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ABSTRACT
The new generation of geostationary environmental operational satellite imager, the Himawari-8 Advanced
Himawari Imager (AHI), adds two more water vapour channels and four more other channels than its
predecessor, MTSAT-2. But except for the three water vapour channels, AHI channels are often not
assimilated over land due to large uncertainty in surface parameters. Using the relative adjoint sensitivity
analysis method, we show that the brightness temperature of AHI channel 16 is much more sensitive to the
low-tropospheric atmosphere than to the surface emissivity, similar to those high-level water vapour
channels. We thus assimilated AHI channel 16 brightness temperature observations together with AHI water
vapour channels over land, and assessed the added benefits on short-range quantitative precipitation
forecasts for several convection-induced rainfall cases. Results show that adding channel 16 over land to AHI
data assimilation further improves short-range rainfall forecasts. Assimilation of AHI channel 16 improves
the upstream near surface atmospheric temperature analysis and influences the development of downstream
precipitating weather systems.
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1. Introduction

Accurate initial conditions are important for obtaining
accurate numerical weather forecasts. With the growing
demand for numerical weather forecasts and the increas-
ing variety of meteorological observation means, more
and more observations are incorporated into data assimi-
lation systems to produce accurate initial conditions of
numerical weather forecasting models. Among many
types of meteorological observations, satellite observa-
tions already become the absolute majority, accounting
for about 98% of meteorological observations (Kelly and
Thepaut, 2007). Therefore, the potential for satellite
observation assimilation is especially important for the
above purposes.

In the 1990s, direct assimilation of satellite radiance
observations in the framework of variational data assimi-
lation brought the applications of satellite data in numer-
ical weather prediction into a new era (Eyre et al., 1993).
Many studies have proved that the direct assimilation of
satellite radiance observations significantly improved
numerical weather prediction (Andersson et al., 1994;
Derber and Wu, 1998; English et al., 2000; Bouttier and

Kelly, 2001; Eyre, 2007; Fertig et al., 2009; Miyoshi
et al., 2010). Meteorological satellites mainly move in
either polar-orbiting or geostationary tracks. Polar-orbit-
ing operational environmental satellite observations have
global coverage and various microwave and infra-red
spectral bands, have been assimilated in operational data
assimilation systems globally for nearly a decade earlier
than observations of geostationary satellites. However,
with improvement in both the spectral resolution of
observations of geostationary satellites and the spatial
resolution of numerical weather prediction models, more
attention has been paid to assimilating geostationary sat-
ellites data, which have high spatial and temporal resolu-
tions. Although the spectral resolution of imagers of
geostationary satellites is usually lower than remote-sens-
ing instruments onboard on polar orbit satellites, their
high spatial and temporal resolutions provide more abun-
dant observation information about mesoscale and con-
vective scale weather systems. The launch of the new
generation of geostationary satellites from Japan, the
United States and China has further promoted the data
assimilation research of geostationary satellites.
Following the successful launches of Meteosat Second
Generation (MSG) developed by the European Space�Correspondence. e-mail: qzk_0@nuist.edu.cn
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Agency (ESA) and by European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT)
carrying the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) (Schmetz et al., 2002), Japan
Himawari-8/9 carrying the Advanced Himawari Imager
(AHI) (Bessho et al., 2016), the GOES-R (The
Geostationary Operational Environmental Satellite-R
Series) of the United States carrying the Advanced base-
line imager (ABI) (Schmit et al., 2017), China FY-4A
(Feng-Yun-4A) carrying the Advanced Geostationary
Radiation Imager (AGRI) (Yang et al., 2017) and
Korean GEO-KOMPSAT-2A carrying the Advanced
Meteorological Imager (AMI) (Choi and Ho, 2015),
assimilation of infra-red channels from these geostation-
ary satellites imagers has played and will continue to play
a significant role for improving the numerical weather
prediction skill.

Scientists assessed the impacts of assimilating infra-red
channels of geostationary satellites imagers in the global
(K€opken et al., 2004; Szyndel et al., 2005; Ma et al.,
2017) and regional (Montmerle et al., 2007; Stengel et al.,
2009; Zou et al., 2011; Qin et al, 2013, 2017; Qin and
Zou, 2018) weather forecasting systems. Improvements
on numerical forecasts of high impact weathers such as
typhoons were demonstrated by Zou et al. (2015), Zhang
et al. (2016), Minamide and Zhang (2018), Honda,
Miyoshi et al. (2018) and Honda, Kotsuki et al. (2018).
At present, imagers infra-red channels of geostationary
satellites have been successfully assimilated in the oper-
ational data assimilation system of NCEP (Derber, 2003),
the Canadian data assimilation system (Garand and
Wagneur, 2002) and the ECMWF (European Center for
Medium Range Weather Forecast) (K€opken et al., 2003;
Szyndel et al., 2005). The new generation of imagers AHI
and ABI have already been assimilated by the operational
data assimilation systems in Japan (Kazumori, 2016) and
United States (Ma et al., 2017).

