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ABSTRACT

Lorenz’s three-variable convective model is used as a prototypical chaotic system in order to
develop concepts related to finite time local predictability. Local predictability measures can be
represented by global measures only if the instability properties of the attractor are homogeneous
in phase space. More precisely, there are two sources of variability of predictability in chaotic
attractors. The first depends on the direction of the initial error vector, and its dependence is
limited to an initial transient period. If the attractor has homogeneous predictability properties,
this is the only source of variability of error growth rate and, after the transient has elapsed, all
initial perturbations grow at the same rate, given by the first ( global) Lyapunov exponent. The
second is related to the local instability properties in phase space. If the predictability properties
of the attractor are not homogeneous, this additional source of variability affects both the trans-
ient and post-transient phases of error growth. After the transient phase all initial perturbations
of a particular initial condition grow at the same rate, given in this case by the first local
Lyapunov exponent. We consider various currently used indexes to quantify finite time local
predictability. The probability distributions of the different indexes are examined during and
after the transient phase. By comparing their statistics it is possible to discriminate the relative
importance of the two sources of variability of predictability and to determine the most
appropriate measure of predictability for a given forecast time. It is found that a necessary
premise for choosing a relevant local predictability index for a specific system is the study of the
characteristics of its transient. The consequences for the problem of forecasting forecast skill in

operational models are discussed.

1. Introduction

The discipline of operational NWP is experi-
encing a rapid evolution; on one hand more and
more computer power has become available and,
on the other, a more profound understanding of
the mechanisms underlying weather and climate
evolution has been attained. More demands have
been set upon the scientific community involved in
the field, among these, a precise a priori evaluation
of the skill of a prediction. After the pioneering
work of Lorenz (1965), predictability theory,
developed for low-order chaotic systems, has
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provided the conceptual framework for assessing
the limits of predictability in NWP and defining
appropriate measures to quantify and predict
forecast skill.

The problem of producing a quality evaluation
of a prediction, along with the prediction itself,
has been addressed in various ways at operational
level. Current literature usually refers to it as
forecasting forecast skill (Kalnay and Dalcher,
1987; Palmer and Tibaldi, 1988).

Several different predictors of skill have been
adopted in studies on the subject. One of the most
effective is the forecast spread among an ensemble
of forecasts. A truly Monte Carlo simulation,
however, is impracticable for NWP models for at
least two reasons: the huge number of degrees of
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freedom and the fact that random perturbations to
a chosen initial state could be in meteorologically
irrelevant directions, and be removed by initializa-
tion procedures. Thus, several techniques have
been proposed to select the ensemble of initial
conditions (see for a review ECMWF, 1992), e.g.,
forecasts from different models, archived analysis
fields, lagged forecasts, etc. Recently, Molteni and
Palmer (1993) used the fastest growing pertur-
bations obtained from a quasigeostrophic model
linearized about the initial condition of the opera-
tional model. This method can be used to estimate
an upper bound for the error of a particular
forecast. Toth and Kalnay (1993) used perturba-
tions obtained by rescaling the difference between
a perturbed and an unperturbed previous forecast;
their method, in a perfect model environment,
would be equivalent to evaluating the first
Lyapunov exponent.

Parallel to these studies on operational forecast
models, much work has been done on low order
minimal models of atmospheric circulations
(Lorenz, 1982). The lack of realism of these models
is compensated by advantages both practical and
of interpretation: more and longer simulations are
easily performed to give a statistically robust pic-
ture of the behavior of the system, and the develop-
ment of the theory of low-order chaotic systems
can be used as a guideline in the study of more
complex models. Among the results emerged from
the work on low-order systems, we wish to outline
the framework and basic ideas that led us to the
present study.

We are interested in measures of predictability
of the first kind (Lorenz, 1975): we consider infini-
tesimally small errors, limiting our analysis to
linear predictability. Evidence that this hypothesis
is acceptable for short range forecast errors
associated with the synoptic scales is given by
Veyre (1992) and Vukicevi¢ (1993).

A classical measure of predictability is given by
the first Lyapunov exponent (see, e.g., Lichtenberg
and Lieberman, 1983). Lyapunov exponents are
defined as a global average property of the attrac-
tor of a chaotic system, but one central concept
addressed in the present study is that predictability
is a local property in phase space. Operational
forecasting experience indicates that the skill
associated with individual forecasts may vary
greatly. We are very far from being able, however,
to assess with any statistical confidence to what
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extent the variability of forecast skill is related to
the particular weather regime or to the particular
structure of the initial error. One of the goals of
our study is to delineate ‘a strategy to answer this
question in principle and we shall regard the
Lorenz model as a benchmark.

