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ABSTRACT
A dynamical–system approach is proposed to describe the relationship between precipitation and a chosen
predictor. This is done by constructing a two dimensional phase space spanned by predictor and predictant.
This study uses two sounding data sets from the Tropical Western Pacific and Friuli Venezia Giulia (FVG)
over North–East Italy as representatives of the tropics and midlatitudes, in addition to a basin–scale average
over the winter–period North Atlantic from global re–analysis data. In contrast to conventional correlation-
based approaches, the proposed approach depicts periodic cycles, as well as discharge–recharge cycles as its
nonlinear extension. Discharge–recharge cycles for tropical convection are identified by using both the
convective available potential energy (CAPE) and the column–integrated water vapor (CIW) as predictors, as
well as the baroclinicity for the winter–period North–Atlantic rain. On the other hand, the midlatitude rain,
as seen over FVG as well as the winter–period North Atlantic, does not constitute a well–defined periodic
cycle either with CAPE or CIW as a predictor. The inferred phase–space trajectories are more deterministic
at peripheries of dense data areas rather than at a middle in the phase space. Data–dense areas in phase
space, where traditional approaches primarily focus, are associated with more prediction uncertainties in our
analysis due to more phase-velocity fluctuations.

Keywords: dynamical system, precipitation, column-integrated water vapor, CAPE, empirical forecast,
discharge–recharge

1. Introduction

The atmospheric system is complex, and it is often hard
to derive a simple system equation theoretically. Thus, it
is a common custom to seek a relationship of a predicted
variable with another variable based on observational
data. Such an approach is often misleadingly called
‘statistical’. It would be better called empirical, because
there is nothing particularly statistical in these approaches
except for a need for a certain statistical test to evaluate
a reliability of such an empirically–derived model (see
more in: Ambaum 2010).

The most popular approach would be to seek a linear
relationship between two variables for inferring a cause
and effect between them, for example, by correlation ana-
lysis.1 A slightly more advanced approach along the same
line is to take scatter plots between these two variables to
identify a nonlinear relationship between the two

variables. Even better still would be to evaluate the dens-
ity distribution of these two variables over a phase space
spanning them. However, those approaches have their
limitations. An example is when two variables constitute
a variable pair of a harmonic oscillator. The two varia-
bles have no correlation but are clearly related.2

The present paper proposes an approach, which is
designed to work in such a case. A more general, basic
idea of the proposed alternative approach is to infer the
cause and effect between two variables, rather than dir-
ectly seeking a functional relationship (linear or nonlin-
ear) between the variables, based on a dynamical–system
description: see Eq. (2.2) below and associated
discussions.

Precipitation is one of the most important variables to
be predicted in atmospheric science and hydrology, and
as a result various empirical approaches have been
adopted. The atmospheric precipitation system is so com-
plex that even today, numerical weather predictions�Corresponding author. e-mail: jiy.gfder@gmail.com
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regularly fail. A simple empirical prediction scheme is
also of theoretical interest, because it may also help us to
understand the atmospheric precipitation processes better.

It is found that correlations between the precipitation
and the convectively available potential energy (CAPE)
are rather weak in observational analyses (Sherwood
1999; Manzato 2003; Zhang and Klein 2010; Barkid-ija
and Fuchs 2013). This is in spite of the fact that CAPE is
expected to be a key variable in describing the convective
energy cycle (cf., Emanuel et al. 1994; Renn�o and
Ingersoll, 1996; Yano and Plant 2012a, 2012b), and sub-
stantial fractions of precipitation are expected from con-
vection (see also Smith and Montgomery 2012). On the
other hand, quantities less directly linked to the convec-
tion dynamics, such as the column-integrated water vapor
(CIW)3 present higher correlations with the precipitation
(Raymond 1995; Brown and Zhang 1997; Sherwood
1999; Sherwood and Wahrlich 1999; Manzato 2003;
Sobel et al. 2004; Mapes et al. 2006, 2009).

The present paper addresses questions concerning
empirical prediction methods by focusing on precipita-
tion. Our more direct motivation is a suggestion by Yano
and Plant (2012a) that the convective energy cycle may
be described by a process of recharge and discharge in
the phase space consisting of the cloud work function
and the convective kinetic energy. The usefulness of such
a phase space was originally suggested by Arakawa and
Schubert (1974) in their development of convection par-
ameterization. Although the theory is sound, it is highly
idealized. For this reason, we seek observational support
so that a realism of this theory can be assessed.

Here, the cloud work function can practically be con-
sidered a potential energy of the system. For the purpose
of our analysis, it is replaced by CAPE, which is com-
monly diagnosed from observational analyses. Another
dependent variable of the system, the convective kinetic
energy, is replaced by the precipitation rate (rain in short
hereafter), because both measure the convective intensity,
and are expected to be closely related each other. See
Yano et al. (2005) for the physical interpretation of the
cloud work function as well as its link to CAPE.

We will, more specifically, ask whether a recharge-dis-
charge cycle can be identified in the phase space of these two
variables, even though the correlation between them is rather
weak. An important point to be emphasized here is that
these two facts do not contradict each other: in fact, under
an expected recharge-discharge cycle, no strong correlation
between the two variables would be found. As an alternative
prediction variable for rain, CIW is also examined.

The present paper examines both tropical and midlati-
tude data. We expect that a contrast in the dynamics
between the tropics and the midlatitudes may lead to dif-
ferent results. In general, tropical rain is more dominated

by convective processes than those of midlatitudes. Here,
as the introduction so far suggests, a motivation of the
present analysis stems from the understanding of convect-
ive rain, but the analysis is performed on precipitation
data without discriminating between convective and non-
convective processes.

The focus of the present study is the mesoscale and the
longer time scales. This constraint arises from the fact that
CAPE and CIW are evaluated from data based on sound-
ings, directly or indirectly, which are typically performed in
an interval of 6–12 hours. As a result, the data do not
resolve the convective scale. Nevertheless, we emphasize
that data are consistent with typical interests of regional
forecasts over time scales of 24–48 hours (cf., Sec. 5.4).

