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ABSTRACT
On the b plane approximation, the two-layer quasigeostrophic mode is used to study the baroclinic instability
of the quadric shear basic zonal flows on a uniform bottom topography. The phase speed and growth rate of
instability waves are functions of the shear zonal basic flows and bottom topographic slope. The study focus
is on the effects of topography and the quadric shear basic zonal flows (the second derivative of basic zonal
flows is not zero). The meridional slope destabilise (stabilise) zonal flows, it plays an unstable role in
disturbance, moreover the effect of the second derivative of basic zonal flows is to accelerate the instability of
disturbance. The zonal slope always destabilises the zonal basic flows through zonal and meridional
wavenumber. Moreover, the effect of the second derivative of basic zonal flows is to accelerate the instability
of disturbance.
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1. Introduction

Baroclinic instability of oceanic currents could yield the
right orders of magnitude of the properties of the Gulf
Stream eddies, In a macroscale background current the
original condition of eddy development is depicted
through the rapid growth of infinitely small orthogonal
mode perturbations, which can, owing to their spatial
and time structure, efficiently obtain energy from the
large-scale background state (Pedlosky, 1978; Cushman-
Roisin, 1986). The physical mechanism of eddy gener-
ation depends on the mean potential vorticity (PV) gradi-
ent, which is prerequisites large-scale flows for unstable
and nonlinear evolution of eddying flows. Although the
planetary vorticity gradient b is small, the nonlinear
dynamics of the instability waves very susceptible to the
b effect as has been proved in an earlier research, it is
further found that the b effect inclines to preserve the
instability point at the primary of the solution phase
plane from the solution trajectories (Pedlosky, 1981).
Chraney (1974) and Eady (1949) formulated a model bar-
oclinic instability, they indicated that the disturbance
viewed in the atmosphere and ocean could be interpreted
as a manifestation of baroclinic instability of the basic
zonal flows. A simple two-layer model with small vertical

scale to remove interference was first introduced by
Phillips (1954). Pedlosky(1987) used Phillips’ model to
study nonzonal basic flows with a flat bottom topog-
raphy, he showed that the nonzonal basic flows would
not possess a minimum critical shear for instability. More
recently, Pedlosky studied the evolution of baroclinic
instability wave in spatial and time structure, when the
disturbance shifts downstream from an upstream source
of perturbation energy such as might take place in flows
like the separated Gulf Stream (Pedlosky, 2011, 2019).

A central question in the theory of atmosphere and
ocean instability barotropic and baroclinic modes are
modified by the presence of the basic flows shear or vari-
able topography. The influence of bottom topography on
large-scale atmospheric and oceanic flows have formed
the theme for a large number of meteorological and
ocean station investigations. The bottom topography
were studied by many researchers (Rhines and
Bretherton, 1973; McWilliams, 1974; Patoine and Warn,
1982), who demonstrate that it can strongly adapt to the
dynamics of waves in the ocean, the role of bottom slope
is similar to the b effect, which generally assists stabilise
the zonal basic flows by modifying the back ground PV
gradient (Blumsack and Gierasch, 1972; Steinsaltz, 1987).
Hart demonstrated that a one-way zonal slope has a
equilibrium effect on a circular vortex and forms an
asymmetric mean flows in a two-layer quasigeostrophic
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(QG) model on f plane (Hart, 1975a, 1975b). Benilon has
shown that short-scale bottom topography irregularities
can stabilise the current (Benilov, 2001). On the b plane
approximation, Chen and Kamenkovich (2013) used a
two-layer QG model, they obtained the important effect
of bottom topography on the baroclinic instability of
basic zonal currents. They found the topographic slope
powerful affects the instability scale, showing that a posi-
tive topographic slope can lead to a large scale of most
instability wave, whilst a negative topographic slope is
easy to make the wave with the maximum growth rate
changes a smaller scale. Many studies only consider the
influence of zonal basic flows or nonzonal basic flows
and topography on baroclinic instability, in addition, the
deviation of most instability is litter consideration on the
combined effect of the quadric shear basic zonal flows
and topographic slope on the b plane approximation
(Leng and Bai, 2018).