Most of data assimilation researches of geostationary
satellites focussed on water-vapour sounding channels,
such as channel 2 (6.2 mm) and channel 3 (7.3 mm) of
SEVIRI, which was carried on the geostationary satellite
Meteosat-8 in the early stage (Montmerle et al., 2007;
Kelly, 2008). Zhang et al. (2016) and Jones et al. (2018)
assimilated the GOES-13/15 infra-red channel 3 (6.5mm).
Only the AHI water-vapour channel 9 was assimilated in
Honda, Miyoshi et al. (2018) and Honda, Kotsuki et al.
(2018). Zhang et al. (2018) assimilated the ABI channel
10, while and Zhang et al. (2016), Ma et al. (2017) and
Wang et al. (2018) assimilated all three AHI or ABI
water-vapour sounding channels 8, 9 and 10. Stengel
et al. (2013) improved cloudy radiance data assimilation
of SEVIRI by introducing a simplified cloud diagnosis
algorithm, Zhang et al. (2016), Honda, Miyoshi et al.

(2018) and Honda, Kotsuki et al. (2018) included cloudy
data in the assimilation by adjusting observation
errors adaptively.

There were studies on assimilation of other imager
infra-red channels besides those water vapour channels
over the oceans. Stengel et al. (2009, 2010) assimilated
the data of 13.4mm channel of SEVIRI over the ocean,
and Qin et al. (2017) and Qin and Zou (2018) assimilated
all surface-sensitive infra-red channels of AHI and ABI
over oceans. The assimilation of surface-sensitive chan-
nels over land faces many difficulties due to large uncer-
tainty in the descriptions of land surface emissivity and
land surface temperature (Guedj et al., 2011). By intro-
ducing a satellite-based surface temperature retrieval
method, Guedj et al. (2011) made an effort to assimilate
the three infra-red surface-sensitive channels (8.7, 12.0
and 13.4 mm) of SEVIRI. Although some improvements
were obtained for precipitation forecasts in the southern
Europe, daily and seasonal variations of the surface tem-
perature retrieval accuracy, the reuse of background
information, and the dependence on the accuracy of sur-
face emissivity data set remain to be challenging problems
(Zheng et al., 2009).

This study explores a possibility of assimilating some
AHI surface-sensitive channels over land, in addition to
the three AHI water-vapour sounding channels. An
adjoint relative sensitivity study shows that the brightness
temperatures of AHI channel 16 (13.3 mm) are more sensi-
tive to the atmospheric temperature in the lower tropo-
sphere than to the land surface emissivity, suggesting a
possibility to include channel 16 in AHI data assimilation
over land. Section 2 provides a brief description of AHI
data characteristics and experiment design. Section 3
presents some statistical results on the differences between
AHI observations and simulations over land and ocean.
Using an adjoint sensitivity analysis method, section 4
discusses the relative sensitivity of AHI brightness tem-
peratures at different channels to atmospheric tempera-
ture, water vapour and surface emissivity. The impacts of
the assimilation of all AHI infra-red channels over ocean
and only AHI water-vapour sounding channels 8–10 and
CO2 channel 16 over land are presented in section 5.
Summary and conclusions are given in section 6.

2. Data and case descriptions

AHI is an imager instrument onboard the Japanese geo-
stationary satellite Himawari-8, which was successfully
launched by the Meteorological Satellite Center (MSC) of
the Japan Meteorological Agency (JMA) on 7 October
2014 and officially put into operation on 7 July 2015.
AHI is able to observe a range of 120 degrees longitude
and latitude from the equatorial centre position at 140�E.
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It has 16 channels, including three visible light channels,
three near-infra-red channels and 10 infra-red channels.
The specific frequency information can be found in
(Bessho et al., 2016). The 10 infra-red channels are
employed for AHI data assimilation. Channels 8, 9 and
10 are water vapour sounding channels, with frequencies
centred at 6.2, 6.9 and 7.3mm, respectively. The weight
functions of channels 8, 9 and 10 peak at about 377, 457

and 587 hPa, respectively. The weight functions of other
seven infra-red channels peak at the surface (see Fig. 1 in
Zou et al., 2016). The centre frequencies of channels 7,
11–16 are located at 3.85, 8.60, 9.63, 10.45, 11.20 12.35
and 13.3 lm, respectively. Channel 12 is an ozone sensi-
tive channel and its weighting function has a second peak
in the stratosphere. The AHI channel 16 is located within
a wing of a strong CO2 absorption band.

