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ABSTRACT

The effect of non-linearity on the formation of mountain-wave induced stagnation points is
examined using the scaling laws for ideal hydrostatic flow and a series of runs with decelerating
winds in a numerical model. In the limit of small deceleration rate, (i.e., near steady state) runs
with a variety of mountain heights and widths give similar results; i.e., the speed extrema values
in the 3-D wave fields collapse onto “universal curves”. For a Gaussian hill with circular con-
tours, stagnation first occurs at a point above the lee slope. This result contradicts the result of
linear theory that stagnation begins on the windward slope. The critical value of 4 for stagnation
above a Gaussian hill is /., = 1.1 £ 0.1. For a 3/2-power hill, the critical height is slightly higher,
’;cm = 1.2 4+ 0.2. These values are significantly larger than the value for a ridge (4, = 0.85), due
to dispersion of wave energy aloft. The application of Sheppard’s rule and the vorticity near the
stagnation point are discussed. As expected from linear theory, the presence of positive
windshear suppresses stagnation aloft. With Richardson number = 20 for example, stagnation
first begins at the ground at a value of £ =1.6 +0.2. When a stagnation point first forms aloft
in the unsheared case, the flow field begins to evolve in the time domain and the scaling laws are
violated. We interpret these events as a wave-breaking induced bifurcation which leads to

stagnation on the windward slope and the formation of a wake.

1. Introduction

The formation of stagnation points in stratified
air flow over a hill has been investigated by Smith
(1989a) using linear theory. According to this
theory, two preferred points for flow stagnation
exist over a simple isolated hill; one at the lower
boundary on the windward slope (point B) and
one at a point in the fluid located some distance
above the leeward slope (point A). For long ridges
oriented perpendicularly to the flow, the tendency
for stagnation at point A is far stronger than at B,
while for hills with circular topographic contours,
the two points are equally significant.

The significance of flow stagnation in stratified
flow can be profound, at least in two-dimensional
flow. Long (1955) suggested that regions aloft
nearing stagnation (ie., pointA) would be
associated with steeply sloping streamlines and
incipient overturning, leading to turbulence.
Huppert and Miles (1969) found the critical hill
height to be h=h,N,/U,~ 085 for a simple ridge
in 2-D flow. Clark and Peltier (1977) found that

when this critical value of A is exceeded, a
turbulent patch appears and the flow begins to
change in time, eventually reaching a new “severe
wind” steady state. In the new steady state, the
wave breaking decouples the flow below from the
flow above the breaking region, allowing the flow
below to be well described by a local hydraulic
theory (Smith, 1985).

The significance of flow stagnation in 3-D flows
has received less attention. The two obvious
possibilities are first, stagnation and wave over-
turning at A could trigger severe downslope flow
as in 2-D. Second, stagnation at B could allow
flow splitting; i.e., the left-right splitting of the low
level center streamline so that the flow passes
around instead of over the hill. This latter idea
has been put forward in a number of contexts.
(Sheppard, 1956; Drazin, 1961; Hunt and Snyder,
1980; Smolarkiewicz and Rotunno, 1990). These
approaches have been recently reviewed by Smith
(1989b). Other possibilities are equally probable.
For example, wave over-turning aloft could trigger
a bifurcation which, after some adjustment in the

Tellus 45A (1993), 1



STAGNATION POINTS AND BIFURCATION IN 3-D MOUNTAIN AIRFLOW 29

time domain, could lead to a new steady state with
low level flow splitting.

The formation of stagnation points may also be
connected to the phenomenon of the mountain
wake. The wake behind smooth low hills in
stratified flow has been studied in the laboratory
(Brighton, 1978; Castro et al., 1983; Castro, 1987;
Hunt and Snyder, 1980) and in recent numerical
simulations by Smolarkiewicz and Rotunno
(1989a, hereafter SR89) and Crook et al. (1990).
SR89 suggest that vorticity near the incipient lee
side stagnation point (A) in steady flow may be a
precursor of wake eddies that appear for higher
mountains.

The purpose of this study is to investigate the
effect of non-linearity on the formation of stagna-
tion points in 3-D mountain waves.

1.1. Governing equations

The Boussinesq equations which govern
stratified incompressible airflow are

ou
po—+poU-VUy + po fk x Uy

ot
=-Vyp-V-F (1)

Dw
Pop; = —p.—b, (2)
V-U=0, (3)
%’3+ U-Vb=—-V.B, (4)

where p,=reference density, b= pg=buoyancy,
Fy =viscous or turbulent flux of horizontal
momentum and, B = diffusive or turbulent flux of
buoyancy.

For the present purposes we consider an
idealized hydrostatic non-rotating “prototype”
problem as the basis for our stagnation study
(Smith, 1989b). The turbulent flux terms in egs.
(1-4) are dropped with the caution that under
some conditions there may be no solution or no
stable solution to the prototype problem with
these terms absent. In such a case, the flux terms
may have to be recalled for physical consistency.

The remaining terms in (1-4) can be non-
dimensionalized using the following dimensional
parameters: h,=maximum mountain height;
U, =undisturbed flow speed; N,=undisturbed
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static stability; L =mountain width. Using a
method of scaling derived from linear theory
U=Uy(z)+u; V=v; W=w; p=Py(z)+ p; b=
bo(z) + b where each lower case quantity is a func-
tion of x, y, and z and has a scale u~ U*= Uuh;
v~ V*=Ush; w~W*=UZh/LN,; p~P*=
PoNoUohg; b~b*=pyN2he where h=hoNy/U,.

