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ABSTRACT

We examine the equilibrium solutions of two topographically forced barotropic models,
one having a f-plane geometry and the other being formulated in spherical coordinates. In both
models the topography is represented by a single harmonic to facilitate the study of bent
resonance, and the flow is forced through a mean zonal wind driving term. The horizontal
scale of the topography and the dissipation time scales are selected to yield forced waves of
comparable amplitudes in the limit of linear flows. For both models, a steady state version
is used to obtain the equilibrium solutions and to derive the linear stability properties of the
equilibria. A second, time-dependent nonlinear version of both models is also used to investigate
the time evolution of the flow when the equilibrium solutions are perturbed. Our results for the
B-plane model indicate that while multiple equilibria can be found for sufficiently low dissipation
rates, only one equilibrium is stable and observable over a significant period of time in a time-
dependent model. In regions of parameter space where multiple equilibria exist, the unstable
equilibrium solutions are not surrounded by limit cycles. Initial states chosen close to these
unstable equilibria therefore evolve towards the one stable solution. The spherical geometry
model also possesses multiple equilibria for sufficiently low dissipation rates in association with
the presence of a bent resonance. Two of the equilibria are stable, one corresponding to a low
zonal index flow and the other to a high zonal index flow. The multiple equilibria exist, however,

only over a rather narrow range of u*, the mean zonal wind driving parameter.

1. Introduction

Charney and DeVore (1979), (CD), and Wiin-
Nielsen (1979) showed that some simple nonlinear
atmospheric models can possess multiple equi-
librium solutions in certain parameter regimes.
The former authors showed that in the presence of
orography and dissipation, the zonally forced
barotropic vorticity equation has a stable equi-
librium state with a large zonal index, which one
could associate with the normal state of the atmo-
sphere, and another stable equilibrium state with
a low zonal index, corresponding to “blocked”
or anomalous flows. Wiin-Nielsen (1979) used a
spherical geometry model with dissipation and an
explicit source of vorticity for both the zonal flow
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and a wave. He found both stable equilibrium
solutions, which he associated with long-lasting
atmospheric flows, and an unstable equilibrium
solution, which he compared to observed rapidly
changing flows.

These introductory papers were followed by
many others. Tung and Rosenthal (1985), (TR),
published a critical review of the theories of
multiple equilibria. Their re-examination covered,
in particular, the works of CD, Yoden (1985a),
Killén (1982), Legras and Ghil (1985), and with a
particular attention, the results of Charney et al.
(1981) and Rambaldi and Mo (1984). Charney
et al., had extended the model used by CD to
include a more realistic representation of the
topography. After correcting a minor algebraic
error of Charney etal, TR found that the 5
stationary solutions obtained by these authors
reduced to three; and furthermore, when the
number of degrees of freedom of the system was
increased, the number of solutions dropped to one.
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In their calculations, Rambaldi and Mo used a
longer damping time for their zonal flow U than
for the stationary waves. TR found no justification
for treating differently the zonal and the other flow
quantities. After redoing the calculations with this
correction, they found that, indeed, there existed
more than one wave solution for each value
of U when the damping was weak enough, but the
additional solutions were not equilibrium solutions
in the presence of damping, in the sense that they
were unstable to form-drag instability. TR then
concluded that with a realistic magnitude of topo-
graphic elevation, a physically based zonal driving,
Ekman damping, and an adequate spectral
representation, multiple equilibria do not exist.

In the present study, we wish to demonstrate the
strong dependence of the above mentioned results
on the geometry of the model domain. A series
of integrations is done for a range of parameter
values using a fS-plane and a hemispheric model,
to compare the emergence and coexistence of
solutions along with their stability. For both
models a steady-state version is used to find the
equilibrium solutions and to determine their
stability to weak amplitude disturbances; a time-
dependent version is also used to further investigate
the stability properties of the equilibrium states
when appropriate.

As in the work of Legras and Ghil (1985) and
TR, the search of the parameter space for solutions
for the 2 models is conducted with the use of a
continuation algorithm (Keller, 1978), a technique
particularly appropriate to study systems with
complex solution diagrams and with periodic
solutions.

In the first part of this paper, a description of
the barotropic numerical model on the B-plane
will be given together with an analysis of the
results obtained from applying the continuation
algorithm to find the steady-state and periodic
solutions. In the second part, the same approach
is used with the hemispheric model and a com-
parison is made between the results of the two
models.

2. The f-plane model

2.1. Formulation

The governing equation for the barotropic
model is given by the potential vorticity equation

0 1
VAT, q) =V ), 1)
where, in the f-plane approximation,
_u2 fO
qg=V l//+ﬁy+;1h (2.2)

is the potential vorticity, A, the topography, y*,
the external forcing, H, the atmospheric scale
height, 7 the dissipation time constant and V2 is
the horizontal Laplace operator.

The presence of two rigid walls at the northern
and southern boundaries imposes a restriction on
the meriodional component of the wind,

v=0v'=0 at y=0,D, (2.3)
where v’ is the ageostrophic meridional wind com-
ponent and D represents the width of the channel.
Except where noted otherwise, D will be set to
4000 km; the length of the channel is always set to
28000 km, corresponding to the length of the
latitude circle at 45°N.