The outline of this paper is as follows. The method-
ology of the present study, based on a dynamical-system
description introduced by Novak et al. (2017), is pre-
sented in the next section. Data for the analysis is intro-
duced in Sec. 3, and the analysis results are presented in
Sec. 4. The results are further discussed in the last sec-
tion. Some technical details of analysis methods are given
separately in the Appendix.

2. Methodology: Dynamical–system based
description

2.1. Principle

A limitation of predicting a variable, y, based on its func-
tional dependence on a predictor, x, linear or nonlinear,
is probably best seen when two variables are described by
a pure harmonic oscillator:

_x ¼ �y, (2.1a)
_y ¼ x, (2.1b)

where the dot designates the time derivative. In this case,
a circular distribution of the two variables around the
equilibrium point, ðx, yÞ ¼ ð0, 0Þ, is found in the phase
space, with a precise distribution depending on an initial
distribution of variables. Thus, no linear correlation is
seen between the two variables. This example provides a
simple demonstration that no correlation does not neces-
sarily mean no relation between two variables.

The discharge–recharge model proposed by Yano and
Plant (2012a) and Ambaum and Novak (2014) can be con-
sidered a nonlinear generalization of this linear harmonic
oscillator. The system (2.1) may, furthermore, be consid-
ered a special case of a general dynamical system of a form:

_x ¼ f ðx, yÞ, (2.2a)
_y ¼ gðx, yÞ: (2.2a)

Here, f(x, y) and g(x, y) are (unspecified) tendencies for
the variables, x and y, respectively, that are to be

2 J.-I. YANO ET AL.



estimated from observations. We refer to this tendency
pair, ð _x, _yÞ, as the phase velocity in the following. Note
that Eq. (2.2) casts a system into a framework of ‘cause
and effect’ with those given by the right–hand and the
left–hand sides, respectively.

Practically it is not possible to derive a closed deter-
ministic dynamical system of the form (2.2) for any two
variables in the atmospheric system because of its high-
dimensionality, in which these two variables are also inev-
itably coupled with many other variables (cf., Yano and
Mukougawa 1992). The formulation given by Eq. (2.2)
would best be considered an averaged description of a
system, and other variables may project onto this phase
space, either as a stochastic contribution, or as a time
mean (cf., Pavliotis and Stuart 2007). From a point of
view of the data analysis, in other words, an estimate of
the tendency functions, f(x, y) and g(x, y), is associated
with the fluctuations, or noises, which may be designated
by ex and ey for these two variables. Thus,

_x ¼ f ðx, yÞ þ �x, (2.3a)

_y ¼ gðx, yÞ þ �y: (2.3b)

We estimate f(x, y), g(x, y), ex, and ey by the procedure
described in next subsection. Here, f(x, y) and g(x, y) are
the signals (i.e. mean tendencies) that we wish to deter-
mine; ex and ey are the noises, or fluctuations around
these deterministic signals, whose magnitudes are to
be inferred.

2.2. Analysis Procedure

In general, regardless of a specific data set choice, we
consider Nþ 1 observations consisting of ðxi, yiÞ
(i ¼ 1, . . . ,N þ 1). Here, the index, i, is arranged follow-
ing a sequence of the observations, which are performed
with an interval of Dt: Among the three data sets adopted
in the present study (cf., Sec. 3), Dt ¼ 12 hours for the
Italian data set, and the remaining two are with Dt ¼
6 hours.

We evaluate the phase velocities by

_xiþ1=2 ¼ xiþ1�xi
Dt

(2.4a)

_yiþ1=2 ¼
yiþ1�yi

Dt
(2.4b)

as values at the phase-space points

xiþ1=2 ¼ xi þ xiþ1

2
yiþ1=2 ¼ yi þ yiþ1

2

with i ¼ 1, . . . ,N:

We measure the spread of observation points by

sx ¼ 1
N

XN
i¼1

ðxiþ1=2��xÞ2
" #1=2

,

sy ¼ 1
N

X
ð

N

i¼1

yiþ1=2��yÞ2
" #1=2

,

where

�x ¼ 1
N

XN
i¼1

xiþ1=2,

�y ¼ 1
N

XN
i¼1

yiþ1=2

define the average point of data in the phase space.
With the help of these statistics, we estimate a phase

velocity (i.e. evolution tendency) at every point, (x, y), in
the phase space by a weighted average of the all available
phase-velocity estimates from the observations given by
Eq. (2.4) as

_xðx, yÞ ¼
PN

i¼1xiþ1=2 _xiþ1=2PN
i¼1xiþ1=2

(2.5a)

_yðx, yÞ ¼
PN

i¼1xiþ1=2 _yiþ1=2PN
i¼1xiþ1=2

(2.5b)

with a weight defined by

xiþ1=2 ¼ exp � 1
2

x�xiþ1=2

fxsx

� �2

þ y�yiþ1=2

fysy

� �2
( )#

:

"

Here we adopt weighting-spread factors fx ¼ fy ¼ 0:35;
this definition means that the data are averaged with a
Gaussian weight with an influence radius defined by 35%
of the data spread. These values of fx and fy ensure that
sufficient smoothing occurs to produce well-defined phase
space trajectories, without removing too much detail (see
Novak et al. 2017 for further details).