Nicolis (1992) observes, in her study on the
Lorenz system, a bimodal distribution of errors
that can frustrate every attempt of defining a
measure of predictability with the simple global
mean error and its variance.

Nese (1989), in his study on the Lorenz system,
considers the phase space dependent, asymptotic,
local divergence rate of adjacent trajectories as a
local predictability measure. The variation of this
index along a trajectory is considerable. He shows
that the local divergence rate is organized in phase
space in regions of different predictability regimes,
and classifies the regimes according to the average
local divergence rate and its variance, estimating
the predictability of predictability itself.

Trevisan (1993), hereafter referred to as T93,
uses initial perturbations uniformly distributed on
a sphere of small radius centered at decorrelated
points on a trajectory spanning the attractor
of the Lorenz system and then studies the time
dependence of the average growth rate and its
convergence to the first Lyapunov exponent.

Mukougawa et al. (1991) use the Lorenz index
(Lorenz, 1965) as a measure of the local predic-
tability (see, eq.8 in their paper), given by the
finite time linear RMS error amplification. It is a
smooth function of the variables and of the time
interval t, for which the error matrix A(t+ 1, 1) is
evaluated.

An important point is the existence, in a chaotic
system, of a period of transient growth that can
exceed Lyapunov exponential growth rate (T93,
Krishnamurthy, 1993); the global average growth
rate of errors initially in a random direction attains
the asymptotic value given by the first Lyapunov
exponent after a finite period of time. This trans-
ient can affect the short term prediction skill. The
concept of transient enhanced exponential growth
was introduced by Farrell (1985) and Lacarra and
Talagrand (1988). A commonly used application
of this concept to NWP consists in finding the
initial perturbation that grows fastest in a given
period of time (optimal perturbation, see, e.g.,
ECMWEF, 1992).

Whatever measure of predictability we define,
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the growth of initial errors depends on several
ingredients: location in phase space of the initial
condition that we perturb, direction of the initial
perturbation, time length of the forecast.

The goal of our paper is to compare the most
commonly used finite time predictability indexes,
with the aim of: inspecting the role of transiency
on global (and local) predictability measures,
and on the rate of convergence to the global (and
local) first Lyapunov exponent; devise a strategy
to evaluate the relative importance of phase space
variability versus variability with initial error
structure at different forecast times.

The outline of the paper is as follows: in Sec-
tion 2 we shall give definitions and discuss general
properties related to local predictability; in Sec-
tion 3 we shall present the results obtained in the
Lorenz system; in Section 4 we shall draw conclu-
sions and discuss the implications for operational
problems.

2. Definitions and general properties of
predictability indexes

A classical measure of predictability of a chaotic
system is given by the first Lyapunov exponent,
which estimates the average over the attractor
(global average) of the growth rate of infini-
tesimal perturbations to a central orbit. The first
Lyapunov exponent is given by:

) .1 d)
= ~log —
o1= lim  lim ~logZq) M

where d(t) is the distance between the perturbed
and unperturbed trajectories.

It is commonly suggested in the current spe-
cialized literature that Lyapunov exponents are of
limited use in atmospheric predictability studies
because they do not describe local properties and
because they are asymptotic quantities (see, e.g.,
Abarbanel et al., 1991; Molteni and Palmer, 1993).
These two objections might be viewed as two sides
of the same coin: in fact according to (1), the
first Lyapunov exponent can be evaluated as an
asymptotic value obtained by following a single
trajectory which spans over the whole attractor’s
phase space. However, it has been shown (T93)
that the first Lyapunov exponent ¢, can be
obtained after a relatively short transient time, by
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ensemble averaging over a large number of initial
conditions which cover the attractor.

Concerning the problem of evaluating the skill
of individual forecasts, the first (global) Lyapunov
exponent o, may not be particularly useful,
unless the attractor has homogeneous predic-
tability properties: a large phase space variability
could render the global average inadequate to
measure local predictability. Following T93, we
will elaborate on the concept of local Lyapunov
exponents and will be able to distinguish the effects
of transiency from those related to phase space
variability.

