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ABSTRACT

A 2-layer version of the Stommel-Arons model of the abyssal circulation is shown to be inconsist-
ent with the closure scheme used in Stommel’s conceptual box model of the thermohaline
circulation. The closure relates the strength of the exchange between 2 boxes, taken to represent
the meridional overturning cell in the ocean, to the density difference between the boxes. Here,
the Stommel-Arons model is used to argue that the difference in density, averaged over regions
corresponding to Stommel’s boxes, is not indicative of the rate of exchange between these
regions. More generally, it is argued that to a good approximation, the zonally-averaged density
field in the Stommel-Arons model is independent of both the sense and structure of the meridi-
onal overturning cell or cells. The reason for this is that, although the western boundary currents
make an O(1) contribution to the zonally-averaged meridional transport, they have only a very
small influence on the zonally averaged density field.

1. Introduction

Much of the ocean’s rdle in regulating climate
is thought to be linked to its thermohaline circula-
tion. Two now classic papers form the basis of
much of current thinking regarding both the meri-
dional and horizontal structure of this circulation.
In one of these (Stommel, 1961), Stommel pro-
poses a simple box model driven by buoyancy
fluxes to show that multiple steady states can exist
under identical forcing. The model used two boxes
to represent the high and low latitudes of a single
hemisphere basin and has since been extended to
allow for the possibility of pole to pole cells, as
well as exchanges between different ocean basins
(Welander, 1986). The multiple steady states
obtained are generally interpreted as being ana-
logous to multiple steady states of the zonally
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averaged meridional overturning cell in the ocean.
A key element of Stommel’s model is a closure
scheme which relates the density difference
between adjacent well mixed boxes to the strength
of the exchange between the boxes. The second
paper, (Stommel and Arons, 1960), takes the
strength and structure of the zonally-averaged
meridional cell to be specified and solves for the
implied horizontal circulation. A success of this
work was its prediction of deep western boundary
currents, which are represented in the model as
thin dissipative boundary layers. In this note, it is
demonstrated that these two models of the buoy-
ancy driven circulation are inconsistent with one
another. In particular, it is shown that, given a
separation of scale between the width of an ocean
basin and the width of a deep western boundary
layer, the structure and even the direction of the
meridional cell is uncorrelated with the zonally
averaged density field. Thus, for example, based
on the zonally averaged density field alone, it is
impossible to distinguish between two oppositely
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directed pole to pole cells or between a pole to
pole cell and a meridional circulation which is
symmetric about the equator.

It is helpful to begin with a brief review of the
Stommel-Arons model of mass driven circulation.
Consider two isopycnal layers separated by an
interface, whose height above the sea floor is given
by #. Density in the lower layer, p,, is taken to be
slightly larger than density in the upper layer, p;.
Deep water formation is represented in the model
by one or more localized transfers of mass from
the upper layer to the abyssal layer. A steady state
requires that there be a return of this water to the
upper layer. Following Stommel and Arons, it is
assumed here that this diapycnal velocity, e, is
uniformly distributed over the basin.

The model assumes the interior to be in a
planetary geostrophic balance. In the interest of
simplicity, the equatorial f-plane approximation
is made (i.e., f=py, where f is the Coriolis para-
meter). Thus, the horizontal velocity field is taken
to be geostrophic and the mass equation is taken
to be fully nonlinear*. In the absence of wind
forcing, the barotropic velocity vanishes and the
horizontal velocity field in both layers is specified
by the interface height field:

’

(ul’ 171)= g_ﬂny(rly’ —r]x)s (1)
/H._-
(13 0)= £ ), @)

for the upper and lower layers, respectively.
Continuity of mass within a layer then leads to
an equation for #:
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where H is the (constant) depth of the ocean.
Taking the model domain to be a rectangular
basin, with x=0 corresponding to the eastern
boundary, and integrating (3) leads to a cubic
equation for n(x,y):

gH g
3 (e —110) — 3 (e —13) = PH exy? (4)

where 7, gives the the position of the interface
height field at x=0 and the subscript ;,, indicates

* Advection of the interface by the ageostrophic vel-
ocity field is, however, neglected.
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Fig. 1. n contours for the case g =5 x 1073, #7,=2000 m,
H=4000m, f=2¢—11m 's ! and e=6.7x 107" m/s.
The meridional length scale (equator to pole) is 5000 km
and the zonal length scale 4000 km. Note that for this
choice of parameters, the variations in n are small com-
pared to n, so that the linerizied verion of (4),
Thine = BHxY?e/g'11o(H —1,) would have yeilded essentilly
the same result. Contour intervals are 20 m for solid
curves and 2 m for dashed curves.

that the solution applies to the basin’s interior.
Note that #, is taken to be specified in the
problem**. Contours of the one physical root
(Fig. 1) serve as streamlines for the interior hori-
zontal flow field. The sense of the flow is such
that fluid columns move poleward and eastward
in the abyssal layer and equatorward and west-
ward in the upper layer.