Spatial derivatives have scales d/0x ~ d/0y ~
(1/L) 8/6z ~ 1/L, where L,= U,/N,.

Defining non-dimensional variables & =u/U*
etc. and £=x/L, etc, and Z=z/L,, the steady
idealized version of eqs. (1-4) becomes

(1 + hit) 4z + hoid; = — po, (5)
(1 + hit) 64+ hvt ;= — p;, (6)
0=—p:—b, (7
fe+0;4 Wy =0, (8)
(1 + hit) by + hob; + (1 + hb;) w=0. 9)

The lower boundary condition for the prototype
problem

w(z=h)=(uo+u)§§+ua—, (10)

dy

with 2= h(x, y). In non-dimensional form, eq. (10)

(11)

where /= hy/L,.

A radiation condition is used as the upper
boundary condition. As we consider only 3-D
flows which naturally disperse and weaken aloft, it
is sufficient to consider a linear radiation condi-
tion. As a radiation condition involves only phase
line slope or the sign of the energy flux, it intro-
duces no new control parameters or length scales.

The set of equations 5-9, 11 contains only one
control parameter /. Each non-linear term has has
a coefficient.

1.2. Scaling laws

Inspection of egs. (5-9, 11) gives two scaling
laws.

(1) Any combination of changes in Uy, Ny,
hqy, z which maintain the values of 4 and 7 will not
alter the scaled flow field variables.
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(ii) Any isotropic horizontal stretching of the
mountain shape will stretch the flow field accord-
ingly without altering it otherwise. For example if
u(x, y,z) is known for the hill h(x, y); then
u(sx, sy, z) is a solution for the hill A(sx, sy) where
s is an arbitrary stretching factor.

The existence of those scaling laws simplifies our
task considerably. They reduce the number of
numerical calculations required and provide a
check on the numerics. The failure of the scaling
laws provide an indication of the bifurcation, if
the new state is not ideal.

2. Numerical calculations

2.1. Choice of a numerical model

Instead of devising a numerical scheme to solve
eqs. (5-9, 11) directly, we turn to an existing
operational time-dependent sigma-coordinate
Limited Area Model (LAM) of the Norwegian
Meteorological Institute (Grenas and Hellevik,
1982). The particular parameters used in the LAM
runs are given in Table 1 and Appendix A. There
are two primary differences between the LAM and
our prototype problem (5-9, 11). First, the LAM
is a fully time dependent model allowing the
approach to steady-state and any later spon-
taneous time evolutions to be considered. A second

Table 1. LAM deceleration runs

Run h (m) L (km) U, (m/s) I3
27 1200 150 2017 0.009
28 600 150 30-5 0.09
29 1000 150 25-10 0.015
30 400 150 126 0.06
31 500 150 1256 0.04
32! 500 100 1256 0.06
33 800 150 15-10 0.009
342 50 150 15-7 0.012
35 800 300 15-10 0.018
36° 500 150 15-10 0.018
374 800 150 1511 0.009

Note that: Ny =0.015 for all runs and ¢ is computed at
h=1. Unless otherwise stated, runs had no shear and a
Gaussian hill. (1) Run 32 had a 3 power hill. (2) Run 34
was used to study airstream deceleration. (3) Run 36 had
forward shear. (4) Run 37 was a repeat of Run 33 with a
long final period with U=11. Steady state was not
achieved.

and minor point is that the LAM includes com-
pressibility effects while the Boussinesq equations
do not. Compressibility effects are of order (L,/H )
where H, is the density scale height. The value of
this ratio is typically 0.05 to 0.2 for our runs and we
have not been able to detect any compressibility
effect on our results.

One advantage of our sigma-coordinate model
is its standard design. Other such models, with
friction and rotation likewise removed, should be
able to reproduce our results. Previous use of the
model for mountain airflow research is reported by
Sandnes (1987).

An axisymmetric Gaussian hill shape is used for
these runs.

h(x, y) = hoe®"+¥V%, (12)
This shape, while not having all the simplifying
analytical properties of 2 power hill used in Smith
(1980), has the advantage of compactness. The
Gaussian function decays rapidly with distance
from the hill center. Some properties of (12) and a
comparison with the 2 power hill are given in
Appendix B. An additional advantage of the
Gaussian hill is that for this shape linear theory
makes a clear prediction of stagnation below
before stagnation aloft. The action of nonlinearity
in reversing this prediction is therefore clearly seen.

In order to evaluate the accuracy of our LAM
model we use three criteria: agreement with linear
theory, agreement with the scaling laws and con-
servation of potential vorticity. To compare our
LAM results with linear theory we performed a
48-h run to steady state with parameters: p,=
1.24 kg/m®, ho=200m, a=150 km, Uy=15m/s,
Noy=0.015s"" so that A=0.2. The LAM gave a
drag D =145-10° Nt while linear theory (B.17)
gives D=1.65.10° Nt. These values differ by
14%, probably because of the coarseness of our
sigma level spacing.

The agreement of the computed wavefield with
linear theory during the deceleration runs is shown
on the left-hand side of Fig. 1 for & < 0.4. The LAM
predictions of perturbation speed agree to +10%
with linear theory when the time lag effect dis-
cussed in Appendix C is included. The other two
criteria for evaluating the accuracy of the LAM are
discussed in the later sections.

2.2. Deceleration strategy

One difficulty in analyzing nonlinearity and
bifurcation is the problem of path dependence.
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Fig. 1. Scaled speeds at four diagnostic points in the
mountain wave field as functions of A for 6 deceleration
runs. Collapsed curves (i.e., thick lines) are universal
curves for unsheared flow over an axisymmetric
Gaussian hill. Predictions of linear theory are shown
dashed.