To illustrate these points, we summarize the
procedure followed by T93. Consider perturbing a
trajectory, belonging to the attractor, by adding
random isotropic errors. In practice a set of
errors uniformly distributed over the surface of a
hypersphere in the n-dimensional phase space, of
infinitesimal radius d(0), has been used (see (7)
below). Different perturbations grow at different
rates but after an initial transient, all error vectors
align themselves along the same direction and,
from then on, the variability of error growth rate
will depend only upon the location in phase space.
This behaviour was first demonstrated by Lorenz
(1965). The interpretation of the mechanisms
underlying the different phases of transient growth
of random errors is found in T93: a first phase,
which is characterized by small or negative average
growth rates is dominated by the process of
convergence towards the attractor of those per-
turbations which are along stable directions
of the system. A second phase is characterized
by enhanced (super-exponential) growth; this
behaviour can be interpreted in terms of the
process studied in systems linearized around a
time-independent state where it can be related
to the non-orthogonality of the normal modes
(Lacarra and Talagrand, 1988; Farrell, 1990;
Molteni and Palmer, 1993). Further support
to the interpretation of the two phases of tran-
sient growth is given in T93 by comparing the
behaviour of analogs (Lorenz, 1969) with that of
random isotropic errors.

The time necessary for a single trajectory to
span over the whole attractor may be much longer
than the transient; as a consequence, to obtain a
stable estimate of g, from (1) it may be necessary
to consider very long time intervals. If, instead,
we consider an ensemble average growth rate
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obtained by repeating the computation for a suf-
ficiently large number of initial conditions, the
globally averaged time dependent growth rate will
converge to the first Lyapunov exponent after a
relatively short transient, T

1 d|
{o(x(t), 1)) = <d'Li,IEo; log ( (;(T)T)>>

>0, )

X0y, t>T,

where the operator (%) indicates a phase space
average over a large ensemble of initial states
x,=x(0). The point x(z) belongs to the trajectory
originating at x(0). Notice that the points x(0) are
chosen at regular time intervals; this ensemble
average is therefore an average weighted with the
natural density of the attractor. The transient T
has been evaluated to be of order one in the Lorenz
system, or approximately equal to o, '.

So far we have defined a finite time, globally
averaged, first Lyapunov exponent. We turn now
to the problem of estimating local predictability.

First local Lyapunov exponent: o,. We give
the following definition of local first Lyapunov
exponent:

d
Uz(x(t))=a10g(d(t))

= lim a(x(2), 7),

-0

t>T, 3)

which is consistent with (2). This instantaneous
local growth rate is univocally defined as a func-
tion of x only, provided ¢ is large enough. In fact,
at any time following the initial transient, t > T,
the instantaneous growth rate of an arbitrary
initial perturbation of an individual trajectory is a
function only of the position in phase space, being
associated with the particular direction naturally
chosen by the system, ie., the direction of the
first local Lyapunov vector. This definition of local
Lyapunov exponent was adopted by T93 and
coincides with the measure of local divergence rate
used by Nese, 1989. We notice that the are other
definitions of local Lyapunov exponents used in
the current literature (Abarbanel et al, 1991;
Yoden and Nomura, 1993), which however do
not share with (3) the property of giving, after
ensemble averaging, the first (global) Lyapunov
exponent.
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It is common practice to evaluate growth rates
over a finite time interval. For comparison with
other local, finite time predictability indexes, we
will also use the average over t of the local
Lyapunov exponent, which coincides with the
quantity appearing within { ) in (2):

1 1+
=2 o) dr

= lim llog <d(t+r)>,
d0)—07T d(r)
where *© indicates averaging over 1. Notice that
the local Lyapunov exponent (3) does not depend
on the time interval t, whereas (4) does, in view of
the time averaging procedure.

In the following, we shall use definition (4) sub-
stituting the symbol 7 with the symbol ¢ which is
used in the definitions of the other indexes. This
is to indicate that we evaluate the Lyapunov
growth rate over the same forecast time as the
other indexes, and relative to the same initial point
xo=x(0). Assuming that at time ¢ =0, the direc-
tion of the first Lyapunov vector is known, one
can choose this particular perturbation as repre-
sentative of the growth rate of the actual error.

Several other choices are possible: among them,
weighting equally all possible directions of the
initial errors can be called the null-hypothesis. We
recall, for subsequent use, the definitions of the
finite time predictability indexes adopted in the
current literature on the subject. These depend in
general on the location in phase space, the direc-
tion of the initial error vector, and on forecast
time.

Growth rate of the optimal perturbation: 6. A
possible choice is the growth rate associated with
the error vector which grows fastest over a given
time interval, usually referred to as optimal pertur-
bation. This choice is useful if one wishes to assign
an upper bound to the error of an individual
forecast. The growth rate of the optimal perturba-
tion is given by:

t>T, (4)

1
J_Ot(xo’ t)=;log(max ai(x09 t))’ l=1’ n, (5)

where the g, are the semiaxis of the ellipsoid that a
hypersphere of unitary radius in the n-dimensional
phase space, centered at x evolves into, in a time
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interval ¢, under tangent linear flow; the overbar **
reminds us that we deal with an average over ¢. The
squared values of the g, are the eigenvalues of
A" A, A being the error matrix (see, e.g., Lorenz,
1965) and 47 its adjoint.