In agreement with TR, who found an explicit
expression for a zonal momentum forcing u* in
terms of the density weighted vertical integral of
zonal mean lateral flux of angular momentum, and
no firm physical basis for the presence of a
vorticity source in a barotropic model, we use a
forcing of the form
Y*= —u*y > Vi*=0. (2.4)
This implies that the external forcing does not
appear explicitly in the vorticity equation. It is
therefore necessary to use the zonal momentum
equation

g—?+ug—z+vg—;—f0v’+ﬁyv=%(u*—u), (2.5)
to see how the presence of the forcing mechanism
affects the solutions. In the above, (u,v) are
the geostrophic components of the wind and v’
the ageostrophic meridional component. When
zonally averaged, (2.5) reduces to
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and since v and v’ are identically zero at y =0 and
D, a stationary solution will exist only if

_=;(u* _u) at y=0, D. (27)

This condition is satisfied when the zonal wind # is
such that

'=u0+ul(y9 t)7
and

u(y=0)=u,(y=D)=0.

ug=u*

(2.8)

If the streamfunction is rewritten as the sum of a
linearly varying part and a wavy field:

'// = _u*y+¢(x9 Ys t)’ (29)

it becomes apparent how in the vorticity equation
the wavy part of the streamfunction is affected by
the presence of the forcing u*, since then

3V2¢+1<¢ V2¢+ﬂy+f°h>

+u (V2¢ +f° >=%(—V2¢). (2.10)

The wavy part of the steamfunction, ¢, is then
represented using a spectral expansion

L

¢(X, Vs I)= Z

i=1

x;(1) Gi(x, y), (2.11)

where the basis functions G are taken from the set

2 .
G;e {\/5 cos—g—ny, 2 sin 2 px sin = ny,

L D
2 cos 2n sin T n
L mx D Y s
m=1,2,.,M, n=12,.,N (2.12)

as in CD. The functions G are orthonormal and
satisfy the boundary conditions since

%Gi_o at y=o0,D, (2.13a)
0x
11
D XLG,doy X
1 =g
_6 = 2.13b
%y {0 it i (213b)
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In addition, they are eigenfunctions of the Laplace
operator, i.e.,
V3G, = —a’G.. (2.14)
To derive the spectral form of the model equations,
we expand each of the horizontally varying fields
as in (2.11), and substitute the expansion into
(2.10). By then applying a Galerkin procedure, a
set of nonlinear equations is obtained that can be
written for an arbitrary i as

b Lo o, (B

a~ =1
2
akxk>

+ Z Z ConX; (f

Jj=1k=1

+8 Z a x,}. (2.15)
Jj=1
The usual notation
b= J G, dy dx,
(2.16)
11
ck,-j=—L——— ka (G;, Gj)dydx,

was used. The resulting system is solved for its
stationary solutions using a continuation algo-
rithm, the pseudo-arclength method, as was
done previously by Legras and Ghil (1985). This
technique, based on the fact that the steady-state
solutions to (2.10) form curves in phase space,
allows to move along these curves and construct
the full solution diagram. Once the equilibrium
solutions are obtained, (2.15) can be integrated in
time if information is required on the behaviour of
the flow in the vicinity of the equilibrium solutions.
The time integrations can reveal, for example,
whether an unstable equilibrium solution leads to
a flow that oscillates about that unstable state, or
to a transition to another (stable) equilibrium
state.

2.2. Choice for the truncation

To estimate the number of modes that should be
retained in the spectral expansion of the horizon-
tally varying terms, we ran some experiments and
calculated the energy transfer as a diagnostic tool
to estimate when a certain convergence in the
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Fig. 1. The topography in the f-plane model. The contour interval is arbitrary.

behaviour of the solutions is reached. Through
this method, we resolved to use a (M, N)=(4,5)
truncation with a topography formed of wave
(m,n)=(1,1) (see Fig. 1). We use a single wave
topography since, as TR pointed out, the pheno-
menon of bent resonance can best be seen when
there is only one Fourier mode of topographic
forcing, and consequently, it is usually in this
context that bent resonances are discussed.

3. Results from the g-plane model

In every case that we studied we have begun the
integration along the solution curve using a quasi-
linear approximation to the nonlinear solution.
For the limits of large or small forcing (i.e., away
from the linear resonance value), these approx-
imations are fairly good and an exact solution
is rapidly reached by applying a Newtonian
scheme. The method used to obtain the quasi-
linear approximation follows Pedlosky (1981);
more details can be obtained from Gravel (1989).

It is difficult to choose a graphical representa-
tion (projection) for the solution curve that will be
adequate for all the cases encountered. The inten-
sity of the zonal wind # at mid-channel divided by
the forced zonal wind u* was adopted because of
the easy physical interpretation it provides.

3.1. Solutions for a dissipation time constant of
11 days

The first series of results presented in Fig. 2 were
obtained with a dissipation time constant of
11 days and topographic elevations of 500, 1000
and 1500 m. These values are chosen for their
ability to generate interesting responses as far
as multiple equilibria are concerned. Many
arguments have been provided in the past to try to
justify a particular choice for the damping time

scale or the topographic amplitude (TR, Charney
et al., 1981) but in the present study these were not
our primary concern.

To construct the solution curves, we applied the
pseudo-arclength method to our system of equa-
tions by using u*, the external forcing, as the key
parameter, allowing it to vary between 10 and
35m/s so as to include a reasonable range of the
super- and subresonant values of the zonal wind.
The linear resonance value of #* for this numerical
model is 24.3 m/s and is indicated in the figure by
a full line.