This procedure has the advantage of being able to esti-
mate the phase velocities over the phase space continu-
ously and everywhere in the phase space regardless of
data availability at any specific point. As a result, the
phase velocity is estimated at every point, (x, y), in the
phase space with an effective number, a(x, y), of data
points defined by

aðx, yÞ ¼
XN
i¼1

xiþ1=2: (2.6)

Effectively, a(x, y) measures a data number ‘density’ used
in the present analysis. Here and hereafter, the arguments
(x, y) are omitted from most of the expressions for sim-
plicity except for _x and _y in the left hand side, for
example, in Eqs. (2.5a) and (2.5b).
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Note that the phase velocity estimated by Eqs. (2.5a)
and (2.5b) are mean values. The phase velocity associated
with an actual evolution of the system fluctuates around
these mean values, depending on the instant that the sys-
tem visits a particular phase–space point. We measure
these fluctuations of the above phase-velocity estimates
by standard deviations:

su ¼
PN

i¼1xiþ1=2ð _xiþ1=2� _xÞ2
a

" #1=2

, (2.7a)

sv ¼
PN

i¼1xiþ1=2ð _yiþ1=2� _yÞ2
a

" #1=2

: (2.7b)

These fluctuations can be treated as noises for quantify-
ing statistical significance (cf., Eq. 2.10 below) as well as
for modelling purposes (cf., Sec. 5.4 below). As a result, a
nondeterministic part of the dynamical system (2.3) may
be represented by ex ¼ êxsu and ey ¼ êysv, where êx and
êy are random noises with standard deviations of unity.

Considering the fact that the scales (as well as units)
for x and y are different, for graphical purposes, we nor-
malize the phase-space velocity by

ð _̂x, _̂yÞ ¼ ð _x=sx, _y=syÞ, (2.8)

thus on the plotted phase space, the spread of the velocity
is also normalized into

ðŝu, ŝvÞ ¼ ðsu=sx, sv=syÞ (2.9)

(i.e. normalized spread vector).
The statistical significance of the phase–velocity esti-

mate is influenced by two major factors: effective num-
ber, a(x, y), of available points defined by (2.6) and the
spread (i.e. variance), ŝ2u þ ŝ2v , of phase–velocity, measur-
ing fluctuations at each point in the phase space. The
estimate is more reliable with increasing a(x, y) and less
reliable with increasing ŝ2u þ ŝ2v : Thus, a statistical signifi-
cance may be measured by:

bðx, yÞ ¼ a

ŝ2u þ ŝ2v

� �1=2
: (2.10)

3. Data

3.1. Data sources

As data sources, two types of sounding data are consid-
ered, from the tropics and the midlatitudes, respectively.
As a representative over the tropics, we take soundings
over the Intensive Flux Array (IFA) during the TOGA-
COARE field campaign over the Western Pacific. The
observational period was for four months from 1
November 1992 to 28 February 1993. The IFA is encom-
passed by four sounding stations: Kapingamarangi (1:0

�

N, 155
�
E), Kavieng (2:6

�
S, 151

�
E), R/V Kexue 1 (4:0

�
S,

156
�
E), and R/V Shiyan 3 (2:3

�
S, 158

�
E). For the present

study, an integration of soundings into a 6–hourly single–-
column data set, as arranged at the State University of
Colorado (available from the web http://tornado.atmos.
colostate.edu/togadata/ifa_data.html: Ciesielski et al.
2003), is used.

In this data set, the rain measurement, P, is not dir-
ectly available, but it is indirectly estimated from a mois-
ture budget, using the local temporal tendency, oI=ot,
and convergence rate, �DivðIÞ, of CIW (I) as well as the
evaporation rate, E, as observationally estimated:

P ¼ � @I
@t

�DivðIÞ þ E:

Due to data uncertainty, as a result, the rain occasionally
becomes negative in this data set. No attempt is made to
correct this unphysical behavior.

As a representative over the midlatitudes, we take
soundings from Udine-Campoformido (WMO RDS code
16044, 46:0

�
N, 13:2

�
E) over Friuli Venezia Giulia

(FVG), North East (N. E.) of Italy for a 12–year period,
from 1 January 2006 to 1 January 2018. Soundings are
available every 12 hours at 00UTC and 12UTC. As for
rain, accumulated precipitation over 6 hours up to the
moment of the sounding measured by rain gauges at four
near-by stations [Codroripo (46:0

�
N, 13:0

�
E), Fagagna

(46:1
�
N, 13:1

�
E), Talmassons (45:9

�
N, 13:1

�
E), and

Udine (46:0
�
N, 13:2

�
E)] are used. Note that FVG is one

of the areas with heaviest rain over central Europe
(Feudale and Manzato 2014; Isotta et al. 2014; Manzato
et al. 2016; Poelman et al. 2016; Pavan et al. 2019).

In addition to these two types of sounding data, following
earlier studies by Ambaum and Novak (2014), and Novak
et al. (2017), an average over the North Atlantic during five
winter periods (December–February) over 1994–1999 is con-
sidered. Data is 6-hourly ERA-Interim data, which is aver-
aged over the North–West Atlantic (30–50

�
N, 30–80

�
W).

Rain is a 6-hour accumulated value. Their goal has been to
examine the storm-track dynamics on a basin–scale average.
A question in this part of the study is, in turn, how the pre-
cipitation is determined under the midlatitude storm-track
dynamics under the same settings.

Table 1 lists the mean and the spread (standard devi-
ation) of these three data sets. These spreads approxi-
mately correspond to a quarter of the analysis and
plotting ranges adopted in subsequent figures.

3.2. Prediction variables

As prediction variables for rain, we primarily consider
CAPE and CIW. For logistic reasons, CAPE is calculated
slightly differently for the three data sets considered. The
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computation procedures of CAPE for the Tropical
Western Pacific and Friuli Venezia Giulia (FVG), respect-
ively, follow the procedures described in Yano and
Ambaum (2017) and in Manzato and Morgan (2003).
ERA data provides CAPE based on forecasts of 6 and
12 hours. CIW is obtained by a direct vertical integral of
the water-vapor mixing ratio multiplied by the air dens-
ity. In addition to these two primary variables, the baro-
clinicity is also considered over the winter–period North
Atlantic, because that is demonstrated to be a main driv-
ing force of the storm tracks by Ambaum and Novak
(2014), and Novak et al. (2017). Here, the baroclinicity is
simplified and described as a difference of the zonal
winds between 700 and 850 hPa.