Growth rate associated with the Lorenz Index:
o.. An alternative measure of transient local
growth rate is based on the so called Lorenz index
(Mukougawa et al., 1991) representing the RMS
error averaged over the surface of the ellipsoid:

1 n 1/2

a(xg, )= <_ Z a?(xo, t)) s

n.
i=1

and its associated growth rate:

— 1
71(x0, 1) = log a(xo, 1). ()

Growth rate of random isotropic errors:

og. The final measure that we consider is the
direction averaged growth rate (T93):
d
GR(x07 [): alogd(t) ) (7)
S

where the operator [ *]s indicates an average over
errors which initially are on the surface of a hyper-
sphere of infinitesimally small radius. This defini-
tion represents the mean growth rate of random
isotropic errors; taking the ensemble average of
this quantity is equivalent to taking the ensemble
average of the growth rates of initial errors in a
random direction. Its time average is given by:

Y O
_t[log d(o)]s. (8)

The definitions of ¢, and g are both based on the
null-hypothesis. However we notice that (7) and
(8) are obtained by averaging the growth rates,
whereas (6) is obtained by taking the logarithm of
the RMS error. In fact defining y = A(¢) r, where r
is a unitary vector, and A is the error matrix, we
can evaluate the two indexes as follows:

1
aL'=;log VIr*yls
1

JR’=7 [log v/ y*yls

See Appendix for further details.
Probability distribution functions (PDF) of the
indexes defined above will be constructed and

a—Rl(xO» t)
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followed during their transient evolution. The dis-
tributions of the time averaged indexes defined by
(4), (5), (6), and (8) will converge to a d-function
centered at g, whereas the distributions of instan-
taneous indexes like (7) will converge to the dis-
tribution of the local Lyapunov exponent (3). For
(5) and (6), which by definition are time averaged
indexes, we shall compute instantaneous values by
evaluating:

o(t)= lim L ((t41) 6"+ — 16"), 9)
=0T

3. Results and interpretation

The Lorenz (1963) three variable convective
model is chosen here, as in many previous studies,
as a prototype chaotic system for the purpose of
investigating properties, and developing concepts,
related to predictability. The model equations are:

d_x_ —px+

%:—xz+rx—y, (10)
d

a—j:xy—bz,

where r=28, b=28/3, p=10.

Local predictability of this model is known to
possess high variability in phase space (Nese, 1989;
Mukougawa et al., 1991). Another aspect of the
behavior of this model is the (enhanced exponen-
tial) transient evolution of global average error
growth rate towards the first Lyapunov exponent
(T93).

The present study deals specifically with the
problem of variability of predictability and the
systematic development of the appropriate tools
for its interpretation. In particular, we shall
address the problem of quantifying phase space
variability of the indexes described in Section 2,
by evaluating PDFs and their time evolution. We
shall describe the effects of the transient on the
variability of the indexes, and discriminate the
relative importance of the variability due to loca-
tion in phase space versus that due to the structure
of the initial error.

As a first look at the behavior of system (10), let
us consider a state whose position, x, in phase
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Fig. 1. Projections on the y — z plane (ye [ —30, 30], ze [0, 50]) of : (a) optimal perturbations (semiaxis of ellipsoid)
computed for 1=0.1; (b) First Lyapunov vector computed for = =0.1, normalized according to amplification factor
(see text). Dots plotted every time step (ds = 0.01) represent basic trajectories. Vectors are plotted every 4 steps.
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space is known within a given accuracy, along a
trajectory belonging to the attractor, chosen as the
initial condition of a particular forecast. In the
limit of infinitesimally small errors, the growth
rate of the initial error x’ is a function of x and
the direction of x’. In T93 it was shown that the
global average linear error growth approaches the
asymptotic value ¢, in a typical time T of order
one. We have argued that, after this time, which
depends upon the properties of locally stable and
unstable directions, all individual initial perturba-
tions x’, will align themselves with the first
Lyapunov vector.