The solutions along curve (a), corresponding to
a mountain of 500 m, are all stable and depart only
moderately from the state # = u*. The amplitude of

_the ¢ wave (not shown) reaches a maximum at the

linear resonance value as is reflected by the mini-
mum in the #/u* curve. At the latter, the actual
zonal wind at mid-channel is approximately 56 %
of the forced wind. In the flow pattern associated
with this solution, the streamfunction ridge (not
shown) is about 90 degrees west of the topographic
ridge, maximizing the effect of the form-drag.

As the amplitude of the topography is increased
to 1000 m, the boundary-forced interactions
between the zonal and eddy components of the
flow intensify, allowing stronger waves to be
produced. As in curve (a), all the solutions are
unique for all values of u*, but there is now a loss
of stability of the solution over part of the
parameter range. As the value of u* is increased
from 20 to 21 m/s, a Hopf bifurcation occurs,
followed by a second one between u* =27 and
28 m/s. Between these two values, the integration
of the time-dependent model has yielded stable
periodic solutions that remain very close to the
low zonal index configuration of the stationary
solution that they surround.

For a topographic amplitude of 1500 m (Fig. 2

Tellus 45A (1993), 2
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Fig. 2. ufu* versus u* for a dissipation time constant of 11 days and a topographic amplitude of (a) 500 m, (b) 1000 m,
(c) 1500 m. The x symbol represents a stable solution whereas the other symbols indicate unstable solutions
(eigenvalues with positive real part). A plus sign indicates the presence of two complex conjugate eigenvalues and a
circle the presence of at least two pairs of complex conjugate eigenvalues.

curve (c)), an even stronger intensification of the
waves due to increased boundary-forced inter-
actions is noted, and consequently there is a sub-
stantial reduction of the intensity of the zonal
wind accompanied by a distinct shift of the curve’s
minimum on the subresonant side of the linear
resonance line. Another feature that distinguishes
curve (c) from the preceding two is that now most
of the stationary solutions are unstable. Between
u*=16.7 and 16.8 m/s, a Hopf bifurcation occurs,
quickly followed by a second one for u* between
18.1 and 18.2 m/s and a third at u* between 19.1
and 19.2 m/s. There are now 6 complex conjugate
eigenmodes of the system that are unstable. The
last pair of conjugate modes to become unstable
regain their stability through another Hopf
bifurcation for u* between 22 and 22.1 m/s. The
time-dependent model has been used to determine
the evolution of flows initialized close to the
equilibrium solution between the latter two bifur-
cations. For all values of u* considered, periodic
solutions surrounding the equilibrium flow were
found. The trajecteries are, however, relatively
complex due to the higher harmonics of the
fundamental frequency.

These results differ from those obtained by

Tellus 45A (1993), 2

Yoden (1985(a)). Using the same model as CD, he
solved the set of 6 nonlinear equations resulting
from the steady state potential vorticity equation.
For a dissipation time constant of 11 days, he
found the same three distinct stationary solutions
as CD plus eight new steady state solutions result-
ing from pitchfork bifurcations and turning points
along the new branches generated by the first. All
the stationary solutions found by Yoden with this
low-order model were also present in a high-order
grid-point model. These results, of course, can be
different from ours due to the use of a vorticity
source in the CD model instead of a constant zonal
wind forcing. They may also differ because of the
very different geometry used by CD. As we recall,
their f-plane channel measured 10,000 km in
length and 5000 km in width.

3.2. Solutions for a dissipation time constant of
22 days

By reducing the damping time constant by
a factor 2 we expect to see a more pronounced
response of the wavy component of the flow in the
vicinity of the linear resonance line. In Fig. 3,
the solutions are presented in the same form as
in Fig.2 but for 7 =22 days. As in the previous
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Fig. 3. a/u* versus u* for a dissipation time constant of 22 days and a topographic amplitude of (a) 500 m and

(b) 1000 m. Stability symbols as in Fig. 2.

section, curves (a) and (b) correspond to topo-
graphic elevations of 500 and 1000 m, respectively.

When examining curve (a), it becomes obvious
that the increase of the dissipation time constant
has led to a much reduced zonal component. The
wind # at mid-channel reaches a minimum of 36 %
of the forcing value at 23 m/s, on the subresonant
side of u*. Four Hopf bifurcations occur for
u*=223, 249, 26.3 and 26.5 m/s. The unstable
stationary solutions delimited by the first and last
of these bifurcations are surrounded by stable
periodic solutions, as verified by time-integrations
of the model. For all values of u* the solutions are
unique.

When the amplitude of the topography is in-
creased from 500 to 1000 m, the changes occurring
in the pattern of the solution curve are substantial.
Following the solution curve for increasing values
of u*, the solutions are at first unique and stable.
For u* between 18.1 and 18.2 m/s, a Hopf bifur-
cation occurs giving rise to unstable stationary
solutions surrounded by periodic solutions. A
second Hopf bifurcation occurs for u* between
18.4 and 18.5 m/s. In Fig. 4, the stationary solution
found for u*=18.8 m/s is shown together with
snapshots of the stable periodic solution that
surrounds it at different moments of its oscillation.
As can be expected from the value of #/u* corre-

sponding to this solution, we note that the
streamline configurations are of a low index type.