Fig. 1. Spatial distributions of the 24-h accumulative rainfall observations and geopotential height at 500hPa (a) from 0000 UTC July
1 to 0000 UTC July 2 (case 1), (b) from 0000 UTC July 10 to 0000 UTC July 11 (case 2), and (c) from 1200 UTC July 19 to 1200 UTC
July 20, 2016 (case 3).
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Three precipitation cases that occurred in July 2016
were selected for this study. Case 1 is a heavy rainfall
process that occurred during the period from 0000 UTC
1 July to 0000 UTC 2 July 2016 in the middle and lower
reaches of the Yangtze River in Hubei, Anhui and
Jiangsu provinces in the central China. Case 2 is a weak
precipitation event that occurred in Qinghai, Inner
Mongolia and Gansu Province in Northwest China from
0000 UTC 10 July 2016 to 0000 UTC 11 July 2016. Case
3 is a strong precipitation process that occurred in
Shandong, Shanxi, Hebei, Beijing and Tianjin areas in
the northern China from 1200 UTC 19 July 2016 to 1200
UTC 20 July 2016.

Figure 1 shows the spatial distributions of 24-hour
accumulated precipitation observations of the above three
precipitation cases during the 24-h model forecasting peri-
ods, as well as the geopotential height at 500 hPa of FNL
(Final Operational Global Analysis) data produced by
the Global Data Assimilation System (GDAS) of
American NCEP (National Center for Environmental
Prediction) in the middle of the three 24-hour periods, i.e.
1200 UTC 1 July, 1200 UTC 10 July and 0000 UTC 20
July 2016. The rainfall observations were obtained from
merging hourly rain gauge data at more than 30,000
automatic weather stations in China with the Climate
Precipitation Center Morphing (CMORPH) precipitation
product using a probability-density-function-based opti-
mal interpolation method (Shen et al. 2014). The case-1
precipitation event was associated with a middle latitude
trough and a subtropical high. The cold air from the
north brought by the airflow in the back of the trough
and the warm wet air advected from the northwest under
the influence of the subtropical high met in the Yangtze
River Basin where precipitation occurred. Because of a
stable maintenance of the subtropical high and the slow
eastward movement of the trough, the rainfall in the
Yangtze River Basin was quite heavy. The case-2 precipi-
tation distribution was of a small-scale nature and was
associated a vortex convective system seen at 500 hPa.
The precipitation is located in Qinghai, Inner Mongolia
and Ningxia, and some sporadic precipitations occurred
in Sichuan and Hubei in the south of the vortex. In case
3, the precipitation is mainly caused by the deep frontal
cyclone in the westerly, to its southeast that was a sub-
tropical high. The cyclone moved eastward and the sub-
tropical high stretches northwestward, bringing warm,
moist airs into Beijing, Tianjin and Hebei. A heavy rain-
fall event occurred in Shandong, Shanxi and
Henan areas.

The WRF-ARW (Weather Research and Forecasting/
Advanced Research WRF) model and the Gridpoint
Spectral Interpolation (GSI) data assimilation system
(Shao et al., 2016) are selected in this study. Figure 2
shows the model domain. The horizontal resolution is
6 km, with total model grid points of 600� 600. The
model top is set to 1 hPa, with a total of 61 vertical
layers. The WRF single-moment three-class microphysics
scheme (Hong and Lim, 2006), and the Yonsei planetary
boundary layer scheme (Hong and Dudhia, 2003) are
used in the WRF-ARW model. Also shown in Fig. 2 are
the spatial distributions of geopotential height and rela-
tive humidity at 500 hPa at the starting and ending time
of the 24-h data assimilation cycling period of case 3.
Seen in this figure is a middle latitude trough intensified
during the 24 hours. A high relative humidity band is
located ahead of the trough.

