global model (Simmons, 1986) it
was found that the treatment of blocking appears
to pose no outstanding problem. Cases of high
predictability involving blocks have been noted as
for example described by Bengtsson (1981). While
the latter study points out that high resolution
models perform better in predicting blocks than
models with lower resolutions, it is also mentioned
that models with moderate resolution still clearly
indicate the formation of the blocks although
lacking in detail.

The present proposal (that wave-wave nonlinear
interaction may be an essential part of the creation
of some blocking patterns) is partly based on
the larger agreement with the observed energy
amounts and partly on the more realistic wave for-
cing both with respect to magnitude and position
as indicated by the relation between the forcing
and the resulting block.
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6. Appendix

A particularly simple case of the low order
system under consideration in this paper is
obtained if one neglects the Coriolis force and
includes only the sine components of the waves in
the description. One observes that in this case the
system reduces to the much simpler three compo-
nent system:

dy, 1

d_tl=5g1J’2Y3 +T(y¥—y1),

dy, 1

F2=3 8+ T =), (17)
dy, 1

Eyf=§g3y1yz+l"(y§' —¥3)

Although of lesser relevance to the real atmos-
phere than the six component system because of
the neglect of the Coriolis terms, the above system
displays many of the features of the more general
system. In the present case it is possible to deter-
mine the stationary states with an arbitrary forc-
ing. By solving the last two equations in (17) for y,

Steady states, y1"=y2*=y3°=3.0

4 T

T T T

Fig. 17. Steady states in the low order model with three variables for y ¥ = y¥ = y¥ =3.0.
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Steady states, y1*=y2*=y3*=1.59
T T T
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fly1)
o

Fig. 18. As Fig. 17, but all three forcing variables are 1.59.

and y; for the steady state equations and inserting
the resulting expressions in the first equation of
(17) with d/dt =0 we obtain the following equa-
tion for y,:

a(y¥+ayiy ) (y¥ +asy¥y)

+ =yl —aya:y7)* =0,
L& (18)
=57
It is seen that (18) is a Sth degree equation that
may be solved by numerical methods. In each case
we have found that the roots are either two con-
jugate complex roots and three real roots or two
pairs of conjugate complex roots and one real root.
The system (17) may thus have one or three steady
states. Plotting the left hand side of (18) against y,

i=1,2,3.

one may locate the roots by inspection. In the case
of three real roots for y, it turns out that the steady
state corresponding to the middle root is unstable
while the other two steady states are stable. The
case of a single steady state is normally obtained
for sufficiently low values of the three forcing
parameters y*. These situations are described in
the Figs. 17 and 18. In Fig. 17 we have three steady
states, while Fig. 18 shows a case where the forcing
is such that the two steady states to the left are
about to disappear.

The special case considered in this appendix
indicates that it behaves in many respects in the
same way as the more complicated system contain-
ing 6 equations. On the other hand, it is no more
than an example, and the results are not directly
applicable to the atmosphere.
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