At u* =18.9 m/s, there is a turning point and the
amplitude of #/u* now decreases for decreasing
values of u*. An enlarged view of the solution
curve in this area is shown in Fig. 5. Following the
curve, at u* = 18.4 m/s, there is a pitch fork bifur-
cation. Of the two new branches appearing past
this bifurcation, only one is visible in the figure, as
this is a typical case where the projection chosen to
illustrate the solution curve is inadequate. What
distinguishes the two new branches of solutions is
the sign of the coefficients of the # modes that are
antisymmetric with respect to mid-channel and,
therefore, do not contribute to the value of & at
mid-channel. The new branches of solutions end at
u* =17.4 m/s through a second pitchfork bifurca-
tion. The solution curve, once again unique, goes
through a second turning point at »* =17.0 m/s.
Between the two turning points the solutions are
all unstable, as we can tell from the presence of at
least one purely real eigenvalue. Past the second
turning point at ¥* =17.0 m/s the solutions with
the lowest zonal index are also unstable but only
complex conjugate eigenvalues with a positive real
part are found, indicating the possible presence of
periodic solutions.

If we now consider all possible branches of solu-

Tellus 45A (1993), 2
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Fig. 4. Streamlines of the solutions for 1 =22 days, h,=1000 m and »*=18.8 m/s; (a) unstable steady solution,
(b)~(f), stable periodic solution at different moments of its period. Units: 1 x 105 m%/s.
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Fig. 5. Asin Fig. 3, curve (b). The black squares indicate the presence of at least two eigenvalues, at least one of which

is real and positive; circles as in Fig. 2.

tions, we find that for the values of u* between 17
and 18.9 m/s there are three, sometimes as many as
five distinct equilibrium solutions to the vorticity
equation. Fig.6 shows the streamlines of the
equilibrium solutions present at u* = 17.8 m/s. All
solutions, except the one shown in Fig. 6a which
corresponds to the upper solution branch in Fig. 3,
curve (b), are unstable. Because it lies on the upper
solution branch, with a larger value of #/u*, the
stable solution presents a structure with a higher
zonal index than the remaining ones. These results
could suggest the presence of multiple equilibria
for this range of values of u*. Time integrations,
however, have indicated the contrary. When the
solutions with the lowest zonal index, which we
have already found to be unstable due to the
presence of at least one pair of unstable complex
conjugate eigenmodes, are slightly perturbed, their
evolution in time does not lead to the emergence of
periodic solution that can be linked to the unstable
stationary solution. In Figs. 7a, b, the time series
of the amplitude of the gravest zonal mode is
plotted for the lowest zonal index solutions at
u* =172 and 18.5 m/s. In both cases, the solution
slowly evolves away from the stationary state,
comes under the influence of the solution with the
highest zonal index and is captured. In one case

(Fig. 7a), this solution is stationary and stable. In
the second case it is periodic and stable. In short,
while multiple equilibrium solutions exist between
u*=17.0 m/s and 18.9 m/s (Fig. 3, curve (b)), only
the upper branch has solutions that are stable or
periodic. The solutions on the branches with lower
values of #/u* are unstable and will not be
observed over extended periods of time.

The above solution characteristics will undoubt-
edly lead to an hysteresis transition between the
lower and upper branches of the solution curve.
Indeed, as the value of u* is decreased past the
critical value of u* =189 m/s, the solution will
“jump” from the lowest to the upper branch. As we
recall, the solutions are periodic in both cases and
the difference in zonal index between the unique
solution found at #* =19.0 m/s and the solution
on the upper branch for u* =18.9 m/s (Fig. 3) is
so small that the hysteresis jump is likely to go
unnoticed by an observer.

In summary, for a dissipation time constant of
22 days and a topographic amplitude of 1000 m,
stable solutions (either periodic or stationary) do
not coexist. In the presence of multiple solutions
to the steady state potential vorticity equation,
only one can be observed in a time integration
model. These results are very different from those

Tellus 45A (1993), 2
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obtained by Yoden (1985a) with his model. The
comparison can only be qualitative, however,
since our model and his only share a common
topographical amplitude, in contrast to the
forcing, dissipation and geometry of the channel
which are different in the two studies.

3.3. Dependence of the solutions on the geometry

Using dimensional analysis, Rambaldi and
Mo (1984) have studied the importance of the
meridional scale of the topography by examining

Tellus 45A (1993), 2

the solutions in the limits of extremely wide and
extremely narrow channels. They have shown that
in the first case the wave-wave interactions vanish
and wave-topography interactions are relevant
only to the evolution of the zonal flow. In the limit
as the channel width tends to zero, the wave-wave
and wave-topography interactions vanish. They
emphasized the interest, therefore, of studying
problems where the meridional and zonal
wavelengths of the topography are of comparable
magnitude.
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Fig. 7. Time series for the amplitudes of the gravest mode
(a) u*=17.2 m/s, (b) u* = 18.5 m/s. Units: 10° m?/s.