Fig. 2. Spatial distributions of 500-hPa geopotential height
from the NCEP reanalysis (black curve, contour interval: 20m)
and relative humidity (color shading, unit: %) in the model
domain at (a) 1200 UTC 18 July (beginning time of the DA
cycling for case 3) and (b) 1200 UTC 19 July (ending time of the
DA cycling for case 3), 2016.
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GSIV3.3 is used as the data assimilation system in our
study, which is a three-dimensional variational assimila-
tion system, which can be well applied to global and
regional data assimilation research. The system can well
assimilate conventional observation data, radar data,
microwave and infra-red radiance data of main polar
orbiting satellites, as well as infra-red imagers of geosta-
tionary satellites. The system also provides an adjustable

background error covariance matrix and a correction
scheme of observation error and deviation, which can be
adjusted adaptively for specific regions. In the GSI, the
background error covariance was constructed using recur-
sive filters (Wu et al., 2002). It is an inhomogeneous and
anistrophic background error covariance matrix of
streamfunction, unbalanced part of velocity potential,
unbalanced part of temperature, unbalanced part of

Fig. 3. (a) Mean (bars) and standard deviation (curves) of O-B for AHI channels 7–10 and 11–16 data over land (solid bars and open
circles) and ocean (dashed bars and stars) calculated from all data from July 1 to 31, 2016 in the model domain. (b) Standard deviation
of O-B varying with terrain height for AHI channels 7–10 and 11–16 calculated from all data from July 1 to 31, 2016 in the
model domain.
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surface pressure, and normalised relative humidity. The
fast radiative transfer model used is the community radia-
tive transfer model (CRTM) v2.1.3 (Han et al., 2007).

The quality control is carried out based on some parame-
ters associated with cloud, water vapour, and tempera-
tures, surface emissivity, and observation errors, which

Fig. 4. (a) The mean (curve and open circle) and the one standard deviation (vertical line) of relative sensitivity of channel-16
brightness temperature to air temperature (curve) and surface emissivity (open circle) averaged for all data from July 1 to 31, 2016 in the
model domain. (b) The mean (bars) and the one standard deviation (vertical lines) of maximum relative sensitivities of air temperature
(solid bars) and surface emissivity (dashed bars) over meadow grass, barren soil and pine forest.
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was described in details by Zou et al. (2013). Bias correc-
tion consists of a static bias correction and an air mass
bias correction (Zhu et al., 2014; Li et al., 2019). Static
scan biases specified by GSI are removed firstly. After
that, the air mass bias correction scheme in the GSI is
applied. Coefficients for air mass bias correction method
are derived from one-month iterative data assimilation
experiments. Other details of the GSI satellite data
assimilation can be found in Shao et al. (2016).

3. O-B biases of AHI data

Over the land area, model simulations of AHI surface-
sensitivity channels are usually much less accurate than
the upper-level water vapour channels due to the uncer-
tainty in the land surface emissivity and surface tempera-
ture. We may use the hourly AHI observations at 2 km
resolution from July 1 to 31, 2016 to show the mean and
standard deviations (SD) of the differences between AHI
observations and the CRTM (Community Radiative
Transfer Model) model simulations (Han et al., 2007).

Hourly forecasts of the WRF-ARW model are taken
as the background to evaluate the observational error
and bias characteristics of AHI data in ocean and land
areas from July 1 to 31, 2016. In order to correspond
with real experiments, only the 6–12 hours forecast of

WRF-ARW model initialised by the global FNL data are
used here.

Figure 3a shows the bias characteristics and observa-
tion error of AHI channel 7–11, 13–16 data over land
and ocean. The bars in the figure represent the average
value of O-B, and the curves represent the result of the
SD. Water-vapour channel 9 has the largest positive bias,
while surface channel 11 and channel 16 have the most
obvious negative bias. This result is similar to that of
Zou et al. (2016).

SD has significant differences between land and ocean
for those surface channels. It can be seen that the SD of
each channel over ocean (the asterisk curve) shows a
good consistency, all around 1.0K. However, the SD of
those surface channels increased significantly over land
(the hollow circle curve). The SD of channel 7, 11–15 all
reached 1.5K, but the SD of channel 16, which was more
sensitive to CO2, only increased slightly, showing similar
characteristics with those water-vapour channels. It may
represent that brightness temperature simulation of chan-
nel 16 is very little affected by land surface variables
(Stengel et al., 2009).

The influence of terrain height on SD of O-B is shown
in Fig. 4b. SDs of high-level channels are less affected by
the terrain height. However, observation errors of those
surface-sensitivity channels are significantly different with
the change of terrain height. The observation error of
channel 16 increases gradually with the terrain height
when the terrain height is less than 1000m, but for the
terrain higher than 100m, it remains at 1.1K. For other
surface-sensitivity channels, there is an obvious increase
in observation errors at the height of 0–200m, but they
increase slowly after 200m.

Since the peak of the weighting function of the CO2

channel is located on the surface, most studies exclude
the channel 16 in consideration of the large uncertainty
of surface emissivity and surface temperature. From
Statistical results of observation errors, we noticed that
although the observation error of most surface-sensitivity
channels over land will increase significantly, the increase
of O-B of channel 16 is not obvious, which urges us to
analyse this reason.