To meet the no normal flow boundary condi-
tion, dissipative boundary layers are appended to
the interior solution along the poleward and west-
ern walls. The width of these boundary layers is

** Geostrophy, together with the no normal flow
boundary condition, implies that 7, is independent of y
along the eastern boundary. Here, it is further assumed
that the value of 7, is known.
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related to the strength of the dissipation. Common
choices include assuming either a linear drag law
or an eddy diffusion of momentum on the compon-
ent of the velocity parallel to the boundary. For
example, in a western boundary layer, the v-
momentum equation becomes

1 0P,
Pyu= — —— —ry+v—y; (5)
Po Oy X

where 0P;/0y gives the meridional pressure gradi-
ent* in layer i and Ly,gy, the width of the western
boundary layer, is taken to be small compared to
the y length scale of the problem. Ly,q, is then
given by the larger of /8 and (v/B)'?, depending
on whether the linear drag or the eddy diffusion
of momentum is dominant. For the model to be
consistent with a geostrophic interior flow, r and
v must be sufficiently small so as to ensure that
&= Lipnay/Lpasin < 1. It should be noted, however,
that the neglect of nonlinearities in the momentum
equations (and the neglect of advection of the
interface height field by the ageostrophic compon-
ent of the velocity in the mass equation) prohibits
taking ¢ to be arbitrarily small. As a rule of thumb,
one expects the solution to remain consistent
provided that advection of relative vorticity in the
boundary layer potential vorticity equation can
be neglected. Typically, it is required that fo>u(,,
where { is relative vorticity, to obtain the condition
Linay > (u/B)"?. Alternatively, one could compare
pv to v{, to obtain the condition that
Lunay > (T/BL,d)"?, where T is the boundary layer
transport, d is the thickness of the layer and L, is
the y length scale of the problem. Taking T to be
20 Sverdrups (1 Sv=10°m3/s), BL,~1075s7"
and d~10° m gives that advection of relative
vorticity can be neglected provided the boundary
layer width is large compared to 45km. For
boundary layers which are thick enough such that
inertial effects may be safely neglected, yet which
are thin compared to the basin width, the details

* P and n are related as follows: In the upper layer,
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and, in the lower layer,
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of the dynamics in the boundary layer (e.g., the
relative importance of r and v) do not affect the
interior solution. It is this range of parameters,
for which boundary layers can be treated as both
passive and thin, that is considered here.

2. The Inconsistency

As mentioned, Stommel’s box model takes the
strength of the exchange between the two boxes
to be proportional to the density difference
between the two (well-mixed) boxes. One would
like to test for consistency between the two pic-
tures of the thermohaline circulation. The zonally
and vertically averaged density field, p(y), of the
Stommel and Arons model is determined by the
zonally averaged position of the interface height
field:

_ f

P)=p1t g (p2—p1). (8)
The zonally averaged value of # can be decom-
posed into contributions from the interior and
boundary layer solutions:

()= Mind )+ EMonay (). ®

Thus, provided m is the same order of magni-
tude as #;,,, the zonally averaged density field is
determined to O(e) by the solution to (3). The
O(1) contribution to p(y) is shown for various
values of e in Fig. 2. Note that, somewhat counter-
intuitively, the model predicts an abundance of
dense water at low latitude. If one were to sub-
divide the domain into 3 regions (corresponding
to two polar boxes and one equatorial box), and
apply the closure used by Stommel to model fluxes
between the various boxes, the solution would
correspond to an exchange between the boxes
which is symmetric about the equator. If this
exchange is interpreted as a meridional cell in the
usual way, then a symmetric cell with equatorial
sinking is obtained.

Yet thus far, nothing has been said as to the
placement of the localized sinking region or
regions. The central point of this note is simply
that p(y) is essentially specified independently of
the position of the localized sinking. The sense
and structure of the meridional circulation, on the
other hand, is crucially dependent on the place-
ment of the sinking. Placement of a single localized
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Fig. 2. Zonally averaged interface height field (#;,,) for
various choices of e, ranging from e=6.7 x 10~¢ (bottom
curve) to e=6.7 x 10~ % (top curve). These correspond to
residence times ranging from 3 x 10® s to 3 x 10 s. Note
that the signal is relatively weak for large residence times
and that, curiously, there is a relative abundance of dense
water in the low latitudes. For the shortest of these
residence times, #—0 in the poleward and western cor-
ners of the domain. In this case (for which the residence
time is on the order of 10 years), one might expect the
boundary layer contribution to become non-negligible.