Holloway and Eert (1987) have shown, using a
higher resolution model, that it is possible to
observe intransitive multiple equilibria over a
range of parameter values. In particular, they
showed results with evidence of multiple equilibria
on the superresonant side of the linear resonance
line when the various parameter values are fixed to
hy=629m, =387 days and the zonal forcing
u* =133 m/s. The major difference between our
numerical model and theirs, besides their inclusion
of a higher order friction that selectively damps
small scale vorticity, is their choice of the model
geometry. The latter is doubly periodic, with a
fundamental length and width of 6000 km. We
have found, through experiments, that the impact
of the double periodicity on the multiple equilibria
is negligible. The width of the channel, however,
has a much stronger impact. In Fig. 8 are shown
results that were obtained for channels with
three different widths. Curves (a), (b) and (c)
correspond to widths D of 2000, 4000 and
6000 km, respectively. For each geometry, the

' (B;Xe()‘(w
2
0.8 [x Ny
< oW x
x| % X
x X x *
06 - N ©
s , < (b) fy
5 x x .
I=} x x x x
04 | x x x |
B % .
. L0 i
02 :
0.0 . : . . L . .
0 10 20 30 4 S0 60 70 80
U* (/s)

Fig. 8. it/u* versus u* for a dissipation time constant of
11 days, a topographic amplitude of 1000 m, and a chan-
nel width of (a) 2000 km, (b) 4000 km and (c) 6000 km.
The black dot represents the presence of one real positive
eigenvalue (unstable); the other symbols are as in Figs. 2
and 5.

linear resonance line (given by u* = /K2, where K
is the two-dimensional wavenumber) is indicated.
As the value of D is increased, we note a stronger
response of the eddy component of the flow, and a
tendency for the position of the resonant peak to
shift to the subresonant side of the linear resonance
line. The curve for the widest channel even exhibits
a fold that indicates the presence of multiple
solutions, and potentially multiple equilibria. This
behaviour suggests that the differences between
our results and those obtained by Yoden can also
be a reflection of the major differences between the
two geometries used. The discrepancies between
these results have suggested the use a hemispheric
model, in which, of course, the width of the
channel need not be specified arbitrarily. In Sec-
tions 4 and 5, we will turn to the formulation and
use of such a model.

4. The hemispheric model

To ease comparison between our f-plane and
hemispheric models we will try to limit the dif-
ference between them to a minimum, at least in the
linear versions of the models, by appropriate
choices for the zonal momentum forcing, the
topography and the dissipation time scale.

While the formulation of the potential vorticity
equation is unchanged by the passage to spherical
geometry, the potential vorticity, ¢, on the other
hand, must be redefined to take into account the

Tellus 45A (1993), 2
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variation of the Coriolis parameter on the sphere,
and is now given by:

q=V2ll/+f<l+%°-), (4.1)
with
f=2Qsin 6. 4.2)

As is commonly done, surface harmonics Y7
will be used as basis functions for the spectral
expansion so

Y=Yy, (43)
k

where k represents a couple (n, m) and

Y, =e™P"(u), (44)

with 4 and p, the longitude and the sine of the
latitude, respectively and P!, the associated
Legendre polynomial of the first kind. We will use
a hemispheric model, so that only the modes with
(n —m) odd are retained in the representation of v,
and due to the reality condition,

Y "= (=" [T,

so that only the coefficients for m >0 need be
calculated. Applying the spectral expansion to the
governing equation, the equivalent for the hemi-
spheric model of (2.15) takes the form

N1 n(n;+ 1)

o ~nn+ 1) [; 2 [“”f—T w,] v,

2imQ  1n(n+1)
Tt

(4.5)

(l//;f—!/fk)], (4.6)

r2

where r is the radius of the~Earth, ay; are the
interaction coefficients and uh, are the spectral
coefficients of the effective topography of the
model, resulting from the product of the Coriolis
parameter and h,/H. The effective topographic
structure is formed of only one mode, Y2, and has
the structure illustrated in Fig. 9. With this par-
ticular choice, the non-dimensional wavenumber
of the topography in the two models, the f-plane
and the hemispheric, is comparable, i.e.,
6.66x10"° m~? and 4.93x 10" m~2, respec-
tively. The hemispheric equivalent to the forcing
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Fig. 9. Structure of the topography in the hemispheric
model. The contour interval is arbitrary.

used in the B-plane model is a zonal flow with
constant angular velocity and therefore, in terms
of the streamfunction, it is simply
YF=—xY9, (4.7)
where « is a constant. The superscript F is used to
indicate the forcing instead of an asterisk to avoid
confusion with the complex conjugate coefficients.

A triangular truncation is used, i.c., one where
0<n<N and —n<m<n. After testing for
convergence in behaviour, the choice of a TY, i.e.,
N =9, was adopted.

Our choice of the dissipation time constant is
guided by a consideration of the linearized vor-
ticity equation. By inspection of that equation it is
seen that two models having a topographic forcing
with the same two-dimensional wavenumber and
same amplitude will have the same response
amplitude provided tk is the same in both model,
where k is the zonal wavenumber. As the zonal
wavenumber is about 3 x larger in our hemi-
spheric model as compared to our f-plane model,
the value of t should be decreased by a factor of
about 3. It should be noted that the above
arguments apply only to the linear versions of the
models. As will be seen, our f-plane and
hemispheric models have different nonlinear
responses to the topographic forcing, as could be
expected, in particular, from the fact that the ratio
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of the zonal to the meridional dimensions of the
orography is not the same in both models. In fact,
the differences in the results of the two models will
highlight the sensitivity of the nonlinear effects to
the geometry of the orographic forcing.