4. Relative sensitivity of AHI surface-
sensitive channels

In order to further clarify the reason for the SD differen-
ces, we check the sensitivity of brightness temperature to
surface variables over land. The most important factor
affecting the surface emissivity is the surface types.
CRTM includes a surface emissivity model, which can
calculate the surface emissivity of each channel on the
basis of given surface type. In order to facilitate the

Fig. 5. Spatial distribution of the major surface types within
0.5� 0.5 horizontal grid boxes (>50%) from NPOESS dataset,
including water (blue), barren soil (barren, cyan), meadow grass
(grass, green), grass shrub land (scrub, light green), irrigated low
vegetation (lwbeg, yellow), boardleaf pine forest (bpforest, light
orange), boardleaf forest (bforest, orange), pine forest (pforest,
red), and mixed (grey, not a single surface exceeds 50%).
Asterisks show the spatial locations of three selected data points
used below.
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analysis of the impact of the surface types, the spatial dis-
tribution of the surface types given by Moderate
Resolution Imaging Spectroradiometer (MODIS) land
use developed by the International Geosphere–Biosphere
Programme (IGBP) is also given in Fig. 5. It can be seen
that the east of China is mainly characterised by a
meadow grass surface, while the northwest region has
mainly a bare soil surface. There are more pine forests
and broad-leaved forests in the northeast, and irregular

low vegetation in the middle of China. The grey areas in
Fig. 5 represent a mixed surface type. Asterisks show the
spatial locations of three selected data points used below.

The sensitivity of brightness temperature to revelant
variables can be evaluated by sensitivity calculated by the
adjoint of radiative transfer model, but the sensitivity of
different variables cannot be directly compared because
of the difference of their units. Therefore, the relative sen-
sitivity analysis method is used to investigate the sensitiv-
ity differences of brightness temperatures between
channel 16 and other surface-sensitive channels (Carrier
et al., 2008; Qin and Zou, 2019).

The nonlinear radiative transfer model can be
expressed as

Fig. 6. (a) Vertical profiles of air temperature (solid curve) and
specific humidity (dashed curve) and (b) relative sensitivity of
channel-16 brightness temperature to air temperature (solid
curve) and surface emissivity (stars) for the three land data points
indicated in Fig. 5a (i.e. meadow grass, green; barren soil, cyan;
and pine forest, red) at 1200 UTC 18 July 2016. Surface
temperature at the meadow grass, barren soil, and pine forest
points is 301.8, 300.19 and 303.26K, respectively.

Fig. 7. Same as Fig. 6b except for (a) AHI channel 11 (solid
curve and star) and 12 (dashed curve and open circle), (b)
channel 13 (solid curve and star) and 14 (dashed curve and
open circle).
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Tb
k ¼ HkðxÞ

where H is the operator with the input vector x to pro-
duce Tb

k (the brightness temperature at channel k, then
the adjoint of radiative transfer model can be expressed
as

x̂ ¼HT
k ðxÞT̂

b
k

where HT
k is called the adjoint operator, T̂

b
k is the adjoint

variable of brightness temperature.
For a sensitivity of brightness temperature, if we define

the response function as:

RkðxÞ ¼ Tb
k ,

then

T̂
b
k ¼

oRk

oTb
k

¼ 1

The adjoint operator of radiative transfer model is used
to obtain the gradient of Rk with respect to the input
variable x, so the result after applying the adjoint is the
gradient x̂:

x̂ ¼rxRk

Rsens
k is the sensitivity of the brightness temperature with

respect to the input vector x, it can be calculated by the
following equation:

Rsens
k ¼ rxRkð ÞTdx ¼ ðx̂ÞTdx

where Rk is the response function, it is simply defined as
brightness temperature, k is channel number, x̂ is the

gradient of the response function Rk with respect to the
input variable x, dx is the perturbation of the
input variable.

The non-dimensional relative sensitivity slk to the vari-
able l can be calculated as follows:

slk ¼
Rsens, l

k

Rk

dxl

xl

� ��1

� x̂lxl

Rk

Figure 6a shows the temperature and specific humidity
profiles at three arbitrarily selected data points over a
bare soil, a pine forest and a meadow grass surface,
respectively. The spatial locations of the three selected
data points are indicated in Fig. 5. The terrain heights of
bare soil, grassland and pine forest are 0.6, 118.3 and
3.4m, respectively. Surface emissivities are 0.96, 0.94 and
0.99, respectively. The lowest atmospheric pressure is
1000.26, 992.0 and 974.60 hPa, respectively.