3.3. Data quality

The TOGA–COARE IFA data set is originally delivered
in 1997 (Ciesielski et al. 1997), and we use the updated
version delivered in 2003 with further calibrations
(Ciesielski et al. 2003). The general validity of this data
set is systematically verified by Mapes et al. (2003).
Furthermore, precipitation data are extensively verified
against independent estimates by Johnson and Ciesielski
(2000: see especially their Fig. 7) to establish its reliabil-
ity. For the purpose of the present study, the IFA pre-
cipitation time series is re-verified against the MIT–radar
precipitation (Rickenbach and Rutledge 1998) for
consistency.

A basic error analysis of re–analysis (ERA–Interim) is
presented in Dee et al. (2011), who introduce this data
set: see especially their Fig. 23(a), which shows that an
expected error over the North Atlantic remains at a level
of 2mm/day, although the tropical errors are substan-
tially higher. Reliability of precipitation from re–analysis

(ERA–Interim) is extensively verified further by various
studies (e.g. Simmons et al. 2010; Kållberg 2011;
Hawcroft et al. 2012; de Leeuw et al. 2015; Hawcroft
et al. 2016). See especially Figs. 1–3 of Hawcroft et al.
(2012), which compare the re–analysis rain with GPCP.

The whole analysis is also repeated with the ERA5
data set (Hersbach et al. 2020) to further ensure consist-
ency of these data over three regions. Overall agreements
between the adopted data and ERA5 are satisfactory,
except for over the Tropical Western Pacific, where sub-
stantial errors in re–analysis data are expected.

4. Analysis

4.1. Data distribution

Distributions of data for the present study are quantified
in Fig. 1 by the effective number, a(x, y), of available
points defined by (2.6). In turn, these distributions can be
used for inferring relationships between the two variables
as a basis for developing an empirical prediction model
for rain, from a point of view of correlations, as dis-
cussed in introduction.

Fig. 1 overall confirms what is already known in the
literature: CAPE is not well correlated with rain, and a
much clearer, positive correlation is found with CIW.
Over the Tropical Western Pacific, CAPE appears to be
only weakly negatively correlated with rain (�0.25). Over
N.E. Italy (FVG), a correlation between CAPE and rain
is virtually nonexistant (0.06): the bulk majority of the
observed points are aligned along an axis either of CAPE
or rain. The analysis during the convective season (May-
September) is repeated over N.E. Italy (FVG), and a
similar distribution is obtained over a phase space of
CAPE and rain, but with a noticeable difference that
intensive rain is less frequent.

Table 1. Mean and spread (standard deviation) of data.

Area Varaible Mean Spread

(Standard

Deviation)

�x, �y sx,sy

Trop.West.Pacific rain 8.2 (mm/day) 10.2 (mm/day)

CAPE 414 (J/kg) 229 (J/kg)

CIW 51.2 (mm) 4.4 (mm)

FVG rain 0.97 (mm/6h) 2.9 (mm/6h)

CAPE 180 (J/kg) 382 (J/kg)

CIW 19.9 (mm) 9.2

North Atlantic rain 1.09 (mm/6h) 0.41 (mm/6h)

CAPE 73.5 (J/kg) 29.0 (J/kg)

CIW 15.3 (mm) 2.03 (mm)

baroclinicity 4.6 (m/sec) 1.4 (m/sec)

DYNAMICAL–SYSTEM DESCRIPTION OF PRECIPITATION 5



Fig. 1. Effective number of points for analysis defined by Eq. (2.6).
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Fig. 2. Phase-velocity vectors: the maximum length indicated at the lower right of the figure is 1 day–1 for (a), (b), 2 day–1 for (c), (d),
and 0.5day–1 for (e), (f), (g). The vectors longer than the maximum are indicated by increasing the arrow head size proportionally.
Vectors are marked only over the areas with data density of a> 1. Shades show the statistical significance, bðx, yÞ, measured by
Eq. (2.10).

DYNAMICAL–SYSTEM DESCRIPTION OF PRECIPITATION 7



Fig. 3. Signal-to-noise ratio defined by (4.1) shown by shades. The phase-velocity vectors are also overlain as in Fig. 2.
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The rain clearly increases at a faster rate with the
increasing CIW over the tropics (with a linear correlation
of 0.38): an onset point of rain may be identified with
CIW around 50mm, and increasingly more rain is found
beyond this point with the increasing CIW. Such a func-
tional relation is harder to identify over N.E. Italy
(FVG), and the linear correlation is weaker (0.17). The
most-likely state remains no rain even with increasing
CIW. We simply see a greater chance for heavier rains
with increasing CIW, associated with an increasing spread
of the distribution from a zero-precipitation peak.

The analysis over the winter–period North Atlantic
domain leads to qualitatively different results: CAPE is
well correlated with rain (0.52) as identified by a linear
positive slope in distribution. On the other hand, CIW
presents a less clear relation with rain (even though the
linear correlation is 0.31). Instead, we find a rather
homogeneous, circular-shaped distribution around the
modal point. Although the winter–period storm-track sys-
tem is strongly driven by baroclinicity, it does not repre-
sent a clear correlation with rain (�0.03) with a
distribution similar to that with CIW. However, as sug-
gested in Sec. 2.1, examining data distributions in this
manner is not necessarily a good approach for identifying
a controlling variable for a process.