5. Results from the hemispheric model

5.1. Solutions for a dissipation time constant of
3.2. days

The results shown in Fig. 10 were obtained with
the strongest dissipation used in the hemispheric
model, i.e., a dissipation time constant of 3.2 days.
Three curves for u#/u* versus u* corresponding to
three different topographic amplitudes, (a) 650 m,
(b) 1000 m and (c) 1500 m, are presented. Here
again, in order to ease the comparison with the
B-plane model, the forcing ¥ is translated into the
intensity of the forced zonal wind u* at 60° of
latitude, which ranges from 10 to 80 m/s. The verti-
cal axis shows the ratio of the actual zonal wind &
to u* when both are evaluated at 60°. The first two
curves in Fig. 10 suggest the development of a bent
resonance to the right of the resonance line
(indicated on the figure by a vertical line) as the
topographic amplitude increases. We recall that in
the B-plane model the multiplicity of solutions was
on the subresonant side.

S. GRAVEL AND J. DEROME

For a topographic amplitude of 650 m (Fig. 10,
curve (a)), there is a unique stable solution for a
given u*. The maximum amplitude for the wavy
part of the flow is reached on the superresonant
side of the critical line at a corresponding forcing
wind of 31 m/s. In general the solutions do not
depart significantly from the forcing flow, the
minimum for #/u* being only of 0.75. When the
topographic amplitude is increased to 4= 1000 m,
the bending of the resonant curve becomes suf-
ficiently important to form a fold in the curve. In
terms of bifurcations, we are in presence of two
turning points at u* =38, and 37.2 m/s. For this
narrow range of values of u* there are three dis-
tinct steady state solutions, two of which are stable
and one is unstable. The stable solutions, as is
obvious from Fig. 11(a, b), belong to two distinct
regimes, a high and a low zonal index, while the
unstable solution (Fig. 11c) has an intermediate
structure.

As we further increase 4 to 1500 m (Fig. 10,
curve (c)), the fold in the solution curve becomes
slightly more pronounced and the turning points
are now at u* =44.1 and 42.0 m/s. There are also
two new features, namely, the presence of two
Hopf bifurcations and a new minimum in the
solution curve at u*=279m/s. The first new
bifurcation occurs at u*=43.7m/s and the un-
stable complex eigenmodes regain their stability at

1.0

08

0.6 r

U/u*

04 r

0.2 r

1 " It X 1 " L

0.0 !
0 10 20 30

40
U* (m/s)

50 60 70 80

Fig. 10. itfu* versus u* evaluated at 60°, for a dissipation time constant of 3.2 days and a topographic amplitude of
(a) 650 m, (b) 1000 m, (c) 1500 m. Stability symbols as in Figs. 2 and 8.
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Fig. 11. Streamlines of the solutions for 7=3.2 days,
ho= 1000 m and u* = 37.6 m/s; (a) and (b) stable steady
solutions corresponding to the highest and lowest
branches of curve (b) in Fig. 10, and (c) unstable steady
solution corresponding to the intermediate branch.
Units: 1 x 1074 m?/s.

Tellus 45A (1993), 2

the second Hopf bifurcation, at u* = 44.1 m/s. The
steady state solutions between these two values are
unstable but are surrounded by stable periodic
solutions that remain very close to the steady
state unstable solution that they surround. This
behaviour was observed in integrations of the
time-dependent version of the model.

In summary, we have found that for both
h=1000m and 1500 m, two distinct stable flow
regimes exist for a range of u*. That range of u*,
however, is quite narrow.

The occurrence of a second minimum in curve
(c) of Fig. 10 is reminiscent of the results of Legras
and Ghil (1985) who observed as many as four
minima. The multiplicity of resonant peaks in their
study can easily be explained through linear
resonance. Indeed, the forcing used by Legras and
Ghil is formed of the two modes: Y and Y. It is
the interaction of the latter with the modes having
the same zonal wavenumber as the topography
that generates the multiplicity of peaks. A linear
resonance analysis shows that a zonal forcing
formed only of Y9 (as in the present study) will
lead to resonance only in the topographic modes,
independently of the meridional resolution of the
model. The second peak in curve (c) of Fig. 10
must therefore be due to the nonlinearities of the
model.

To pursue the parallel between the work of
Legras and Ghil and ours we need to recall that for
their numerical integration, they used as key
parameter the non-dimensional factor p, where

U
=20 (5.1)
and U is the characteristic speed. p measures the
intensity of the forcing since the dimensional and
non-dimensional forcing (indicated by a subscript
d) are linked by the relation
Y r=pUyyg. (5.2)
In terms of p, the range of values of u* we have
examined (10-80 m/s) corresponds roughly to
p=0.30 to 0.33. Because of their choice of zonal
structure for the topography (zonal wavenumber
2), the domain Legras and Ghil needed to study in
order properly to analyze the nonlinear behaviour
of their solutions is much wider and the position of
their resonance peak is of course different from
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ours. It is important to note that for a dissipation
time of 3.3 days and a topographic amplitude of
1000 m, the solutions obtained by Legras and Ghil
are always stable and stationary. The most likely
cause of the difference between their results and
ours is linked to the sensitivity of the nonlinear
terms to the topographic structure, which is
different in the two studies.