The relative sensitivity results of the channel-16 bright-
ness temperatures to atmospheric temperature and land
surface emissivity at these three data points of different
surface types are provided in Fig. 6b. We find that the
relative sensitivity of the channel-16 brightness tempera-
ture to atmospheric temperature is about an order of
magnitude larger than that to the land surface emissivity.
The peak relative sensitivity of the channel-16 brightness
temperature to atmospheric temperature ranges from
0.0425 to 0.054, and the relatively sensitivity to the sur-
face emissivity varies from 0.0025 to 0.007. The largest
relative sensitivity is located at the 746-, 666, and 619-
hPa pressure levels at the meadow grass, bare soil and
pine forest points, respectively. Such results of the relative
sensitivity of the channel-16 brightness temperature are
significantly different from those of channels 11–15 (Fig.
7). The relative sensitivity of the channels 11–15 bright-
ness temperatures to the surface emissivity is either larger
than or similar to their sensitivity to the atmospheric
temperatures.

For completeness, we may compare the relative sensitiv-
ities of brightness temperatures among channels 8–10 and
16 at the meadow grass point (Fig. 8). The largest relative
sensitivity to the atmospheric temperature is located at the
290-, 317, 376 and 746-hPa pressure levels, and the largest
relative sensitivity to the specific humidity is located at the
264-, 290-, 346- and 690-hPa pressure levels for channels 8,
9, 10 and 16, respectively. The relative sensitivities to atmos-
pheric temperature and specific humidity around these peak
pressure levels are much higher than the relative sensitivities
to the surface emissivity.

The mean and standard deviations of the relative sensi-
tivities of the channel-16 brightness temperature simula-
tion for all AHI data from July 1 to 31, 2016 to the
temperature and surface emissivity in the entire model
domain are provided in Fig. 4a. Figure 4b shows the

Fig. 8. Relative sensitivities of brightness temperatures for AHI
channels 8 (green), 9 (blue), 10 (red) and 16 (black) to air
temperature (solid curve), specific humidity (dashed curve) and
surface emissivity (star) at 1200 UTC 18 July 2016 at (a) the pine
forest point and (b) the broadleaf point indicated in Fig. 5a.
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impact of terrain height on the maximum relative sensi-
tivity of atmospheric temperature and the relative sensi-
tivity of surface emissivity for AHI channel 16. It can be
seen that even if the relative sensitivity of surface emissiv-
ity increases with the terrain height, but it is still less than
the maximum relative sensitivity of atmospheric tempera-
ture except for data over bare soil area with terrain
higher than 1200m.

It is thus of interest to examine if further improve-
ments can be obtained by adding channel 16 to AHI data
assimilation over land.

5. Impacts of AHI data assimilation on analyses
and forecasts

In order to assess the impact of AHI data assimilation on
the 24-h model forecasts, AHI data are assimilated
together with conventional observations. Three data
assimilation experiments are carried out for each case.
The first is conventional data only experiment (CONV).
The second experiment assimilates conventional data and
AHI channel 8–10 data (E3CH). The third experiment is
the same as the E3CH except for adding AHI channel 16
(E4CH). Each experiment starts with the 6-hour forecast

Fig. 9. Spatial distributions of O-B (left panels) and O-A (right panels) for (a)-(b) AHI channel 10 and (c)-(d) channel 16 at 0000
UTC 19 July 2016 for the experiment E4CH. Black dots represent data rejected by quality control. Black and white shaded represents
the brightness temperature of AHI channel 14. The Magenta line shows the Tibet Plateau.
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initialised with the FNL analysis data 6 hours before the
beginning of data assimilation cycling. The period of

assimilation is 1 day, there are total 5 assimilations over a
6-hour window. For example, for case 1, assimilation is

Fig. 10. Spatial distributions of the 500-hPa (a)-(b) geopotential height, (c)-(d) temperature and (e)-(f) specific humidity analyses from
E4CH (left panels) and E3CH (right panels) (black curve) and the corresponding differences between E4CH and CONV (left panels)
and those between E3CH and CONV (right panels) (color shading) at 0600 UTC 19 July 2016. The magenta curve shows the 2-km
terrain height of the Tibet Plateau. The position of the cross sections in Fig. 11 is indicated in Fig. 10a.
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performed at 0000, 0600, 1200, 1800 UTC 1 July and
0000 UTC 2 July 2016, respectively, and then the 24-hour
forecast is carried out.