In a non-linear system such as egs. (1-4), it is
possible that a transition may appear at a different
point and seem to have a different nature when
approached from different directions in param-
eter space. For the sake of definiteness and
reproducibility, we have used a deceleration
strategy. A steady state flow is achieved in the
model with a low value of # and then U, is slowly
decreased giving a progressive increase in 4. Other
investigators have also used this approach (e.g.,
Clark and Peltier, 1977; Crook et al., 1990). An
advantage of the deceleration strategy is that it
gives unlimited resolution along the parameter line
h. The response of the flow to deceleration at the
inflow boundary is described in Appendix C.

The reader should be aware that the decelera-
tion strategy does not illustrate all of the aspects
of flow non-linearity or flow transition. The
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“start-up” strategy of SR89 and Rotunno and
Smolarkiewicz (1991) gives a complementary view
of these effects.

A non-dimensional measure of the deceleration
rate in our runs is ¢ = U, L/U? which is the relative
rate of decrease in speed (U,/U) in a characteristic
time (t= L/U). For sufficiently small ¢, the flow
should evolve through a sequence of steady states
(if they exist) each characterized by h. If a bifurca-
tion point exists at 4 =/, then the limit & — 0 will
be discontinuous there. Beyond ﬁcm the flow will
enter the time domain. As the flow evolves, the
sequence of flow states will not obey the steady
state scaling. We will attempt numerically to
exhibit the properties of the ¢ — 0 limit.

Seven LAM decelerations were performed with
a variety of choices of dimensional parameters. By
examining these in order of decreasing ¢ we get
a sense of whether the ¢—0 limit is being
approached (ie., runs 28, 30, 31, 35, 29, 27, 33).
Examining them in order of dimensional mountain
height (i.e., runs 30, 31, 28, 33, 35, 29, 27) gives an
impression that the scaling law (i) is met in the
prebifurcation state. Comparing 33 and 35 tests
scaling law (it).

2.3. Universal curves

The results from seven deceleration runs are
plotted in Fig. 1. The speed at four points on the
centerline of the flow field are used as diagnostic
quantities.

A ... point of minimum windspeed above the lee
slope

B .. point of minimum windspeed on the
windward slope

C ... point of maximum windspeed on the lee
slope

T ... point on the mountain top

Except for T, these points are defined as extrema
in the wind field and as such, change their posi-
tions slightly with the control parameter.

With the exception of the two fastest decelera-
tion runs (28 and 30) the diagnostic speed curves
collapse to a single line for <1 when scaled
according to Section 1. This suggests that during
the slow deceleration (i.e., ¢ <0.04), the flows are
nearly in steady state. The four curves (A, B, C,
and T) are universal curves for the axisymmetric
Gaussian hill shape in the sense that they apply to
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any combination of py, Ny, Uy, Ay and L. Empiri-
cal expressions for the universal curves can be
derived as follows.

Following Smith (1990), the Bernoulli and
hydrostatic equations can be combined to give

P*
Ul=U}—-2——Nin?% (13)
Po
where P* is the perturbation pressure. Eq. (13) can
be rewritten as

U?=U3—2N3I, (14)

where

IWEJ ndz, (15)
4]

is related to the perturbation pressure. The value of
I, at each of the four diagnostic points can be
represented approximately by a two-term formula
inh

U, -
I,=h (FZ) (a+ Bh). (16)
Substituting (16) into (14) gives
v_ (1 —2(ah + BR2))"2 (17)
Uo

The first coefficient a is derivable from linear
theory in isosteric coordinates using an FFT solu-
tion for point A and analytical formulae derived in
Appendix B for points B, C and T. The second
coefficient f is determined from (16) using the
LAM results at 2=09. The results given in
Table 2 provide a satisfactory fit to the universal
curves from A=0 to 1.

2.4. Comparison with linear theory

Fig. 1, Table 2 and (17) facilitate a discussion of
the non-linear effects in the prototype problem.

Table 2. Universal curve coefficients for a Gaussian
hill with no shear

Point o B
A 0.368 0.12
B 0.439 —0.09
C —0.439 -0.5
T 0.0 —0.05

The largest value of f in Table 2 is for point C
indicating that of the four diagnostic points, C
experiences the largest non-linear effect. The maxi-
mum lee side wind is substantially larger than
predicted by linear theory. As we have used the
exact diagnostic eq. (14), it may also be said that
the magnitude of the lee side pressure perturbation
and the integrated value of downward displace-
ment (/) above the lee slope are underpredicted
by linear theory.

At point B on the windward slope, the speed is
greater than predicted by the linear theory, ie.,
linear theory overpredicts the magnitude of the
perturbation there. The fact that curve B lies close
to the linear theory prediction for curve A is
fortuitous.

Curve A, describing the speed in the wave
breaking region aloft, is of particular interest. The
LAM results shows a much stronger deceleration
there than predicted by linear theory. The speed at
point A approaches zero at about 4 = 1.1, whereas
linear theory (i.e., setting §=01in (17)) would give
an fzcm =1.34.

Probably the most surprising aspect of the
universal curves is the relationship between curves
A and B. Linear theory predicts that stagnation
will first occur in the windward slope (point B)
when in fact the opposite is true. Non-linear effects
suppress stagnation at B while aiding stagnation
at A.