In this study, the quadric shear basic zonal flows and
bottom slope were considered on the b plane approxima-
tion, to examine it and the topography effects on the lin-
ear baroclinic instability. This paper is organised as
follows: a two-layer model of the quadric shear basic
zonal flows is described in Section 2; Under the quadric
shear basic zonal flows, a necessary instability condition
and the dispersion relation for instability model are
derived and the second derivative of basic zonal flows,
topographic slope effects are discussed in Section 3. In
Section 4, Conclusions are drawn in section.

2. The model

A two-layer potential vorticity (PV) equation with topog-
raphy on the b plane approximation (Geoffrey and
Vallis, 2006)

oqn
ot

þ Jðwn, qnÞ ¼ 0 ðn ¼ 1, 2Þ, (1)

where qn is potential vorticity, the subscript refers to the
layer; the upper layer corresponds to n¼ 1, and the lower
to n¼ 2. Jða, bÞ ¼ oa

ox
ob
oy� oa

oy
ob
ox is the Jacobian operator.

Potential vorticity qn are of the form on the b plane
approximation

qn ¼ r2wn þ ð�1ÞnFnðw1�w2Þ þ byþ dn2
f0
Hn

gbðx, yÞ:
(2)

where b is the planetary vorticity gradient, Hn is the
depth of two-layer fluid, gbðx, yÞ is the spatially vary-
ing elevation of bottom topography, Fn ¼ f 20

g0Hn
, square

of the inverse Rossby radius, f0 is the Coriolis param-
eter, g0 is the reduced gravity, dn2 is the Kronecker
symbol,

dn2 ¼ 0, n 6¼ 2,
1, n ¼ 2:

�

Consider the streamfunction wn in the upper layer and
lower layer:

wn ¼ WnðyÞ þ un, (3)

where un describe disturbances, UnðyÞ ¼ � dWn
dy is the

quadric shear basic zonal flows (d
2Un
dy2 6¼ 0) in the upper

layer. The potential vorticity qn is expressed through the
streamfunction wn as follows:

q1 ¼ r2u1�a1Fðu1�u2 þW1ðyÞ�W2ðyÞÞ þ by� dU1

dy
,

(4)

q2 ¼ r2u2 þ a2Fðu1�u2 þW1ðyÞ�W2ðyÞÞ þ by� dU2

dy

þ f0
H2

gbðx, yÞ,
(5)

We define

F ¼ f 20 ðH1 þH2Þ
g0H1H2

,

For convenience, let

a1 ¼ H2

ðH1 þH2Þ , a2 ¼ H1

ðH1 þH2Þ :

The square of the inverse Rossby radius Fn follows that

F1 ¼ a1F, F2 ¼ a2F: (6)

3. Instability analytical study

3.1. Necessary instability condition with quadric
shear basic zonal flows and bottom topography

The perturbation equations for un are obtained by linear-
ising the PV equation (1):

o
ot

þU1
o
ox

� �
r2u1�a1Fðu1�u2Þ
� �

þ b� d2U1

dy2
þ a1FðU1 �U2Þ

 !
ou1

ox

¼ 0, (7)

o
ot

þU2
o
ox

� �
r2u2 þ a2Fðu1�u2Þ
� �

þ b� d2U2

dy2
� a2FðU1 �U2Þ þ Sy

 !
ou2

ox
�Sx

ou2

oy

¼ 0: (8)

where Sx ¼ sxf0
H2

¼ f0
H2

ogb
ox ,Sy ¼ syf0

H2
¼ f0

H2

ogb
oy , sx and sy are

the same as employed in Chen and Kamenkovich (2013).
The normal-mode solution
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un ¼ Aneiðkxþly�xtÞ, (9)

where An is the amplitude in each layer, (k, l) is the wave-
number, and x is the frequency of the disturbance.
Inserting Eq. (9) into Eqs. (7) and (8) leads to two
coupled algebraic equations for An:"

ðx�U1kÞðK2 þ a1FÞ þ k b� d2U1

dy2
þ a1FUs

 !#
A1

� ðx�U1kÞa1FA2 ¼ 0, (10)