The conventional observations are composed of a glo-
bal set of surface and upper air reports operationally col-
lected by NCEP. Only clear-sky AHI data are assimilated
in E3CH and E4CH. Cloudy data are removed by using
the infrared-only cloud detection method developed by
Zhuge and Zou (2016). The newly calculated bias in Fig.
3a will be removed before data assimilation, the airmass
bias correction method is then applied after the static

bias correction. Observation errors for assimilated chan-
nels are also specified according to Fig. 3a. There is no
additional consideration for the channel correlation of
AHI data. In order to reduce a potential impact of spa-
tial correlations of observation errors, the 2-km AHI
observations are thinned to 60 km for both E3CH and
E4CH. A 60-km equidistant grid is built by the GSI
within the model domain, and AHI data closest to any of
grid centres will be selected.

We may use case 3 as an example to compare analysis
fields among three data assimilation experiments. Figure

Fig. 11. Cross sections of the analysis differences of temperature (color shading), geopotential height (black contours at interval: 4m),
and wind (black arrow) between E4CH and E3CH (E4CH-E3CH) along the black dashed line in Fig. 10a at 1800 UTC 18 July, 0000,
0600, 1200 UTC 19 July 2016. Grey shaded areas represent the terrain height indicated by the y-axis on the right.
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9 shows the spatial distribution of the O-B and O-A of
AHI channels 10 and 16 at the analysis time 0000 UTC
July 19, 2016. The brightness temperature observations of
AHI channel 14 (11.2 lm) are shown in a black/white
shading to provide a general idea of cloud distribution at
this time. It can be seen that only clear-sky data are
assimilated. By comparing O-B and O-A fields, we can
see that AHI data assimilation has a reasonably good
convergence. The absolute values of O-A are consistently
lower than those of O-B.

Figure 10 shows the spatial distributions of the geopo-
tential height (Fig. 10a-b), air temperature (Fig. 10c-d)

and specific humidity (Fig. 10e-f) analysis fields at
500 hPa and 0600 UTC 19 July 2016, as well as the ana-
lysis differences between E4CH and CONV (Fig. 10a, c,
e) and those between the E3CH and the CONV (Fig.
10b, d, f). The 500-hPa geopotential field is characterised
by a middle latitude cyclone system. The temperature
trough lags behind the geopotential height trough, and
the specific humidity in the trough area is significantly
higher than in the surrounding areas. The cyclone in the
E4CH is significantly deeper than that in the E3CH. The
geopotential height in the E4CH trough region is more
than �18m lower than CONV (Fig. 10a). The

Fig. 12. Spatial distributions of (a) the 3-h accumulative rainfall observations during 0300–0600 UTC 20 July 2016, and the 15–18h
model forecasted rainfall amounts by (b) CONV, (c) E4CH and (d) E3CH.
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Fig. 13. The equitable threshold scores (ETS) of the 3-h accumulative rainfall at thresholds 10, 15, 20 and 25mm during from the 24-
h model forecasts initialised by the initial conditions of CONV (open cycles), E3CH (stars) and E4CH (solid dots) for case 1 (black),
case 2 (red) and case 3 (blue). Grey bars represent the averaged 3-h ETS from CONV (strip), E3CH (twill) and E4CH (solid).
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temperature analysis from the E4CH is overall warmer
than the CONV analysis (Fig. 10c). Differences of both
the geopotential height and temperature analysis between
E3CH and CONV are small (Fig. 10b, d). The experi-
ment E3CH only assimilates the three water-vapour chan-
nels, which contain information of both the water vapour
and temperature in upper and middle troposphere. The
AHI data assimilation produces large differences in the
specific humidity analysis between E3CH and CONV
experiments (Fig. 10f). A positive analysis difference of
specific humidity is found downstream of the trough and
a negative analysis difference is located to the north of
the positive centre. Features in the analysis differences of
specific humidity between E4CH and CONV (Fig. 10e)
are similar to and slightly larger magnitude than those
between E3CH and CONV.

In order to show the analysis differences in the vertical
direction between E4CH and E3CH, we show in Fig. 11
four cross sections of the analysis differences of tempera-
ture, geopotential height, and wind fields between E4CH
and E3CH along a line shown in Fig. 10a at 1800 UTC
18 July, 0000, 0600 and 1200 UTC 19 July 2016. The dif-
ferences of temperature analysis are seen in all four ana-
lysis times near 105�E at 1800 UTC 18 July, where the
terrain height is about 3.5 km. The height terrain makes
it easy for the assimilation of the AHI CO2 channel 16 to
impact the downstream middle-level atmosphere under
the influence of the westerly winds. In fact, the E4CH
analyses of temperature in the layer 600–250 hPa are con-
sistently warmer than those of E3CH.