Another difference from linear theory could be
mentioned; the particle deceleration following
the leeward wind maximum. According to linear
theory, the speed of the accelerated leeside flow
returns smoothly and monotonically to normal
(i.e., Uy) downstream. According to our numerical
results, for £>0.9, the wind four to five half-
widths downstream on the surface is actually less
than the freestream value. This, together with the
effect of non-linearity on increasing the leeside
wind maximum, implies a much greater particle
deceleration rate and speed convergence over the
lee slope. The vertical motion implied by this speed
convergence may be associated with the non-linear
enhancement of wave breaking aloft. It is probably
not correct to consider this downwind speed
minimum to be a precursor of the wake, as we will
see in Subsection 2.6.

Curve T describes the windspeed at the hill top.
According to linear theory for axi-symmetric hills,
the perturbation wind speed should be zero at the
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hill top. Fig. 1 shows that in fact there is a slight
positive anomaly there. This is reflected in the
small negative value for g.

2.5. Discussion of stagnation and Sheppard's rule

It was suggested by Sheppard (1956) that P* in
(13) might reasonably be neglected giving
U=UZ-N32n> (18)

According to (18) air parcels climbing a moun-
tain slope will slow, reaching a minimum speed at
the mountain top where n=h. For a mountain
equal to or higher than A= U,/N,, a stagnation
point would form and the air would flow around
rather than over the hill.

The Sheppard rule has been widely used (Hunt
and Snyder, 1980; Gill, 1982, pages 293-294;
Spangler, 1987) but has been criticized by one of
the present authors (Smith, 1990) on the grounds
that speed variations in stratified flows are
primarily controlled by pressure variations in
(13) rather than by vertical displacement. The
dominance of the pressure effect over the lifting
effect has been verified by SR89.

The results in Fig. 1 and 2 allow a further
discussion of this point. Consider the speed at the
mountain top (curve T in Fig. 1). Instead of
finding the slowest flow at this point, as predicted
by Sheppards rule, the speed here is slightly greater
than the upstream speed. Clearly the conversion of
kinetic energy to potential energy implied by (18),

cannot be the dominant effects controlling the flow
speed. The hill top air parcels are both higher and
faster than they were upstream.

Consider the speed on the windward slope of the
hill (point B). The local minimum in wind speed in
this region is not because of the height of lifting.
The lifting is even greater at the hill top where the
speed is greater. Instead, it is the arching up of
isentropes above this region which results in high
pressure (through the hydrostatic law) and corre-
spondingly low wind speed (through Bernoulli’s
Law).

Finally, consider the situation in the region of
minimum speed above the lee slope (point A).
It was proven by Smith (1990) that: In the interior
of a steady state hydrostatic wave field, the
wind speed extrema (maxima or minima) occur at
points of zero vertical displacement. This state-
ment, which is easily derived from (15), is the
antithesis of Sheppard’s rule (18). In Fig. 2, we see
indeed that the point of minimum speed (A),
occurs at a point in which the local isentropic sur-
face is at the same elevation as it had upstream.

2.6. Vertical and isentropic vorticity

As a stagnation point forms at point A in the
flow, one might expect the shear on either side
of point A to contain vorticity, at least shear
vorticity. The fact that vorticity is not necessarily
present in such a situation is illustrated by stagna-
tion points in classical potential flow around a

400

500+

7004

850 -
925+

Fig. 2. Vertical cross-section of the flow before bifurcation in run 37 (time = 138 h). Solid lines are isotachs and the
dashed lines are isentropes. Units on the vertical axis are hectopascals. The flow is from left to right.
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cylinder in which shear and curvature vorticity
exactly cancel. Vorticity patterns near point A on
a theta surface and on a sigma surface are shown
in Figs. 3, 4.

The existence of vorticity in mountain wave flow
is of interest for two reasons. First, the presence
of a vorticity component perpendicular to an
isentropic surface
Lo=(vy—u,)p (19)
would indicate that the conservation of potential
vorticity and isentropic circulation are being
violated by the numerical model. According to
Fig. 3, there is a rather small amount of such
vorticity. This is probably a residual arising from
interpolation errors in the vicinity of the stagna-
tion point where the theta surfaces are steeply
tilted. The magnitude of the residual isentropic
vorticity (=2-107°s~!) can be understood by
noting that the wind field is much more poorly
resolved on an isentropic surface than it is on a
sigma surface. This difference is evident near the
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stagnation point in Figs. 3,4. Thus, truncation
errors significantly influence our computation of
isentropic vorticity. It is also possible that the non-
zero residual isentropic vorticity reflects errors in
the sigma-coordinate solution.

In spite of this problem, our results indicate a
tendency to conserve vorticity on isentropic sur-
faces even though the numerical calculations were
performed on sigma-surfaces. This result builds
confidence in the Limited Area Model used in this
study, while pointing out the need for higher
resolution (as in SR89).

The striking difference between the vorticity
patterns in sigma and theta surfaces allows us to
discuss a more subjective issue; the existence of lee
eddies when / < /. In the present context, the
issue of whether lee eddies are present in the sub-
critical mountain wave flow bears on the question
of whether a bifurcation exists. If subcritical lee
eddies exist, it would suggest that the transition in
flow type at h= ﬁcm is more gradual and the term
“bifurcation” would be less appropriate.

For the present purpose, we define the term
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Fig. 3. Horizontal map on a isentropic surface (6 =295) cutting through the minimum wind point (A). The wind

speed is shown with vectors and the vorticity (in units of 10~

%51} is contoured. The 100, 200 and 500 meter hill con-

tours are shown dashed. The total hill height is 800 meters. As in Fig. 2, this diagram is from run 37 at time = 138 h.
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Fig. 4. Same as Fig. 3 but on a sigma surface number 11.