sinking region along the northern boundary, for
example, corresponds to a pole to pole cell with
sinking in the northern hemisphere. Placement of
the sinking region in the opposite hemisphere
reverses the sense of the meridional circulation,
but has only an Of(g) effect on the zonally (or
regionally) averaged density fields. Thus, given the
density fields predicted by the Stommel and Arons
model for these two oppositely directed pole to
pole cells, the closure used in Stommel’s box model
would predict essentially the same meridional
circulation in each case. Furthermore, this pre-
dicted circulation is, to leading order, symmetric
about the equator. The underlying reason for this
discrepancy between the two models is that,
although the boundary layers make an O(1) con-
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tribution to the net meridional transport, they
make only an Of(eg) contribution to p(y). Given
this, it is then straight-forward to construct cells
corresponding to all 4 steady states of a 3-box
version of Stommel’s box model (Welander, 1986),
without significantly affecting p(y) or its average
value over the three subregions of the domain. In
this sense, these two classic models of ocean’s
buoyancy driven circulation are seen to contradict
one another.

3. Discussion

It would thus seem that one is forced either to
reject Stommel’s closure (or any closure relating
the strength of the meridional circulation to the
zonally averaged density field), or to reject the
Stommel and Arons (1960) model as giving an
order 1 description of the global mass driven
circulation. On the one hand, Stommel’s closure
scheme is based on the intuitive idea that heavy
water should want to flow under light water, so
that meridional density gradients should tend to
drive an overturning in the y,z plane. Since the
length scales of the flows of interest here are very
much larger than the internal Rossby radius,
however, this intuition becomes suspect. The
Stommel and Arons model, on the other hand, is
more physically based; but is highly unrealistic in
that it does not allow for surface deunsity gradients.
Furthermore, the model is of limited use to
researchers interested in issues issues relating to
climate dynamics since the meridional cell is speci-
fied, not solved for, in the model.

Some effort has recently gone into finding
empirical correlations between zonally averaged
quantities from numerical general circulation
models and the strength of the meridional circula-
tion in these models. Wright et al. (1995) did this
and found that a closure scheme relating strength
of the meridional cell to integrals of zonally aver-
aged quantities could be tuned to give a good
correlation with data from a general circulation
model. If these correlations prove to be robust,
then the explanation must involve dynamics
beyond those discussed above. However, given the
coarse resolution of the general circulation models,
their dynamics would appear to be essentially
equivalent to those explored here (i.e., a roughly
planetary geostrophic balance in the interior, with
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dissipative boundary layers). Several possible
differences which might help to explain the correla-
tion which they found are the following. (This is
not intended to be an exhustive list of possible
explanations). Firstly, ¢ may not be entirely negli-
gible in numerical general circulation models.
Wright et al. (1995) used an eddy diffusivity of
25x%10° m? s, leading to a Munk boundary
layer width of roughly 500 km in a 60° wide basin.
Furthermore, it is straight forward to argue (at
least for mass driven flow) that the O(e) contribu-
tion to p(y) is such that the boundary layer
contribution to the meridional transport is dir-
ected in the sense assumed by the Stommel (1961)
closure scheme. Thus, if ¢ becomes non-negligible,
some correlation between p and the sense of the
boundary layer transport will develop. Of course,
the sense of the transport in the western boundary
layer does not always correspond to the sense of
the net meridional transport. Additionalily, it is
not clear to what extent diapycnal upwelling is
spatially distributed throughout the ocean’s inter-
ior, as assumed in the Stommel and Arons frame-
work, or whether it occurs primarily in the
boundary layers themselves. Indeed numerical
simulations (Bryan, 1987) suggest the latter pos-
sibility. Some of this may be related to the hori-
zontal, rather than isopycnal, eddy diffusivities
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assumed within the Stommel and Arons frame-
work is not representative of the meridional circu-
lation. Sakai and Peltier, for example, (Sakai and
Peltier, 1995) argue that the mean flow in the
interior is not in geostrophic balance. In particular,
they consider the meridional component of this
flow to be described by a balance between the
Coriolis force and a parameterized Reynolds
stress. Additionally, the limited vertical structure
of the Stommel and Arons model may be insuffi-
cient to adequately describe the meridional circu-
lation. If one imagines a many layer version of
this model, then it is not clear that characteristic
equations (corresponding to eq. (3) in the present
paper) can be derived for each of the vertical
modes. In this case, the interior solution may not
be specified by knowledge of the eastern boundary
condition and the forcing alone. Given this, one
can not rule out the possibility that O(1) asymmet-
ries between p in the sinking and upwelling hemi-
spheres could develop.
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