ðx�U2kÞa2FA1�
"
ðx�U2kÞðK2 þ a2FÞ

þ k b� d2U2

dy2
�a2FUs

 !
þ j

#
A2¼ 0, (11)

where K2 ¼ k2 þ l2,Us ¼ U1�U2, it represents the verti-
cal shear of the basic zonal flow, j ¼ f0

H2
ðK�rgbÞ ¼

f0
H2

k ogb
oy � l ogb

ox

� �
, K ¼ ðk, lÞ and rgb are the wave vector

and topographic slope, respectively. For obtain a neces-
sary instability condition. Multiplying Eqs. (10) and (11)
by a2FA�

1
U1�c and a1FA�

2
U2�c , respectively.

a2FK2jA1j2 þ a1a2F2ðjA1j2�A�
1A2Þ

�
a2FjA1j2 b� d2U1

dy2 þ a1FUs

� �
U1 � c

¼ 0, (12)

a1FK2jA2j2 þ a1a2F2ðjA2j2�A1A�
2Þ

�
a1F jA2j2 b� d2U2

dy2 � a2FUs þ j
k

� �
U2 � c

¼ 0: (13)

where c ¼ x
k is phase speed, A�

n are the complex conju-
gates of An. Summing up Eqs. (12) and (13), we obtain

K2Fða2jA1j2 þ a2jA2j2Þ þ a1a2F2½jA1j2

þjA2j2�ðA�
1A2 þ A1A�

2Þ� �
a2FjA1j2

�
b� d2U1

dy2
þ a1FUs

�
U1 � c

�
a1F jA2j2

�
b� d2U2

dy2
� a2FUs þ j

k

�
U2 � c

¼ 0: (14)

The imaginary part of Eq. (14)

a2FjA1j2
jU1 � cj2 b� d2U1

dy2
þ a1FUs

 !"

þ a1FjA2j2
jU2 � cj2 b� d2U2

dy2
� a2FUs þ j

k

 !
�xi ¼ 0, (15)

where xi is the imaginary part of x. If k is not zero, the
instability necessary conditions with the basic zonal flows
quadric sheared and bottom topography on the b plane
approximation.

Us þ
b� d2U1

dy2

a1F

 !
Us �

b� d2U2
dy2 þ j

k

a2F

 !
> 0: (16)

Equation (16) is the ordinary result, it consists of some
special cases.

Case one: If d2Un
dy2 ¼ 0, namely the basic zonal flows Un is

not the quadric shear, the instability necessary conditions,

min � b
a1F

, bþj
k

a2F

� �
<Us < max � b

a1F
, bþj

k
a2F

� �
: It is similar to

the results of Chen and Kamenkovich (2013).

Case two: In the absence of topography and d2Un
dy2 6¼ 0, the

baroclinic instability is determined by the second deriva-
tive of quadric shear basic zonal flows, stratification
effect and the planetary vorticity gradient b;

Case three: If the gradient of the basic state absolute vor-
ticity b� d2Un

dy2 6¼ 0, that is to say, the basic velocity distri-
bution must be such that d2Un

dy2 is able to over-balance
planetary vorticity b to make Pn change its sign, espe-
cially we shall consider the simplest case of the basic
zonal flows UnðyÞ ¼ Unð1�any2Þ(where Un>0, 0<an<1
are constant). Pedlosky (1987) shows that the absolute
vorticity b� d2Un

dy2 ¼ bþ 2anUn must be positively;

Case four: When the topography is a east-west topog-
raphy, j

k is simplified to Sy, if the topographic slope Sy is
the southward slope ðSy>0Þ, it can stabilise the basic
zonal flow through changing the background PV gradient
b� d2U2

dy2 �a2FUs þ Sy; the topographic slope is the north-
ward slope ðSy<0Þ, it is the opposite of the northward
slope. When the topography is north-south, it effect on
the basic zonal flows through changing Us� bþj

k
a2F

in Eq.
(16), j

k is simplified to � l
k Sx and is dependent of the

north-south direction slope, the wavevector magnitude
and orientation.

3.2. The dispersion relation with the quadric shear
basic zonal flows and bottom topography

Nontrivial solutions for A1 and A2 of Eqs. (10) and (11)
exist only if the determinant of coefficients is zero. This
condition yields the dispersion relation

3



Fig. 1. Spatial structure of unstable modes in the presence of these meridional topographic slopes.