Fig. 1 illustrates how this process operates
locally, and gives indications on its time scale.
Some selected portions of trajectories, obtained
from long integrations of (10), all passing through
a chosen region in phase space, close to the z axis
are chosen: these basic trajectories are represented
in the figure by dots (plotted at every time step,
dr=0.01). We investigate the error growth for
these trajectories by computing the optimal per-
turbation, whose growth rate is given by (2.4) for
the points spanned by each trajectory. The vectors
in Fig. la represent the projection on the y—z
plane of the vectors pointing in the direction of the
major semiaxis of the ellipsoid (“optimal” error
vector), computed for a time interval equal to 0.1.
The length of the error vectors is proportional to
¢%!°, Fig. 1b shows the projection on the y —z
plane of the first Lyapunov vector computed over
the same time interval, with norm %% and
plotted in correspondence to the same points.
The time interval 0.1 is small enough that the
Lyapunov exponents and the Lyapunov vectors
can be considered local (see also discussion of
Figs. 3, 4). The time interval used in constructing
Fig. la is much smaller than the scale of the
“transient”, estimated on average to be order one,
and the individual optimal perturbations are not
yet aligned along the direction of the first local
Lyapunov vectors. For time intervals ¢ = 1.0, the
direction of the individual optimal perturbations
(not shown), coincides with that of the first
Lyapunov vector, shown in Fig. 1b. Thus, after
an initial period of time T into the forecast, the
local Lyapunov exponent becomes the value of
growth rate shared by all initial perturbations and
for all subsequent times, provided of course that
the linear tangent equations hold.

The problem remains of deciding which predic-
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tability index to choose to describe error growth
during the transient phase, when it depends on the
direction of the error vector. Since each of the
indexes introduced in Section 2 represents a dif-
ferent choice of, or an average on, the direction of
the error vector, they will exhibit a different time
dependence during the initial stage of the forecast.
Thus, we need to compare the behavior of the
different indexes during the transient. First of all
we shall focus on the time evolution of the first
moment of the distributions of the various indexes,
and subsequently we shall examine their PDFs.
Clearly the first moment of the distribution of
@, does not depend upon ¢, and is equal to the
estimated value ¢, =0.9. The other indexes, by
definition, have an explicit dependence upon
forecast time; as a consequence, also the first
moment of their distribution is a function of ¢.
Fig. 2 shows ensemble average growth rates as
functions of time. Fig. 2a shows (&) and its
corresponding instantaneous value (g, > com-
puted using (9), together with <{or) (instan-
taneous by definition). These indexes exhibit an
initial very short period of reduced exponential
growth followed by a period of enhanced exponen-
tial growth. Fig. 2b shows {6, ) and the corre-
sponding instantaneous value (g, ), together with
{og). This index shows enhanced exponential
growth from the very beginning. All indexes in
Fig. 2 converge by definition to ¢, although the
convergence of the time integrated indexes (solid
curves) is obviously much slower.

These results point clearly to the fact that choos-
ing any index at a particular time as a measure of
predictability introduces a large degree of arbi-
trariness. In particular, extrapolating an estimate
based on the growth over a finite time interval to
future forecast times can be totally misleading. The
use of Lyapunov exponents to estimate growth
rates during the transient could also be misleading.

These considerations hold for systems which
possess significant transient behavior regardless of
phase space variability of divergence rates. In
order to give a meaningful and reliable estimate of
predictability it is therefore necessary to have an a
priori knowledge of the properties of the transient
for the particular system considered. Preliminary
results indicate that transient growth is a signifi-
cant feature also in more realistic models of the
general circulation, with many more degrees of
freedom (work in progress), whereas phase space
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line.
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variability is not as prominent as in the low order
system at hand.

So far, transient behavior has been examined in
terms of phase space averaged error growth rate.
The variability of predictability connected to the
direction of the initial error, as opposed to phase
space variability, is at the basis of the transient
behavior; therefore it can be observed also in
systems with homogeneous predictability proper-
ties. To illustrate this point, we examine transient
behavior of the various indexes in the simple case
of instability of a fixed point. The system we use

24

20

AL L

Lo

N L R PN
2 4 ] 8 10

is a generalization of a linear system introduced
by Lacarra and Talagrand (1988). We introduce
an explicit dependence on the angle a between
the eigenvectors, which controls the intensity of
enhanced exponential growth (see Appendix).
Figs. 3, 4 show, in analogy with Figs. 2a, b, the
time evolution of the predictability indexes
obtained using different values of a. The similarity
in the behavior of the same indexes in this and the
chaotic model (10), is evident from comparison of
Fig. 3 and Fig.4 with Fig.2a and Fig 2b, in
particular for the value of @ =n/8. The definition

24

“o 2 B ) 10

Fig. 3. Same as Fig. 2a, but for the linear system of the Appendix: (o) dash-dotted line, (o) continuous line,
(o) dashed line. The value of « (see text) is indicated for each set of curves.
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of a quantity corresponding to a in a chaotic
system goes beyond the scope of this work. The
problem, however, is interesting and well-worth
investigating.