“eddy” to denote a region with vorticity (or
circulation) of a type that is materially conserved
or nearly so. With this definition, eddies are
composed of an “advectable” quantity and this
property gives an eddy many of its observed
behaviours. The vorticity in common wake eddies,
for example, drifts downstream under the influence
of advection by the mean flow or, by mutual
advection, two counter rotating wake eddies may
manage to stay attached to a cylinder. In either
case, the behaviour of the wake eddies involves the
advectable nature of the vorticity within them. By
the above definition of “eddy”, fluid parcels cannot
move freely through an eddy. In stratified flow,
the materially conserved vorticity to be used in
such arguments is the potential vorticity or
equivalently, the isentropic circulation. Vertical
vorticity would be excluded from this definition as
it lacks a material conservation property.

In Fig. 4, the vortical regions have a fundamen-
tally different nature than common eddies as no
materially conserved quantity (such as potential
vorticity) is involved. These are not “eddies”
according to the definition above. They cannot
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advect each other or be advected by the mean flow
as they are not composed of an “advectable”
quantity. They do not have closed streamlines.
Fluid parcels pass freely through them. They are,
as shown by SR89, locally tilted vortex lines
generated by baroclinic (or solenoidal) torques
within the gravity wave field. The regions of
vertical vorticity in Fig. 4 are stationary, not
because of mutual advection, but because the
stationary mountain waves, of which they are a
part, are propagating upstream at a speed equal
and opposite to the ambient flow.

It follows from the above definition that there
are no “eddies” in subcritical mountain wave flow.
After the bifurcation on the other hand, dissipation
in breaking mountain waves can generate
potential vorticity and “real” eddies can be formed.
These real eddies could either remain fixed over
the lee of the hill by mutual advection or drift
downstream to form an extended wake. The
reader can find a further discussion of this issue
in the comment and reply by Smith (1989c),
Smolarkiewicz and Rotunno (1989b) and Crook
et al. (1990).
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3. Comparison with Olympic Mountain
observations

To see if the non-linear mountain wave effects
described in Subsections 2.3 and 2.4 are observable
in the atmosphere, we use the recent analysis of
pressure fields around the Olympic Mountains by
Mass and Ferber (1990). The Olympic Mountains
satisfy the assumptions of the present paper about
as well as any real mountain could. The total width
of the mountain is about 70 km giving it a high
Rossby number and making the flow hydrostatic.
The mountain is roughly axisymmetric and has a
height (1500 m) such that in the variable mid-
latitude winds, the non-dimensional mountain
height / swings through a range of values of inter-
est for studying mountain airflow non-linearity.
The observation of Mass and Ferber, of maximum
and minimum perturbation pressure near the
Olympic Mountain, is directly compatible with the
universal curves for points B and C. Mass and
Ferber define a perturbation pressure index.

Pl=P.— Py (20)
indicating the pressure difference across the
mountain and an asymmetry index

Al =P+ Py (21
indicating the amount by which lee-side low is
stronger than the windward side high. The
observed pressure index is related to the incoming
wind speed by their regression equation

PI=0.652 +0.154U (22)

while the asymmetry index has no evident correla-
tion with wind velocity. Values of Al scatter about
a mean value of

Al=—-07 (23)
both expressed in hectopascals.
From (13, 15, 16) and Table 2,
PI=p,hNU (0.878 +0.41 %\’)’ (24)
and
Al = p,ANU(—0.59) h—UJY, (25)
= poh*N*(—0.59). (26)

These formulae (24, 26) can be compared with
(22, 23) by choosing N=0.01 s~! and A= 1500 m,
so that (24, 26) become
PI=1.1+0.160,

Al = —1.6,

(27)
(28)

expressed in hectopascals. The agreement between
(22) and (27) is very good with respect to the linear
term. The term arising from the nonlinearity in
(27), i.e, 1.1, has the right sign but disagrees by
a factor of two with constant term in (22). The
constant terms in (23) and (28) also disagree by a
factor of two, but have the same sign.

We conclude that the “universal” curves agree
fairly well with the magnitude of the pressure dif-
ference across the Olympics and with the observa-
tion that the lee side low is more pronounced than
the windward side high. We attribute the disagree-
ment to factors such as stability and windspeed
variations with height, latent heat release, and the
non-axisymmetry of the Olympic Mountains.
Also, some of the data which contributed to
the regression curves (22,23) corresponded to
conditions with 4> 1, and therefore should not be
compared with (27, 28).

4. The effect of shear

According to linear theory (i.e., Smith, 1989a),
the presence of forward shear in the upstream wind
profile can delay wave breaking and possibly allow
stagnation on the windward slope to occur first.
To check this possibility, run 33 was repeated with
a shear corresponding to a Richardson number
Ri=N3/U2=20, 29)
and a value of ¢ =0.06. The result of this run is
shown in Fig. 5.

At h=1, Uy and U are similar to the unsheared
case but U, is much larger. As f is increased, U B
decreases smoothly to zero at about h=16+0.1.
At this parameter setting, U, is still large; about
90% of the reference flow speed at the ground
(Uyp).

We conclude that the effect of forward shear
significantly changes the nature of the onset of
stagnation. The critical value of h (based on the
ground level wind) increases from 1.1 to 1.65 (for
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Fig. 5. Same as Fig. 1 but for the case with forward shear.
The Richardson number is 20. The dashed line indicates
the scaled freestream wind speed at an altitude equal to
the height of the hill.