If we now compare our hemispheric results with
those obtained with the §-plane model, we can find
some similarities, but also some notable differen-
ces. In Fig. 10, the minimum of each of the curves
occurs for values of #/u* similar to those in Fig. 2.
Besides the values of the minima, the other similar
feature is the presence of Hopf bifurcations on
both curves (c). In general, however, the con-
figuration of the curves is very different for the two
geometries. While in the hemispheric model the
nonlinear response in the neighborhood of the
resonance line is very sharp, ie., occurring in a
narrow band, the f-plane model has a much
broader response. This is particularly obvious
when the slopes of the solution curves on either
side of the resonance peak are compared. The
evolution of the curves as the amplitude of
the topography is increased is also different. In the
B-plane model the curves undergo a global transla-
tion toward lower values of #/u*, whereas in the
hemispheric model the tilting of the tangent to the
curve is the most notable feature.

5.2. Solutions for a dissipation time constant of
5.6 days

It seems reasonable to expect that the quali-
tative effects of the reduction of the dissipation
are independent of the geometry of the model, and
therefore, as for the f-plane model, the reduction
of the damping should lead to a more pronounced
response of the wavy component of the flow.
Fig. 12 is the same form of representation as
Fig. 10, but for 7=5.6 days, and the results for
only the lowest two amplitudes of the topograpy
are examined.

For a topographic height of 650 m (Fig. 12,
curve (a)), there are now 2 turning points at
u* =384 and 34.6 m/s, bounding a fold in the
solution curve. Over this range of values of u*
there are 3 distinct solutions, with the one corre-
sponding to the intermediate value of #/u* being
unstable.

When the amplitude of the topography is

increased to 1000m (Fig. 12, curve (b)), the
resulting solution curve resembles the one
observed in Fig. 10, curve (c). It has 2 minima and
the first, occurring at «* =27.1 m/s, seems to be
related to the quasi-resonance of the same mode as
in Fig. 10, curve (c). The second minimum corre-
sponds to the growth of the topographically forced
mode. Along the solution curve, 12 bifurcations
are encountered, 2 of which are turning points
occurring at u* = 42.3 and 38.2 m/s. The remaining
bifurcations are Hopf bifurcations giving rise to
stable periodic solutions.

Obviously, the difference between the f-plane
and the hemispheric models persist when the
dissipation time constant is increased to 5.6 days.
In the hemispheric model, the pitchfork bifurca-
tions are absent. The conditions that lead to their
emergence in the §-plane model were described by
Yoden (1985a, b), who divided the basis functions
¢ of his numerical model into two symmetry
groups. By considering the transformation T:
T:Z(x,y) > —Z(x+7n/2, n— y), (5.3)
for a cyclic channel of dimension 7 in x with lateral
walls at y=0 and =n, he divided the spectral
components according to their variance to T”.
He obtained two groups which he labeled the S
modes and the T modes defined by

S modes: ¢ = T(¢)

(5.4)
T modes: ¢ = — T(¢) = T*(¢).
Since the forcings, external and topographic,
belong to the same symmetry group, the free
modes of the other symmetry group, when initially
set to zero, remained zero. The branching observed
by Yoden and by us always corresponds to the
change of stability of an eigenmode formed of a
linear combination of these unforced modes. In the
hemispheric model, the distinction between two
symmetry groups is difficult to make because of the
absence of latitudinal symmetry in the structure of
the associated Legendre polynomials. However,
with our particular choice of external and topo-
graphic forcing, the non-linear interactions do not
excite some of the modes if they are initially set
to zero. These modes belong to the free group but
never go through a pitchfork bifurcation. The
numerical model used by Legras and Ghil, with a
similar number of degrees of freedom but with
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Fig. 12. As in Fig. 10 but for a dissipation time constant of 5.6 days and a topographic amplitude of (a) 650 m and

(b) 1000 m.

different modes being included, does not show the
presence of branching either. The pitchfork bifur-
cations thus seem to remain an exclusive feature of
the B-plane model.

In the next section, we will further increase the
dissipation time constant to 8 days, and we will
complete the analysis of the solution curve by
looking in detail at the limit cycles associated with
the low index solutions.

5.3. Solutions for a dissipation time constant of
8 days
" The results obtained with a dissipation time
constant of 8 days and a topographic amplitude of
650 m are illustrated in Fig. 13 using the usual pro-
jection. The solution curve has evolved with the
decrease in dissipation in the way we have come to
expect. The fold in the solution is now more
pronounced, the 2 limiting turning points occur-
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Fig. 13. As in Fig. 10 but for a dissipation time constant of 8 days and a topographic amplitude of 650 m.
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Fig. 14. An enlarged segment of Fig. 13.

ring for values of #* =35.0 and 40.5 m/s so that
for a moderate range of 5.5 m/s there are multiple
equilibria. It is important to note, however, that
both the intermediate and the low index solutions
are unstable. It should be noted however that the
latter give rise to stable periodic solutions for the
values of u* between 35.0 and 40.2 m/s.

The secondary minimum observed in Fig. 10,
curve (c) and Fig. 12, curve (b) is also present here.
An enlarged view in the area of this minimum is
shown in Fig. 14. The curve has a y shape whose
width is delimited by two turning points occurring
at u* =30.5 and 30.4 m/s. Over this narrow range
three solutions coexist, all with nearly the same
zonal index, and therefore not giving rise to
multiple regimes.