ðx�U1kÞðK2 þ a1F Þ þ k b� d2U1

dy2
þ a1FUs

 !
ðx�U1kÞa1F

ðx�U2kÞa2F ðx�U2kÞðK2 þ a2F Þ þ k b� d2U2

dy2
�a2FUs

 !
þ j

										

										
¼ 0, (17)
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Eq. (17) yields a quadratic equation for x,

ax2 þ bxþ c ¼ 0: (18)

where
here U ¼ U1 þU2,S ¼ j

k : We can get the phase speed

Fig. 2. Spatial structure of unstable modes in the presence of a zonal topographic slope: sx ¼ 1� 10�3:

a ¼ K2ðK2 þ F Þ,

b ¼ �k K2ðK2 þ F ÞU�K2 2b� d2U1

dy2
� d2U2

dy2
þ F ða1 � a2ÞUs

 !
�F b� a2

d2U1

dy2
� a1

d2U2

dy2

 !
�SðK2 þ a1F Þ

" #
,

c ¼ k2

(
K4U1U2 þK2 Fa1U2

2 þ a2U2
1 þ U1

d2U2

dy2
þ U2

d2U1

dy2
� bU

 !
þ b� d2U1

dy2

 !
b� d2U2

dy2

 !

þF bða2U1 � a1U2Þ þ a1U2
d2U2

dy2
� a1U1

d2U2

dy2

" #
þ b� d2U1

dy2
�K2U1 � a1FU2

 !
S

)
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
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and growth rate of unstable wave with the quadric shear
basic zonal flows and topographic effects on the b plane
approximation, the discriminant of x derived from Eq.
(18) is

� ¼ b2�4ac, (19)

Once �<0, the phase speed can be written in a com-
plex form: x ¼ xr þ ixi, c ¼ x

k ¼ cr þ ici, where

xi ¼
ffiffiffiffiffiffiffi�D

p

2a
, (20)

cr ¼ �b
2ak

: (21)

The cr is a nonlinear function of Un,b, d2Un
dy2 and S for a

given perturbation with the wavenumber K, whilst ci,xi

are composed of the nonlinear terms. Aside from the
terms associated with d2Un

dy2 , Eqs. (20) and (21) are the
same as the results of Chen and Kamenkovich (2013).
Using equation (20), we will analyse the effects of the
interplay between the second derivative of quadric shear
basic zonal flows and topography on the linear baroclinic
instability.

3.2.1. Meridional slope and the quadric shear basic
zonal flows on the b plane: sx ¼ 0, sy 6¼ 0, d2Un

dy2 6¼ 0. When
the slope is only meridional, S reduces to Sy. Figure 1a depicts
Chen and Kamenkovich’s result (2013), Fig. 1b–d shows the
growth rate as a function of the wavenumber (k, l) and bot-
tom slope for the he quadric shear basic zonal flows:

Fig. 3. Spatial structure of unstable modes in the presence of a zonal topographic slope: sx ¼ 5� 10�3:
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Us ¼ U1�U2 ¼ 2U1 ¼ 4� 10�2,

d2U1

dy2
¼ �1:5� 10�10,�1� 10�10,�0:5� 10�10,

d2U2

dy2
¼ � d2U1

dy2
¼ 1:5� 10�10, 1� 10�10, 0:5� 10�10

(Geoffrey and Vallis, 2006) over three northward
slopes: weak �1� 10�3, intermediate �1� 10�2 and
strong �1� 10�2: The growth rate of an instability wave
depends on the magnitude k, l, topographic slope and the
quadric shear basic zonal flows, the instability stable
waves are shown here within an incomplete annulus in

the (k, l) plane. The greatest growth rate is the same as
employed in Chen and Kamenkovich (2013) and Leng and
Bai (2018), it is found at l¼ 0, the most instability mode is
a meridional noodle mode. Compare Fig. 1a with Fig.
1b–d, as the meridional slope gets steeper, the second
derivative of quadric shear basic zonal flows is gradually
reduced, the unstable wavenumber rang moves away from
the origin in the (k, l) plane, indiction shorter zonal and
meridional wavelengths of the unstable modes, and
becomes narrower. In addition, Fig. 1b–d shows that the
smaller second derivative of quadric shear basic zonal
flows can be used to the narrower the width of noodle
mode. The results for south slope are also similar and not
discussed here.