Having examined the time dependence of global
average predictability indexes, we now turn to the
study of the time evolution of their phase space
variability and go back to the Lorenz system.
Fig. 5 shows PDFs of the indexes evaluated during
the experiment that produced the results presented
in Fig. 2. Fig. 5a is relative to the first Lyapunov
exponent o, averaged over r=0.1, 0.4, 1.0. Fig.

24
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5b, ¢ are relative to the growth rates associated
with the Lorenz index & and the optimal pertur-
bation o5 averaged between r=0.0 and r=0.1,
0.4, 1.0. Fig. 5d refers to og.

The smallest value of ¢ for which we show results
is equal to 0.1; further decreasing it does not affect
the probability distribution function of Fig. 5a,
as it is evident from comparison with Fig. 3a in
Nese (1989), obtained with +=0.02, and using a
different time integration scheme. We may thus
conclude that = 0.1 is small enough to resolve the
fine phase space structure of predictability on the
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Fig. 4. Same as Fig. 2b, but for the linear system of the Appendix: {(o5) continuous line, (6o> dashed line,
{og ) dash-dotted line. The value of « is indicated for each set of curves.
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Fig. 5. PDFs of predictability indexes in the Lorenz system averaged over time intervals equal to 0.1 (continuous
lines), 0.4 (dashed lines), 1.0 (dash-dotted lines): (a) 7;; (b) o ; (c) 6o; (d) Og.

attractor. The value ¢ = 0.4 corresponds to a PDF
well into the transient and =10 to a PDF
belonging to the post-transient phase.

Comparing the PDFs, we notice large dis-
crepancies among the indexes at #=0.1 and 1 =04
(see also Table 1). In fact, some of the possible
directions of error growth are contracting, and
other are expanding, while each index gives them
different weights. In particular, o, is relative to the
perturbation which grows fastest in the given time
interval; oy is the average growth rate of a Monte
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Table 1. Mean and standard deviation of the PDFs
of the indexes 6,,G;, 00, Og, at time t=0.1, 0.4,
1.0

t mean SD mean SD mean SD mean SD

0.1 090 413 008 223 399 3.08 —1.21 430
04 090 308 172 214 300 221 095261
1.0 090 148 137 105 190 107 102 1.27
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Carlo ensemble; o is the growth rate of the RMS
error of the Monte Carlo ensemble. It is interesting
to notice that on the time scale 7 = 0.1, the PDF of
all indexes, including ¢, extends to negative values
of growth rate, indicating that there are regions of
the attractor’s phase space where, locally and over
a short time interval, all perturbations decay.
Mapping of the Lorenz index by Mukougawa
et al. (1991), computed for t=0.1, shows in fact
amplification factors that are less than one for
large values of z.

The distributions of Fig. 5, for 1= 1.0, provide
estimates of growth rates, computed according to
the definitions of the various indexes, averaged
throughout the transient phase. Although reduced,
there are still considerable differences among the
various distributions, evident also by comparing
their first and second moments (see Table 1).
These differences give an evaluation of the integral
effect of the transient on the different indexes.
We notice that the standard deviation of the dis-
tributions is still large and comparable with the
average growth rate (see Table 1). This effect is due
to the extremely large phase space variability of
this system. For subsequent time intervals of the
forecast we can rely upon the local Lyapunov
exponent as the relevant predictability index. This
statement is supported by the evidence that the
PDFs of instantaneous growth rate computed for
any time ¢>T and for any of the considered
indexes, to an extremely good approximation,
coincide with one another and with the PDF
computed for the local Lyapunov exponent (not
shown).

It is evident from inspection of Fig.5 and
Table 1 that large variability of local predictability
measures in different regions of phase space is a
prominent feature of the Lorenz system; other
systems may not exhibit such strong variability. In
such cases the phase space averaged quantities
would be much more representative of local pre-
dictability. For each particular system the impact
on predictability of phase space dependence versus
the dependence upon the initial perturbation
must be assessed specifically. We have seen in the
present system that after the transient has died out,
and all initial perturbations of an individual trajec-
tory grow at the same rate, the standard deviation
of growth rate of an ensemble of initial conditions
covering the attractor’s phase space is about as
large as during the transient phase.