We come across four Hopf bifurcations in
Fig. 13 as we move along the solution curve for
increasing values of u*. The first occurs at u* =
28.6 m/s. The pair of complex conjugate eigen-
modes that becomes unstable at this point regains
its stability at what we refer to as the third Hopf
bifurcation, at u*=39.5m/s. The second Hopf
bifurcation is at u* =30.4 m/s and the associated
complex eigenmodes regain their stability just past
the first turning point for #* = 40.35 m/s, i.e., at the
fourth Hopf bifurcation. So for the values of u*
between 304 and 39.5 m/s, there are 2 pairs of
unstable complex conjugate eigenmodes.

Legras and Ghil (1985) have paid particular
attention to the results obtained for a dissipation
time constant of 20 days and an external forcing of
approximately 60 m/s at 50° of latitude. They
observed a chaotic behaviour that led to a succes-
sion in time of different planetary flow regimes.
Since chaos occurs through the degeneracy of peri-
odic solutions via period doubling, we used the
time-dependent model to examine the behaviour
of the unstable solutions for the values of u*
between 30.4 and 39.5 m/s. Aperiodic regimes were
found to occur for values of u* greater than
36.5 m/s, but they are characterized by low index
configurations, that is, by the absence of trans-
itions from one regime to another.

An interesting transition phenomenon between
low and high index solutions was observed,
however, for the unstable low index steady state
solution present for #* = 40.3 m/s. When the latter
is perturbed and allowed to evolve in time, the
unstable eigenmode that originally has zero
amplitude starts to grow. In the process, it brings
the solution under the influence of the attractor
basin of the high index stationary solution (top
branch in Fig. 13). The solution is then captured,
and the unstable eigenmode recovers its null
amplitude. This phenomenon is illustrated in
Fig. 15, where in (a) it can be seen that the
unstable eigenmode is growing as a result of the
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Fig. 15. Time evolution for u*=40.3m/s of (a) the
amplitude of the real part of the unstable eigenmode in
units of 10° m?%s; (b) the amplitude of Y9 in units of
107 m?%s.

perturbation added to the stationary solution. As
it grows, however, it is captured by the other
stationary solution present for this value of u*.
Since the eigenmode has a zero amplitude for
that solution, we have chosen to illustrate this
phenomenon in a different fashion, by plotting this
time the evolution of the amplitude of Y9 over the
same time period (Fig. 15b). This particular mode
was chosen because the absolute value of its
amplitude is proportional to the intensity of the
zonal wind of the corresponding solution and,
therefore, illustrates well that the solution moves
from a low index to a high index structure. This
result implies that the attractor basins for the high
and low index solutions have merged and there is
only one observable equilibrium, namely the stable
stationary solution. Thus a transition from a low
index to a high index solution can occur for small
changes in the value of the parameter u*. In the
case shown, the transition occurs on a time scale of
approximately 40 days.
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6. Summary and conclusions

A barotropic f-plane model was used to
examine the equilibrium flows that result when
a zonal current is forced in the presence of
orography. For sufficiently weak dissipation, mul-
tiple equilibrium solutions were found, but only
one of them, with a relatively high zonal index, was
stable. Time integrations of the model started close
to the other (unstable) solutions with a lower
zonal index showed that the flow does not reach a
limit cycle, but rather evolves away from the initial
conditions towards the high index stable solution.
In other words, while there are formally more than
one equilibrium solutions, only one of them could
be observed in a time dependent model.

In the vicinity of the linear resonance point, only
one, unstable, solution was obtained for a given
forcing amplitude. In that region of parameter
space the nature of the nonlinearities are such that
flows started close to the unstable equilibrium
states first move away from the equilibrium state,
but then reach a limit cycle close to the equilibrium
solution. The flow thus oscillates in a periodic
fashion about the equilibrium. In spite of its
instability, the equilibrium solution can in this case
be recovered from a suitable time averaging of the
time-dependent flow.

Experiments conducted with different f-plane
channel widths revealed that the results are quite
sensitive to the meridional scale of the topo-
graphy and further calculations were made with a
spherical geometry model. The two-dimensional
wave number of the topography in the spherical
geometry model was chosen to be the same as for
the f-plane model, and the dissipation time con-
stant was adjusted so that both models produced
linear solutions of similar amplitudes for similar
mid-latitude zonal flows. The spherical geometry
nonlinear model produced a bent resonance with
multiple equilibria, two of which were stable, but
only over a very small range of zonal flow driving
amplitudes. When the dissipation time constant
was increased from 3.2 to 8 days, multiple
equilibria were observed for realistic forcing
amplitudes. The range of mean zonal flow forcing
amplitudes over which multiple equilibria are
found is, on the other hand, rather modest.

The differences in the results obtained with the
p-plane and the spherical geometry model high-
light the sensitivity of the nonlinearities to the
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geometry of the forcing. While both models used
parameters adapted to yield comparable linear
solutions, the ratio of the zonal to the meridional
dimensions of the topography was different in the
2 models. While different in many ways, the results
obtained with both models indicate that rather
special circumstances must be met for multiple
equilibria to exit. In addition, the sensitivity of the
results to the geometry of the topography suggests
that it is difficult to draw general conclusions on
the existence of multiple equilibria in more general
models and in the atmosphere.

The study has provided interesting examples of
equilibrium solutions which, while unstable to
infinitesimal perturbations, were stable in the
nonlinear sense in that the flow oscillated around
the unstable equilibria.
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