Impacts of the analysis differences among CONV,
E3CH and E4CH experiments on the short-range quanti-
tative precipitation forecasts (QPFs) are provided in Figs.
12 and 13. Figure 12 shows the spatial distributions of

the 3-h accumulative rainfall observations during
0300–0600 UTC 20 July 2016 (Fig. 12a, case 3), and the
15–18 h model forecasted rainfall amounts CONV, E4CH
and E3CH (Fig. 12b-d), valid at the same times as Fig.
12a. The observed precipitation has a cyclone-related
comma shape, with the maximum precipitation amount
in Beijing and Tianjin, and a narrow band of rainfall
affecting many provinces, such as Shandong, Anhui,
Henan and Hubei. The second maximum precipitation
centre is located north of Henan. All three forecasts cap-
tured the comma-shaped precipitation distribution.
However, the forecast precipitation patterns from both
CONV and E3CH (Fig. 12b, d) are located not as north
as the observations (Fig. 12a). The E4CH forecasted pre-
cipitation intensity and geographical distribution (Fig.
12c) compares more favourably with observations than
both CONV and E3CH, as a result of a deeper cyclone
and wetter atmosphere southeast of the cyclone.

The equitable threat scores (ETSs) (Wilks, 1995) of the
3-h cumulative rainfall at the thresholds 10, 15, 20 and
25mm for all three cases are provided in Fig. 13. The
overall QPF skills are the highest for the large-scale cyc-
lone case 3 (blue curves), second highest for the frontal
case 1 (black curves), and the lowest for the small-scale
convective case 2 (red curves). The ETSs for all three
cases are mostly higher than both CONV and E3CH
results, especially at higher thresholds (i.e. 20 and 25mm)
of rainfalls. The ETSs averaged over three cases (grey
bars) show that AHI data assimilation of channels 8–10
and 16 produces more significant improvements over the
CONV experiment than the assimilation of only channels
8–10 does.

In order to further evaluate the stability of the influ-
ence of channel 16 assimilation on precipitation forecast,

Fig. 13. Continued.
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we also conducted a one-month cycled assimilation and
forecast experiment for July 2016. The experimental
design is consistent with the three cases. The assimilation
starts at 0000 UTC every day, after 1-day of cyclic
assimilation, and then makes 24-hour forecast. The ETS
results of 3-h precipitation forecast are shown in the Fig.
14. Considering the randomness of heavy rainfall, only
comparison results of 3-hour ETS at 1- and 5-mm thresh-
olds are given in the figure, and the verification area is in
the middle and lower reaches of the Yangtze River
(105–125E, 20–40N). Red curves represent E3CH, blue
curves represent E4CH, and grey shadow represents ETS
difference between the two experiments (E4CH-E3CH). It
can be seen that in most cases, the score of E4CH is
larger than that of E3CH, especially in the second half of
July, and the difference is basically positive, which proves
that assimilation of channel 16 has a stable improvement
effect on precipitation forecast.

6. Summary and conclusions

Imager observations of geostationary satellites have high
temporal and horizontal resolutions, but a low spectral

resolution. The new imagers, such as AHI, have added
more water vapour and surface channels, which improves
the spectral resolution of geostationary satellite imager
observations. Different from other surface-sensitivity chan-
nels, the AHI CO2 channel-16 brightness temperatures are
more sensitive to the atmosphere temperature in the lower
troposphere than to the surface emissivity. We thus added
channel 16 to the AHI data assimilation over land.
Numerical data assimilation and forecast results are com-
pared among three experiments: a control experiment with-
out assimilating AHI observations, an experiment
assimilating AHI channels 8–10, and an experiment assimi-
lating AHI channels 8–10 and 16. The short-range 24-h
QPF skills are significantly further improved by adding
AHI channel 16 into AHI data assimilation over land. One-
month cycled assimilation experiment also proves that
assimilation channel 16 has a stable improvement effect on
precipitation forecast.

Adding some other surface-sensitivity channels, such as
AHI channels 12 and 14 over bare soil and meadow grass
surfaces, including a land-surface data assimilation to
obtain an improved surface temperature analysis, assess-
ing added benefits to polar-orbiting environmental

Fig. 14. Time series of the 3-h ETS for the E3CH (red) and E4CH (blue) experiments at the (a) 1-, (b) 5-mm thresholds during 2–31
July, 2016. The grey shading represents ETS differences between the two experiments (E4CH-E3CH) on every 3-h.
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satellite observations, selecting clear channels if clouds
are confined in low levels, carrying out asymmetric vortex
initialisation, and incorporating convective initiation in
geostationary satellite data assimilation for numerical
weather prediction applications will be our focus of
future investigations.
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