Ri=20). Stagnation begins on the windward slope
(point B) instead of in the wave breaking region
aloft (point A).

5. Bifurcation and evolution in the time

domain

When / exceeds unity, the curves in Fig. 1 begin
to diverge. Further decrease in ¢ doesn’t seem to
help. This breakdown in the scaling laws suggests
that a bifurcation has been reached and that the
flow is evolving in the time domain. To check this
idea, the deceleration of the inflow wind speed was
halted near the end of three runs (27, 30 and 31).
With 4 held fixed at values just exceeding unity, the
flow continued to evolve as shown with the arrows
in Fig. 1.

The existance of a bifurcation in 3-D mountain
airflow would be very significant. Unfortunately,
we are not in a good position to analyse the time
evolution of the system or the nature of other
steady states. There are two reasons for this. First,
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for unsteady flow, possibly with wave breaking, we
do not have any scaling laws to assist in collapsing
runs with different parameters onto universal
curves. Second, our numerical model is hydro-
static, rather coarsely gridded, and its turbulence
parameterization scheme (a Shapiro filter applied
every 8 time steps) is not a physically based one.
These model characteristics could result in an
improper treatment of a flow with wavebreaking.
Furthermore, we haven’t successfully completed a
numerical run in which a decelerated flow has
slightly crossed the bifurcation boundary and then
evolved to a new steady state.

It is useful however to consider a few
possibilities for the nature of the flow fields for
h> ﬁcm. Possibly: (i) no quasi-steady state exists
or, (ii) the new steady state has continuous wave
breaking near point A but with little other dif-
ference or, (iii) the new steady state adjusts itself to
generate a stagnation point on the windward slope
(point B). Option (iii) is particularly interesting to
imagine. It says that stagnation at point B is not
approached progressively as 4 increases. Instead,
stagnation occurs at point A first, aided by flow
nonlinearity, and this triggers evolution in the time
domain leading to stagnation at point B.

One further run was completed to test Option
(iii). In Run 37, Run 33 was repeated, ending with
a long period with constant wind speed and
h=12. Steady state was not achieved however.
The properties in the wake region fluctuated
slowly in time. The value of A=1.2 exceeds the
critical value by so little that if the universal B
curve is extended, (see Fig.1) one would not
predict stagnation at point B. As shown in Fig. 6
however, the flow is nearly stagnated at B and a
turbulent non-ideal wake exists as well. This result
should be tested with other types of numerical
models.

Option (iii) would be consistent with other lines
of evidence. Laboratory experiments (Hunt and
Snyder, 1980) suggest that the critical mountain
height for low level flow blocking is 4~ 1 where
our extrapolated universal curves for point B
indicate a significantly higher value. Low level
stagnation induced by wave breaking would
explain this discrepancy.

The Option (iii) interpretation of the bifurcation
is also supported by the recent work of Crook
etal. (1990, henceforth CCM90). CCM90 did
numerical deceleration experiments, similar to
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Fig. 6. Horizontal map on the lower boundary showing the wind (vectors) and topography (dashed) at the end of
Run 37. This pattern is not in steady state, even though the wind speed has been held constant for 100 h. The

parameter A=1.2.

those described here, but with a non-hydrostatic
model and with a first-order-closure turbulence
parameterization scheme. As their upstream flow
was decreased and the value of / climbed above the
critical value “the wave first breaks aloft and then
the region of flow reversal descends to the ground.”
This description from CCM90 agrees with our
interpretation of wave breaking triggering a bifur-
cation which leads to stagnation below.

One limitation on the CCM90 study is the
rapid rate of deceleration used in their model
experiments. Their value of ¢=04 is about an
order of magnitude larger than the small value
found herein to be necessary to approach steady
state (i.e., ¢ = 0.04). Thus, during their deceleration
runs, a changing sequence of steady state flows
would be indistinguishable from evolution in the
time domain. Evidence of a bifurcation would be
obscured.

If Option (iii) is correct, it provides an interest-
ing contrast to the bifurcation in 2-D flow (Clark
and Peltier, 1977). In 2-D, wave breaking leads to

severe downslope winds while in 3-D it leads to
stagnation on the windward slope and reverse flow
in the wake.

The global consequence of 3-D mountain air-
flow bifurcation is difficult to judge. The Earth’s
rough surface includes a range of terrain heights
which span the typical characteristic height L=
U/N in the Earth’s atmosphere. Thus, as the winds
rise and fall at locations around the globe, the
local non-dimensional mountain heights fluctuate
about the critical value and mountain airflow
patterns are frequently in a state of transition from
one type of steady state to another. This transition
from “wave to wake” flow and back again occurs
on a time scale which is unconnected to the time-
scale on which the incident wind might be changing.
Even slowly varying global wind patterns would
generate “switching” or “bifurcation” noise from
hilly terrain. It would be interesting to know
how this effect compares with flow instabilities
(e.g., convective, barotropic, and baroclinic) as a
source of chaos in the Earth’s atmosphere.
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6. Conclusions

We have shown that the scaling laws for
ideal hydrostatic non-rotating flow can be
demonstrated in a simple sigma-coordinate model.
According to these laws, the nature of the flow
depends only on the non-dimensional mountain
height and not on mountain width or slope. When
the upstream flow is decelerated, steady state con-
ditions are approximated when ¢ = U, L?/U < 0.04.

There are considerable non-linear effects in the
parameter range 03<h<10. As h approaches
unity, non-linearity enhances stagnation aloft and
lee slope acceleration while reducing the tendency
for stagnation on the windward slope. The univer-
sal curves describing the approach to stagnation
agree qualitatively with pressure observations
from the Olympic Mountains (Mass and Ferber,
1990).