The phase velocities obtained by the procedure of Sec.
2 are plotted in Fig. 2, which is overlain by a measure of
statistical significance, bðx, yÞ, defined by Eq. (2.10).
Vectors are marked only over areas with data density of
a> 1. Over the tropics (Western Pacific), we clearly iden-
tify evidence of a recharge-discharge cycle both with
CAPE (a) and CIW (b): both predictors increase without
much rain, constituting a recharge phase, until they reach
threshold values. These thresholds values are approxi-
mately 700 J/kg and 55mm, respectively, for CAPE and
CIW. Above these thresholds, the rain suddenly begins to
increase associated only with a weak increase of CAPE
and CIW. The tendency continues until the rain rate
reaches thresholds, approximately 15mm/day and 30mm/
day, respectively, with CAPE and CIW. Above this
threshold, CAPE and CIW begin to decrease. Over the
discharge cycle, rain still tends to increase with CAPE
until it almost depletes. With CIW, on the other hand,
rain also begins to decrease beyond this point. This dis-
charge phase is completed by returning close to the origin
of the phase space. From that point, a recharge cycle
begins again.

With the midlatitude soundings (N. E. Italy FVG),
CAPE (c) does not form any clear cycle with rain: identi-
fied phase velocities are overall horizontal in the phase
space, i.e. only CAPE changes with little change of the
rain rate. A clearly identified pattern is a decrease of
CAPE when CAPE is already less than 1200 J/kg,

whereas CAPE is predominantly increasing over 2500 J/
kg. A discharge tendency is identified only over a CAPE
range of 1200–1800 J/kg with the rain rate above
3mm/6h.

With CIW obtained by midlatitude soundings (d: N.
E. Italy FVG), we can identify an initiation of rain above
30mm, and a subsequent rapid increase of rain associated
with a weak increase of CIW. Above 2mm/6h, the phase
vectors become almost vertical. With the rain above
2mm/6h and CIW below 30mm, a discharge cycle is
identified. Over a range of 30–40mm for CIW, the rain
increases associated with a decrease of CIW. This ten-
dency suggests that CIW is consumed as rain faster than
being supplied, mostly, by low-level convergence. Once
CIW reaches below 30mm, the rain ceases to increase,
and gradually turns into a decreasing phase. A recharge
branch required for closing the cycle is, however, only
identified with weak vectors.

A discharge-recharge cycle of the rain associated with
the winter–period North Atlantic storm–track cycle is
most clearly identified with baroclinicity (g), and to a
lesser extent with CIW (f). With CAPE (g), two branches
are identified for discharge for a high and low rain
regimes for a given CAPE: both CAPE and rain decrease
along these branches. To close the cycles, a recharge
phase consisting of an increase of both CAPE and rain
must exist, but this cycle cannot be identified clearly in
our data, except for a trace identified around 100 J/kg
and 1.5mm/6h, respectively, with CAPE and rain.
Furthermore, a reconstructed lower branch of recharge-
discharge cycles is physically unintuitive, because a com-
pletion of recharge appears to trigger a decrease of rain
rather than an increase as expected from this notion.

We should keep in mind that the trajectories shown in
Fig. 2 are mean values, as defined by Eqs. (2.5a) and
(2.5b): the actual individual trajectory, as traced as a sys-
tem evolves, substantially fluctuates around this mean
trajectory. In other words, the actual evolution of the sys-
tem is hardly deterministic. The degree of fluctuations of
the phase-velocity has been defined by Eqs. (2.7a) and
(2.7b). Thus, a degree of such nondeterminism of the sys-
tem may be measured by a signal-to-noise ratio, rv,
defined as

rv � _x
su

� �2

þ _y
sv

� �2
" #1=2

, (4.1)

considering the mean and the degree of fluctuations as
signal and noise, respectively. The signal-to-noise ratio
(4.1) shown in Fig. 3 is very low, much less than unity in
data dense areas (cf., Fig. 1): fluctuations of individual
trajectories around the the estimated mean phase-veloc-
ities are, most of the time, quite high.
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It also follows that various, ‘well–defined’ trajectories
in Fig. 2 are associated with substantial fluctuations,
and hardly deterministic, especially the recharge–di-
scharge cycles identified with various variables.
Notably, a discharge branch of the CIW–rain cycle
over the FVG (Fig. 2d) is associated with strong fluctu-
ations (i.e. a high noise level). The same is, to some
extent, true with the recharge branch of the CAPE–rain
cycle over the winter–period North Atlantic (Fig. 2e).
In this case, the flow structure itself is not well defined
in addition to a high noise level. On the other hand,
rather unintuitively, high signal-to-noise ratios tend to
be found over data poor areas, partially due to larger
mean phase velocities.

Here, it is important to clearly distinguish between phys-
ical fluctuations of the system, as measured by the signal-
to-noise ratio defined by Eq. (4.1), here, and the statistical
significance of the phase–velocity estimate measured by
Eq. (2.10). The former measures an accuracy of predicting
the evolution of the system assuming a mean phase vel-
ocity, whereas the latter measures an accuracy of statistic-
ally estimating a mean value for the phase velocity. It is
inaccurate to try to predict an evolution solely based on a
mean phase velocity, when the signal-to-noise ratio is very
low. However, even in that case, it is still possible to esti-
mate a mean phase velocity accurately, with a high statis-
tical significance, when the data density is high enough.

In general, a high statistical significance of a mean tra-
jectory estimate does not necessarily mean a high degree
of determinism of the system. Conversely, a high noise
level does not necessarily mean a low statical significance
of an estimate. Comparison between Figs. 2 and 3 sug-
gests that these remarks apply rather as the norm rather
than the exception in the present analysis.