A. TREVISAN AND R. LEGNANI

The transient time for the Lorenz system is com-
parable to an orbital period; this implies that large
portions of the attractor are spanned when averag-
ing measures of predictability over periods com-
parable with the transient. In fact, in this system
the transient time is an order of magnitude larger
than the “advective” time, defined as the time scale
over which, following a trajectory, predictability
properties change appreciably; we evaluated it to
be of the order of 0.1, noticing that the PDFs do
not change for shorter time intervals.

4. Conclusions

Finite time error growth is subject to transient
behaviour due to the fact that not all initial pertur-
bations grow at the same rate. The fact that for
some directions of the initial error vector, errors
decay over a finite time interval, while for others
amplify, causes finite time predictability indexes to
be crucially dependent upon the way the different
possible error directions are weighed, according to
the definition of the various indexes, and upon the
length of the forecast time. Whereas the growth
rate of the optimal perturbation o5, which gives
an upper bound for error growth, can be very large
for short time intervals, the direction-average
growth rate gy may be negative over the same time
interval.

We showed that the transient behaviour of the
indexes in a system with a fixed point (i.e., with
homogeneous instability properties), is completely
analogous to that of the Lorenz system, provided
we consider the ensemble mean of indexes in the
latter, thus eliminating the effect of phase space
variability. The Lorenz system has very large
phase space variability; there are even regions of
phase space where all initial errors decay over
a short time interval (¢=0.1). However, the
ensemble mean of any index converges to the
first Lyapunov exponent ¢, =0.9 in a finite time
interval 7'~ 1 (transient time).

In summary, at a sufficiently long forecast time:
in an attractor with inhomogeneous predictability
properties, all initial perturbations of the same
initial condition grow at the rate given by the first
local Lyapunov exponent; in an attractor with
homogeneous predictability properties, all pertur-
bations of any initial condition grow at the same
rate given by the first global Lyapunov exponent,
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that in this case coincides with the local one. The
length of the transient can be defined as the
necessary time interval for all vectors to align
along the direction of the first Lyapunov vector.
After this time all local predictability indexes
converge to the first Jocal Lyapunov exponent,
whereas the ensemble mean of the indexes con-
verges to the first global Lyapunov exponent. This
is consistent with the fact that, according to our
definition, the first global Lyapunov exponent is
the phase space average of the first Jocal/ Lyapunov
exponent. The rate of convergence is clearly more
rapid for instantaneous indexes, and {og ) con-
verges more rapidly than the other indexes.

The inhomogeneity of the indexes on the attrac-
tor must be studied in order to estimate the impact
of phase space dependence on predictability. We
examined the PDFs of different indexes averaged
over time intervals belonging to both the transient
and asymptotic regimes. As it is clear from inspec-
tion of PDFs of Lyapunov exponents, phase space
variability is a prominent feature of the Lorenz
system.

The same kind of analysis developed in the
present work can be applied to any other system
in order to obtain a complete picture of the
variability of predictability. We are currently
extending this analysis to an intermediate model
of the general circulation of the atmosphere.
Preliminary results show transient behavior also in
this model, but the standard deviation of the PDF
of the Lyapunov exponent is much smaller than
the mean error growth rate, indicating that phase
space variability of predictability is much less
prominent than in the Lorenz system.

The implications of the present results for
predictability in NWP models are discussed in the
following.

We have shown that if the transient is com-
parable with the forecast time estimates of predic-
tability are highly dependent on the choice of the
predictability index and on the forecast time.
Without a precise knowledge of the duration and
intensity of the transient, it is not possible to assess
the implications of a particular choice with respect
to another. No estimate has ever been made of the
intensity of the transient in NWP models; however
the problems connected to the existence of the
transient are important for short range forecast
skill and its quantification.

At long range, i.e., for forecast times longer than
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the transient, the dependence of linear growth rate
on the structure of the initial error tends to disap-
pear, leaving only the dependence on phase space
location. This fact has the following two conse-
quences:

(a) At long-range, linear predictability mea-
sures become insensitive to the choice of index (or
of the initial perturbation). However, we should be
aware of the fact that nonlinear effects may become
important before this happens; the procedure
developed in the present study can be used to
answer this question.

(b) The problem of quantifying phase space
variability of predictability becomes feasible if use
is made of the first local Lyapunov exponent.

Common practice for predicting forecast skill is
based on ensemble forecasts; different methods are
used to choose the members of the ensemble. One
criterion is to construct the ensemble by selecting
the perturbations which grow fastest in a given
time interval (Molteni and Palmer,1993). Based
on the results of the present work, this procedure
provides an upper bound for error growth but
could largely overestimate the expected growth
rate, if the fastest growing modes are computed for
forecast times shorter than or comparable to the
transient time.