For the axisymmetric Gaussian hill, a stagna-
tion point forms aloft when the value of non-
dimensional hill height is #=1.1+0.1. For the
3-power hill, the critical value is slightly higher,
h=1.2402. These values are significantly larger
than the corresponding values for an infinite ridge
(/;Cm = 0.85 for a Witch-of-Agnesi ridge, Huppert
and Miles, 1969).

There is a bifurcation near /1= i;cm, where the
ideal scaling laws break down and evolution in the
time domain begins. The bifurcation correlates
well with the onset of stagnation in the wave field
on the centerline above the hill. Although the term
“wave breaking” is probably appropriate, we offer
no detailed conceptual model for the cause of the
bifurcation.

During deceleration of the ambient flow, the
onset of windward slope stagnation and flow
splitting does not occur progressively as h
increases but rather occurs in the time domain
following the bifurcation. There is no steady state
pre-bifurcation solution with the speed on the
lower boundary less than half the freestream speed.

The use of Sheppard’s rule to understand flow
stagnation is shown to be incorrect. As the non-
dimensional hill height increases, the minimum
flow speed does not occur at points of large vertical
displacement as predicted by Sheppard’s rule. In
fact the opposite is true. The minimum speed in the
flow is at a point where the vertical displacement of
fluid particles is zero.

The nature of the 3-D bifurcation and the onset
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of flow splitting is fundamentally changed by
forward shear in the environment due to the sup-
pression of wave breaking. Even with a relatively
small forward shear (e.g., Ri=20), stagnation
occurs first on the windward slope (Aq =
1.6 £0.1).

The (unsheared) 3-D mountain airflow bifurca-
tion is similar to the bifurcation in 2-D in that it is
triggered by stagnation aloft; but it also different.
The third dimension allows flow splitting and
wake formation in ways that are not topologically
possible in two dimensions. The 3-D bifurcation
causes a drop, or even a reversal, rather than a rise
in leeside wind speed (SR89).
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Appendix A
The DNMI numerical model

The Limited Area Model (LAM) of the
Norwegian Meteorological Institute (DNMI) is a
sigma-coordinate model with staggered grid as
described by Grenas and Hellevik (1984). Errors
in the horizontal pressure gradient are reduced
using the method of Janjic (1977). For the
present purposes, all physics and boundary layer
parameterizations are removed from the model.
The model is run with a 120 x 120 x 120 grid. The
horizontal grid spacing is uniform at 25 km while
the twenty sigma levels are distributed unevenly in
the vertical. Sigma is defined

D — Diop
o=——""F
Psurtace — Prop

(A1)

with p,, = 100 hPa.
The distribution of levels is given in Table 3.
In Table 3, p is pressure at each level if
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Table 3. Sigma levels in the LAM

Level I p'V (hPa) z® (km)
1 0.050 145.0 16.4
2 0.135 221.5 12.8
3 0.205 284.5 10.7
4 0.275 3475 8.98
5 0.345 410.5 7.57
6 0415 473.5 6.35
7 0.485 536.5 5.29
8 0.555 599.5 435
9 0.625 662.5 35

10 0.695 725.5 2.73
11 0.765 788.5 2.02
12 0.820 838.0 1.5

13 0.860- 874.0 1.14
14 0.890 901.0 0.89
15 0910 919.0 0.72
16 0.930 937.0 0.55
17 0.950 955.0 0.39
18 0.970 973.0 023
19 0.985 986.5 0.16
20 0.995 995.5 0.04

Dsuriace = 1000 hPa and z® is the approximate
altitude above the 1000hPa surface (z=
H In(p,/p)). The vertical spacing varies from
120 m near the ground to 3600 meters at the top of
the domain. The expected vertical length scale for
the flow L,=U,/N, varies from 400 m for U,=
6 m/s to 1000 m for U, = 15 m/s. Thus, the vertical
structure of the flow is well resolved up to about
2km in the former case; up to 6 km in the latter
case. Our vertical resolution is not as fine as that
achieved by some other investigators. SR89 for
example, had 80 levels in the vertical.

To reduce reflection, a linear damping is applied
to the uppermost 6 layers with a coefficient
y=0.005 such that disturbances in these layers
decay with a characteristic time 1,=4/y=
75 5/0.005 ~ 4 h. The time it takes for wave energy
to propagate through one vertical scale is given by
T=L,/Cg, where the vertical component of the
group velocity Cg, ~ U/NoL ~0.15 m/s for Uy=
15m/s and L =150 km. In this case L,=1.5km,
T~~3h and thus the wave will decay appreciably
as it propagates vertically towards the upper
boundary.

The horizontal grid spacing of 25km is
significantly less than the mountain half width
L=150km. One run with L=300km showed
little difference. After the bifurcation, a scale

collapse occurs and considerable grid point noise
is generated. This noise is controlled with a spatial
filter applied every 8 time steps. We have not
achieved “large eddy convergence” as we have not
demonstrated that the primary flow features are
insensitive to our handling of the small scales. For
this reason we put little weight on the details of the
post-bifurcation flow fields.