4.2. Linear dynamics analysis

For understanding the dynamical systems represented by
Fig. 2 better, we take the following linear description of
the system as an Ansatz:

_x 0 ¼ l1x
0�k1y0, (4.2a)

_y0 ¼ k2x0�l2y
0: (4.2b)

Here, the phase-space coordinates ðx0, y0Þ are defined rela-
tive to the fixed point, (x0, y0), of a system, indicated by
a prime, i.e. x0 ¼ x�x0 and y0 ¼ y�y0: Signs of the coeffi-
cients, kj and lj (j¼ 1, 2), are defined in such manner
that, as shown explicitly in the Appendix A.1, an ellip-
tical oscillator with an axis elongated by a factor, a, tilted
from the x-axis by an angle, h, and with a frequency, x,
is described by

k1 ¼ x a cos 2hþ sin 2h
a

� �
, (4.3a)

k2 ¼ x a sin 2hþ cos 2h
a

� �
, (4.3b)

l1 ¼ l2 ¼ ða�1=aÞ sin h cos h: (4.3c)

The coefficients, kj and lj (j¼ 1, 2), are expected to
depend on the phase–space coordinates, (x, y), in general,
due to nonlinearity of the system. However, as a first
attempt, we estimate these coefficients assuming them to
be globally constant. In this case, the phase–velocity data
shown in Fig. 2 can be fitted to the linear dynamical sys-
tem (4.2) by a least–square method. There are six param-
eters to be estimated with the fixed point coordinates, x0
and y0, in addition to the four coefficients, kj and lj
(j¼ 1, 2). The least–square fit is performed by using
30� 30 points in phase space, and by using the statistical
significance defined by Eq. (2.10) as a weight at each
point. The obtained estimates are provided in Table 2.
Distributions of local fit errors relative to the magnitude
of the local phase–velocity are shown in Fig. 4, along
with the estimated fixed points, (x0, y0), marked by black
circles. Note that the values in Table 2 are after the nor-
malizations defined by Eqs. (2.8) and (2.9).

Table 2. Dynamical–system characterisitcs.

Area
Predict.

Trop.West.Pacific FVG North Atlantic

Variable CAPE CIW CAPE CIW CAPE CIW barocl.

k1 0.66 0.74 0.10 9.2� 10–2 1.5� 10–2 3.8� 10–2 0.24
k2 0.53 0.56 0.30� 10–3 1.6� 10–2 5.6� 10–2 3.1� 10–2 0.23
l1 �0.17 0.22 �3.2� 10–2 9.8� 10–3 �4.8� 10–3 1.6� 10–3 3.4� 10–3

l2 �0.21 0.14 4.3� 10–2 �6.7� 10–3 3.1� 10–2 1.3� 10–2 �6.3� 10–3

x0 397 51 366 19 69 16 4.6
y0 8.4 7.9 0.36 1.1 1.1 1.2 1.1
x2 0.32 0.38 2.8�10�4 1.4� 10–3 6.7�10�4 1.0� 10–3 5.4� 10–2

rr 2.0� 10–2 3.8� 10–2 �3.8� 10–2 8.2� 10–3 �1.8� 10–2 1.4� 10–3 4.8� 10–3

10 J.-I. YANO ET AL.



Fig. 4. Error distribution with global fit to the system (4.2). Only areas with a> 1 are shaded.

DYNAMICAL–SYSTEM DESCRIPTION OF PRECIPITATION 11



For a system to constitute a coherent periodic cycle,
the signs of k1 and k2 must agree. Furthermore, to form
a well-defined elliptical orbit, it requires l1 ’ l2: Table 2
shows that no system satisfies this condition in any clear
manner. The system (4.2) can more generally be diag-
nosed by an eigenvalue analysis, as presented in the
Appendix A.2. It shows that the general system (4.2) is
described by a frequency, x, and an exponential ten-
dency, rr, defined by

x2 ¼ k1k2�l1l2�r2r , (4.4a)

rr ¼ l1�l2
2

: (4.4b)

These values are also listed in Table 2.
We find that only the systems of the Tropical

Western Pacific represent clear periodic cycles with negli-
gible contributions of growth rate. The baroclinicity–rain
cycle over the winter–period North Atlantic may also be
considered close to a periodic state with the growth rate
smaller by an order of magnitude than the frequency.
Good periodic cycle descriptions with these three systems
are also confirmed by small errors seen in Fig. 4, with
the relative errors less than unity over substantial areas
in phase spaces. These quantifications are consistent with
the periodic cycles that can be identified by eye in Fig. 2
for these three systems.

In the other systems, the contribution of the growth
rate is at least comparable to that of the periodicity. The
global linear dynamical system is not a good approxima-
tion for these systems, either, as also suggested by Fig.
4, in which the relative errors are larger than unity over
bulk parts of phase spaces. Furthermore, the growth
rates clearly dominate over the periodicity with the
CAPE–rain systems both over FVG and the winter–per-
iod North Atlantic, and in both cases the systems are
damping. These quantifications are consistent with the
fact that no clear periodic systems can be identified in
the phase–velocity distribution in Fig. 2 for
these systems.

To infer the nonlinearity of the system, the same ana-
lysis is repeated to define the coefficients of the dynam-
ical system locally, as functions of the phase–space
coordinates, (x, y). However, obtained distributions of
the coefficients in the phase space present no clear struc-
ture to be analysed meaningfully.

5. Discussions

5.1. Limits of the scatter plot approach

To synthesize the present analysis, it may be most helpful
to compare between the plots of the data distribution

(Fig. 1) and the results from the dynamical–system
analysis (Fig. 2). When the data distribution produces a
well-defined shape in the phase space, it is tempting to
interpret the outline of the shape as the most preferred
trajectory of a system. Plots of rain against CAPE and
CIW over the Tropical Western Pacific are two good
examples. In the former case, rain forms a gentle negative
slope against CAPE, suggesting that the rain rate weakly
decreases with increasing CAPE (and vice versa),
although an actual correlation is not that high. In the lat-
ter case, it could be interpreted that the rain suddenly
begins to increase over a threshold CIW of around
50mm. However, an inspection of the corresponding
phase-velocity fields obtained from the dynamical–system
analysis reveals that these identified trajectories from
scatter plots constitute only a recharge-phase of a dis-
charge-recharge cycle of the system. The dynamical-sys-
tem analysis reveals that a discharge phase follows a
different preferred trajectory. Less dense data points
along the preferred discharge trajectory suggest that,
nevertheless, this route is less frequently taken than that
for the recharge.