The breeding method, recently developed by
Toth and Kalnay (1993), is based on a procedure
which in principle* selects the first Lyapunov vec-
tor, and uses it as representative of the ensemble.
This method is very efficient in the event that the
first Lyapunov exponent is an adequate measure of
predictability for the forecast time for which it is
used. This can be ascertained after the charac-
teristics of the transient have been evaluated.
Furthermore, the authors argue that, due to
initialization procedures which rely upon model
forecasts, the initial error is not random but has a
large projection on the breeding mode. In this
circumstance, one would expect a very good per-
formance of the method even during the transient.

In order to improve our ability of forecasting
forecast skill further work is needed on the
following lines: to evaluate the characteristics of
the various phases of error growth in GCMs; to

*In a perfect model environment and if the initial
errors are sufficiently small.
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compare the duration of the transient with the
range of validity of linear error dynamics for
typical errors in the definition of the initial state;
to study how the error in the analysis projects on
different growing modes initially and during the
various phases of transient growth; to compare the
relative importance of phase space variability with
variability associated with the structure of the
initial error.
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6. Appendix

Predictability indexes for a system with a fixed
point

Lacarra and Talagrand (1988) examined the
behavior of a linear two dimensional system
whose eigenvectors are not orthogonal (see their
Appendix A), a condition which gives rise to
enhanced exponential transient growth. We gener-
alize the system they used to allow for an explicit
dependence on the angle o between the eigenvec-
tors. We compute, for this system, the growth rate
according to the different indexes (see Section 2),
and show how the transient behavior changes with
the parameter .

The system we consider is:

X;=ax,
Xs=X;.

The eigenvalues of the resolvent matrix A4
associated with this system are 4, =1 and 4,=¢’,
and the corresponding eigenvectors are e, = (1, 0)
and e, = (1/\/1 4+ a*)(a, 1). The angle between the
eigenvectors is o = arctan(1/a).

The Lorenz index is usually written in terms of
the eigenvalues of the matrix 4% A. It can also be
written explicitly as a function of the eigenvalues of
the matrix 4 and of the angle . We shall use the
latter formulation in order to study the depen-
dence of the indexes on the angle a.
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Consider a circle of unitary radius. Each vector
r belonging to it will be transformed in a vector
y=A(t) r belonging to an ellipse whose semi-axis
are a, and a,, whose squares are the eigenvalues of
the matrix 4 4 given by:

ai,=%(a(e' —1)+e*+1)
i%\/(az(e’—1)2+e2’+1)2—462’

If we write r as a linear combination of the eigen-
vectors of A, ie., r=c e, + ¢, e,, and express the
vectors in terms of a Cartesian system i and j, we
have:

e, =icosa,+jsinay,
e,=1cos a, + fsin a,,

r=1icos 0+ jsin 0,

where «,, «,, and 0 are the angles between the
corresponding vector and the axis i. The mean
square distance of the transformed vectors y=
A(t)r=A,c,e;+ Ayc,e, 1s:
Ly le=2ieilo+ 430200

+ 24 4,[c e5]pcos o

i 3 ., cos’u

=— SESE Y P
2sina  2sinla 7 Zsinfa’

where the operator [*], indicates averaging over
0, a =a, —a,, and we used

29 _ _w ’ ——1_
[Cl]()—|:< Sin(dl—OCz) ](,_2Sin2(alv0!z),

2 [ (sin(e,—0)\*] 1
[Cz]t)‘[(sin(al_az) :L—ZSinZ(OC]—Otz),

cos(oy, —as)
2sin’(o; —a5)’

[eic2]o=

Finally, we can write the growth rate associated
with the Lorenz index:

1
oL :?108\/ [|J’TJ’|]0

—ilo 1 L+e” e’ cot?
=2 % \sin? o 2 )
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or, in terms of the semi-axis of the ellipse:

a; +a2

lo
thg

The dlrectlon average index o involves taking
the average of logarithms:

1
TR = 7 fog/ ¥ 1o
1
~ Llog 3T+ 13

We compute oz  numerically except for the case
a = /2, for which we can write Gy in terms of the
semi-axis of the ellipse

0__,_1]0 a,+a,
R =7 g 5 >

€24+ 2 A,¢,¢, €08 2]y,
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where we have made use of the identity

1 L4
;I log(A?sin? 0 + 13 cos? 0) df
0

A+A
=21 172
The growth rate of the optimal perturbation is:

. 1
001=?10g a;

Note that the overline indicates a time average,
and that by use of (9) we can derive instantaneous
values for all these indexes.
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