Appendix B
The Gaussian hill

For the current analysis we have used an
axisymmetric Gaussian hill:

h(x, y)=hoe "7, (B.1)

172

where r = (x? + y?)"2. The volume of the Gaussian

hill is:
2n poo 22

V=h0f j e="/Cr dr dg = horL>. (B.2)
0 1]

The Fourier Transform of (B.1) is

L - ho JZ"JOO —r¥L?

h(x, gI/)—4n2 A e

x g*reosté—vp qr dg, (B.3)

where polar coordinates are used: (x, y) — (r, @)
and (k, /) - (x, ¥). Note that in this appendix the
symbol £ is the Fourier transform of the dimen-
sional mountain shape, not the non-dimensional
mountain shape.

Using

2n
f e’ ¢ dgp = 2nJ(ib), (B.4)
0

eq. (B.3) takes the form of a Hankel Transform
(Miles, 1971)

() = ;'—H e~ o(xr) r dr, (B.5)
(4]

which gives

A hO L2 — 24

h(x)=§?e . (B.6)
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Following Smith (1989a), the field of vertical
displacement is

6. 20= [ o)

x gimiogircost¥ =l dye dyf, (B.7)
where m= N,/U, cos . Similar expressions for
1. and I, can be derived from (B.7) by including
the factor (— Nyk/U,) or (iU, cos Y/N,), respec-
tively. As with the 3 power hill, these integrals are
difficult to evaluate analytically but take on a
simpler form at 2, =0. Eq. (B.7) reduces to

n(r, 4, 2o=0)=2n j he) Jokr) k dx,  (B.)
(V]
which reduces to (B.1), while
rlxz(rs ¢s 20=0)= 2n &J };(K)
UO 0o
x Jo(xr) k* dx, (B.9)
- _ hONO
nxz(r’ ¢7 20_0)" ﬁ LUO
3 r
x M(E’ 1 —L—>, (B.10)
PN U, ©
I(r, ¢,2,=0)=—2n . cosgzﬁf0 h(x)
x Jy(xr) k dk, (B.11)
A \/7_[}10 Uor
1 =0)= MY 070
oArs @, 2,=0) 7 N.L cos ¢
3 r?
><M<§, 2, _P)’ (B.12)

where M(a, b, ¢) is the confluent hypergeometric
function (Abramowitz and Stegun, p. 486).

For the purposes of Section 3, the maximum
and minimum 7/, and the total drag are required.
The extrema of (B.12) are

Max(1,) = —Min(1,) = <h0 %‘2) (0445)  (B.13)

at y=0 and r=x= +0.85L. The value 0.445
compares well with the 0.439 value (see Table 2)
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from the FFT method. We have no such check on
the interior extrema of /,.

The drag on the Gaussian hill can be found
using the Convolution Theorem

h
D=p0N§H I,,g;dxdy, (B.14)

— poN24n? ﬂ -’k; Ak, 1) R*(k, ) dk dl.  (B.15)

Using (B.6), (B.15) becomes

h 2 LZ 2
D=+poNé(4n2)<5§> (7)

2n poo
xj f e X gy (B.16)
0o Yo m

= +CpoNoUy,LhZ, (B.17)
where C = (2n)*?/16 = 0.9843,

The linear theory prediction for the axisym-
metric 3 power and Gaussian hills can be com-
pared as follows. For the 2 power hill, stagnation is
predicted to begin simultaneously at points A and
B as the two critical mountain heights are equal;
b =hg~ 1.3. For the Gaussian hill; 2, = 1.36 and
hy=1(0.445)=1.12.

The actual non-linear occurrence of stagnation
was investigated by repeating run 33 with a 3
power hill. The unversal curves for the 3 power hilt
are very similar the those for the Gaussian hili; the
same tendency for stagnation aloft is seen. The
critical mountain height for the 3 power hill is
about h,=12; slightly higher than for the
Gaussian hill.

Appendix C
The effect of deceleration

As we have chosen to investigate the mountain
airflow bifurcation using a deceleration strategy, it
is worthwhile to consider how the deceleration
occurs in the model. The deceleration is accom-
plished by prescribing a decreasing wind with time
at the inflow boundary. As the specified decelera-
tion is the same at all levels, it is transmitted to the
domain by means of the lowest mode gravity
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acoustic wave in the model, i.e., the mode with no
vertical structure.

We have examined this behavior by noting that
during deceleration, the mean speed near the hill
(1500 km from the inflow boundary) lags the
inflow speed by about 3 h. This lag has been
neglected in our data analysis. At the smallest ¢
used here, correcting for the lag would shift the
universal curves downward by 3%.

The characteristic time for mountain airflow
evolution is
T=L/U, (C.1)
This represents the time for an air parcel to pass
over the hill or alternatively, the time required for
wave energy in hydrostatic gravity waves to
propagate vertically a distance L,. It could take
about five characteristic time units for energy to
reach the upper boundary. For U,=6m/s,
T~ 7h, thus the domain adjusts to the changing
inflow condition faster than does the mountain
induced disturbance.

During the deceleration, each fluid particle
in the computational domain experiences a

horizontal pressure gradient proportional to the
deceleration rate.
ou op
—= - C2
Pt ox’ (€2)
which is nearly constant over the domain. This
pressure gradient produces a force on the hill
according to Archimedes Law
ap
D=——.V,
Ox
where the volume V for the Gaussian hill is given
by (B.2), (B.17), (C.2), (C.3). We can estimate the
ratio R of the deceleration drag to the mountain
wave drag, using

(C3)

decelerationdrag n -~ _,
_—— =

= C4
mtn. wavedrag C ’ (C4)

where n/C ~ 3.3.

If for example ¢= —0.01, a small hill with
#=0.1 would experience a thirty percent drop in
total drag due to the deceleration effect. This
decrease in the drag is evident in each of our runs
as soon as the deceleration begins.
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