A positive slope identified with CAPE over the win-
ter–period North Atlantic has a different explanation: in
this case, the dynamical-system reveals no distinctively
preferred evolution tendency along this virtual trajectory.
Clear deterministic tendencies for discharge are identified
only above and below this virtual trajectory. An opposite
example is when a distribution of data is diffused into a
circle in the case with baroclinicity over the winter–period
North Atlantic. A naive interpretation would suggest no
causality between baroclinicity and rain. In contrast, the
dynamical–system analysis reveals a well-defined dis-
charge-recharge cycle.

However, the dynamical–system analysis does not
always identify a well-defined cycle of discharge and
recharge. In the cases both with CAPE and CIW over the
N. E. Italy FVG, only the discharge phases are identified.
The discharge phase with CAPE is not well-defined with
a noticeable divergent tendency of the phase space flows.
A recharge phase that must exist to close the cycle is only
suggested by less well-defined weak vectors under weak
rain regimes. In the case with CAPE over the winter–per-
iod North Atlantic, two branches for discharge are identi-
fied. An expected recharge phase at the middle of these
two branches is only suggested by weak vectors. In the
case with CIW over the winter–period North Atlantic, in
turn, two branches for recharge are identified, without a
well-defined discharge phase.

As a whole, the phase–space trajectories are better
defined in extreme, rare situations rather than frequently
occurring states. The dynamical-system approach tends to
define trajectories better along the periphery of a high
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data-density area: phase velocities are larger with larger
signal-to-noise ratios. In contrast, high data-density areas
tend to be characterized by less well-defined trajectories
with smaller signal–to–noise ratios. Thus, data–dense
areas are less deterministic than data–scarce areas.
Considering the importance of predictions for extreme
states, this is another advantage of the dynamical-system
approach. An inherent limitation of conventional
approaches is that, by focusing on the shape of the data
dense structures, less information is gained about the
dynamics in the higher amplitude situations.

5.2. Use of CAPE as a predictor of precipitation

It is often argued from theoretical bases (e.g. Emanuel
et al. 1994; Renn�o and Ingersoll, 1996, see also Yano
et al. 2013) that CAPE is a crucial variable for describing
the evolution of a convective system associated with its
precipitation. However, observational data analyses on
midlatitude (e.g. N. E. Italy FVG) and tropics suggests
that CAPE has only limited usefulness in general predic-
tion of precipitation. Even from a theoretical point of
view, the usefulness of CAPE is limited to the convective
precipitation alone.

The present study has shown that CAPE constitutes a
well-defined discharge–recharge cycle with rain, as CIW
does, over the tropics (Western Pacific). However, in the
midlatitudes, no clear periodic cycle with rain is identified
either with CAPE or CIW over the N. E. Italy (FVG) as
well as over the winter–period North Atlantic. The
obtained results are in contrast to earlier studies, which
have suggested that CAPE is generally not a good pre-
dictor of rain (Sherwood 1999; Manzato 2003; Zhang and
Klein 2010; Barkid-ija and Fuchs 2013). The present study,
in contrast, points to distinctively different roles of CAPE
in rain formation between the tropics and the midlatitudes.

A particular problem of using CAPE as a predictor of
the convective system may be a fact that it is merely a
crude approximation for the cloud work function, which
can be shown to be a controlling variable for convection
evolution in the context of the mass-flux representation
(Arakawa and Schubert 1974; Yano and Plant 2012a,
2012b). Yano et al. (2005) show that the potential energy
convertibility (PEC), defined as a diagnosis of the cloud
work function from cloud-resolving simulations, presents
a much better correlation with convective rain than
CAPE. Unfortunately, it is difficult to diagnose PEC
from conventional soundings. An alternative approach
could be to more directly estimate the cloud work func-
tion. However, in this case, a key unknown parameter,
entrainment rate must somehow be optimized (cf.,
Molinari et al. 2012; Sueki and Niino 2016).

5.3. Contrast between the tropics and the
midlatitudes

In the present study, as representations of the tropics and
the midlatitudes, sounding data over the Western Pacific
and those over North-Eastern Italy, Friuli Venezia Giulia
(FVG) are considered. The contrast between the results
over those two regions would be primarily considered a
consequence of different dominant dynamics controlling
the precipitation processes over the tropics and the midla-
titudes. Over the tropics, rain is expected to primarily be
a consequence of convective processes. As a result, the
precipitation evolution is expected to follow a recharge–-
discharge cycle as discussed in Yano and Plant (2012a)
for the deep convective system. The result in the CAPE-
precipitation phase space supports this expectation. CIW
also behaves in a similar manner.

On the other hand, the rain over midlatitudes (N. E.
Italy FVG) is primarily controlled by synoptic-scale wea-
ther systems. In this case, there is no strong reason to
expect a discharge–recharge cycle to be identified,
although the majority of rain is still expected to be driven
by convection during summer even over this region.4 The
present analysis supports this expectation: no such cycle
is identified in CAPE–rain phase space. For CIW, only a
discharge phase is identified.

The analysis of the variables averaged over the win-
ter–period North Atlantic, where the storm-track dynam-
ics are most vigorous over the globe, identifies
baroclinicity as the most robust variable forming a
recharge-discharge cycle with rain. CAPE and CIW pre-
sent two branches, respectively, of only discharge and
recharge phases but without a clear mark of an opposite
phase. Although spatial distributions of CAPE and pre-
cipitation associated with a synoptic midlatitude storms
have been studied (Gray et al. 2011; Glinton et al. 2017),
their time evolutions by following the storm cycles are
still to be investigated.

The representativeness of the two areas considered
with our sounding data needs addressing. The Tropical
Western Pacific is an area on the globe where the sea sur-
face temperature is the highest. In this respect, behavior
of convection over this area can be considered a stereo-
type of those over the tropics albeit not necessarily typ-
ical. A similar stereotype for midlatitude convection may
be considered those over the US Great Plain (cf., Zhang
and Klein 2010), where orographical effects can be small.
In this respect, geographical characteristics of Friuli
Venezia Giulia are rather complex, being flanked by the
Alps from north, and facing the Mediterranean in south.
For example, a lack of a well-defined recharge branch
with CIW may be due to the fact that moist marine air is
only available from the Adriatic Sea from the south,
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hence only under southerly winds. This interpretation fur-
ther leads to a speculation that over more continental
areas (e.g. Switzerland) the recharge cycle of CIW should
be even less deterministic than over FVG.