Fig. 4. Spatial structure of unstable modes in the presence of a zonal topographic slope: sx ¼ 1� 10�2:
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3.2.2. Zonal slope and the quadric shear basic zonal
flows on the b plane: sx 6¼ 0, sy ¼ 0, d2Un

dy2 6¼ 0. Chen and
Kamenkovich (2013) has verified that positive (west
slope) and negative (east slope) have the same effects on
the greatest growth rate and the corresponding phase
speed. Thus, we also consider west slope in the following
analysis. The effects of a zonal slope are considered for
the quadric shear basic zonal flows om slope for the he
quadric shear basic zonal flows: Us ¼ U1�U2 ¼ 2U1 ¼
4� 10�2, d2U1

dy2 ¼ �1:5� 10�10, �1� 10�10, �0:5� 10�10,
d2U2
dy2 ¼ � d2U1

dy2 ¼ 1:5� 10�10, 1� 10�10, 0:5� 10�10 and the
westward slope sx ¼ 1� 10�3; 5� 10�3; 1� 10�2: Figures
2a, 3a, 4a and Figs. 2b–d, 3b–d, 4b–d show the basic
zonal flows Us ¼ 4� 10�2, d2Un

dy2 ¼ 0 and d2Un
dy2 6¼ 0 at the

different zonal slopes, respectively. Figures 2–4 show that
these different zonal topographic slopes are not like a
meridional topographic slope on b plane, it modifies the
shape of the instability mode, which is no longer the
meridional oriented noodle mode, the range model is the
circular, and range of instability wavennumber shrinks as
slope magnitude increases. Figures 2a, 3a, 4a show the
smaller values of the zonal slope correspond to very nar-
row unstably wavenumber ranges with the same the zonal
basic flows Un.

In contrast of Figs. 2a, 3a, 4a, as shown in Figs. 2b–d,
3b–d and 4b–d, if the basic zonal flows is the quadric
shear basic zonal flows, the effects of d2Un

dy2 6¼ 0 are increase
the number of unstable wavenumbers areas. But in Figs.
2b–d, 3b–d and 4b–d the range of unstable wavenumbers
does not change when d2Un

dy2 increases, this is totally differ-
ent from the meridional slope of state.

4. Conclusions

The present analysis demonstrates that the bottom topog-
raphy and the quadric shear basic zonal flows in the bar-
oclinic unstable of oceanic model. We obtained the
following conclusions.

(1) Topographic slopes and the quadric shear basic
zonal flows are confirmed that it can modify stability of
basic zonal flows, through the changes in the background
PV gradient on the b plane approximation.

(2) The topographic slope is only meridional slope, the
instability mode has the shape of a noodle mode, the
width of noodle decreases as the meridional slope (north
slope) increases, this illustration that the north slope
always plays on unstable role. The function second
derivative of quadric shear basic zonal flows (d

2Un
dy2 6¼ 0)

are to keep the noodle mode away from (k, l) plane,
when it increase, the width of the mode region become
more and more narrow. Therefore, the decrease of d2Un

dy2

and the steepening of slope have the same effect on the
instability.

(3) The topographic slope is purely zonal in (k, l)
plane, if d2Un

dy2 is zero, namely, the basic zonal is not the
quadric shear, the unstable range gradually shrinks as the
slope magnitude increases; if the basic zonal flows is the
quadric shear (d

2Un
dy2 6¼ 0), the number of instability regions

are increased, that is, expand the area of unstable regions.
But under the same slope, the change of the quadric
shear basic zonal flows does not affect the
unstable range.

The results of this idealised study are complementary
to the literatures (Chen and Kamenkovich, 2013; Leng
and Bai, 2018), it can help to interpret the large-scale
waves generation over basic zonal flows sheared and
more complex topography in the real ocean and atmos-
phere. More detailed work including nonzonal basic
flows, vertical shear in zonal ocean currents, and theoret-
ical study will be considered.
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