Clearly more systematic applications of the present
methodology to a wider range of geographical locations
are required for drawing more general conclusions. The
most important contribution of the present study is in sug-
gesting the usefulness of such systematic investigations.

5.4. Towards a dynamical-system prediction model

The present study has been solely focused on data diag-
noses. However, the phase-space trajectories identified
under the present dynamical–system analysis can equally
be applied for prediction purposes. Any operational
robustness of this approach is still to be verified by fur-
ther studies. An important aspect to keep in mind is that
the system is fundamentally nondeterministic due to the
drastic truncation of the full system to two variables.
Perhaps counterintuitively, the nondeterministic part of
the phase space tendency tends to be greatest for data
dense areas in phase space.

The present dynamical–system formulation suggests a
basic prediction strategy different from more traditional
approaches. In traditional approaches, rain is diagnosed
from other predicted variables, such as CAPE and CIW
(e.g. Manzato 2005, 2007, 2013). On the other hand, the
dynamical system formulation developed here attempts to
predict rain along with an adopted prediction variable
(predictor). For this purpose, mean trajectories of a sys-
tem consisting of two variables, for prediction and to be
predicted, are constructed in a phase space, along with
the associated fluctuations in terms of standard devia-
tions, su and sv (Eqs. 2.7a and 2.7b).

Note that our approach is not equivalent to lagged
covariance or lagged correlation approaches: here the
statistical information is obtained by averaging events
over time, while in our case we average over events in
similar locations of the phase space. This allows us to
pull together information between situations that are
dynamically most similar, even though they may tempor-
ally be separated. In this sense, our approach is more
aligned with prediction systems based on analogs.

A constructed set of trajectories enables us to perform
a prediction based on a dynamical system defined by Eq.
(2.3). Here, fluctuations from a deterministic evolution
are represented by terms, ex and ey: The analysis also
provides a measure of fluctuations by Eqs. (2.7a) and
(2.7b). These fluctuations can be added as stochastic ten-
dencies in a forecast model so that uncertainties of a fore-
cast can also be directly be quantified. A direct
availability of forecast uncertainties also provides a more

objective mean of choosing the best prediction variable
for a purpose. The simplest implementation of this pre-
diction model would be to use Eq. (2.3), but neglecting a
stochastic term. This provides a straightforward deter-
ministic forecast. However, such a forecast would not be
very reliable due to the fact that contributions of stochas-
tic terms (fluctuations) are substantial compared to mean
tendencies as shown by direct plots of signal-to-noise
ratios (Fig. 3).

Thus, inclusion of stochasticity for representing the
uncertainties (standard deviations), su and sv, becomes
crucial. Here, stochasticity appears in the system solely
as a consequence of a drastic truncation of a system into
two variables, rather than from any intrinsic nature of
the system. The uncertainty term would be most conveni-
ently treated as Gaussian white noise, although it would
be difficult to establish this hypothesis from
observations.

The next phase of research along this line would be to
evaluate the operational feasibility of a dynamical-system
based forecasts system. In spite of wide availability of full
numerical weather models, it is still useful and insightful to
develop stand-alone simple forecast models that can be
applied in–house without relying on information from major
operational forecast models (cf., Manzato 2005, 2007, 2013).

NOTES

1. A standard simultaneous correlation is, in
principle, easily be generalized to include a time
lag. However, in the literature, the
lag–correlation analysis is not performed as
often, presumaly because the lag correlation
adds one extra parameter to adjust, and it is
often not very obvious how to optimize a lag to
obtain the best result.

2. Of course, by introducing an appropriate lag
between two variables, a perfect correlation will
be obtained. However, in practice, the actual
data is always contaminated, and also any
given system is never a perfect harmonic
oscillator. Thus, it is not easy to identify a
harmonic oscillator by a lag–correlation
analysis in practice.

3. This quantity is also often referred as column
precipitable water. However, we avoid to use
this term herein due to an ambiguity behind the
notion precipitable. Note that the water vapor
in an atmospheric column is never precipitable
in practice in its totality.

4. A separate analysis limited to a summer period
does not change our overall conclusions.
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Appendix
A.1. Derivation of an elliptical oscillator system

An elliptical oscillator introduced by Eq. (4.2) in the
main text with l1 ¼ l2 is derived in the following
manner. First consider a simple circular oscillator around
the origin, described by x ¼ A cosxt and y ¼ A sinxt
with A the radius of an orbit. This system is described by
a dynamical system:

_x ¼ �xy,
_y ¼ xx:

As a simple extension, when the orbit is elongated by a
factor, a, in the x-direction, the above system is modified
into:

_x ¼ �axy

_y ¼ x
a
x

In this case, the orbit satisfies ðx=AÞ2 þ ðy=BÞ2 ¼ 1 with
a ¼ A=B: When this elongated axis is tilted by an angle,
h, against the x-axis, we designate the rotated
coordinates, (X, Y), and perform a linear coordinate
transform
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x ¼ X cos h�Y sin h,
y ¼ X sin hþ Y cos h:

The final result is Eq. (4.2) with the coefficients defined
by Eq. (4.3) in the main text.

A.2. Eigenvalue problem

Setting r as the eigenvalue of Eq. (4.2), its eigenvalue
problem is:

���� l1�r �k1
k2 �l2�r

���� ¼ 0

It leads to
ðl1�rÞðl2 þ rÞ�k1k2 ¼ 0

Solving it for r, we obtain

r ¼ rr6ix

where rr and x are defined by Eqs. (4.4b) and (4.4a),
respectively, in the main text.
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