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ABSTRACT

Quadri-dimensional data assimilation aims at extracting all information from observations
distributed over a finite time interval. In this paper, variational assimilation with the adjoint
model technique is applied to the Lorenz model to illustrate how the performance of quadri-
dimensional data assimilation can vary from one case to another. Observations are generated
for two situations, one (the regular case) being more predictable than the other (the case with
transition). An examination of the functional being minimized shows that although the regular
case does not reveal any significant secondary minimum, there are in the case with transition for
which the point of convergence was seen to be highly dependent on the first guess. It was also
observed that to pick the first guess on the underlying attractor of this dynamical system does
not insure convergence to the true minimum. In the adjoint model technique, the gradient of the
functional is obtained through a time integration of the adjoint model using the difference
between the solution of the direct model and the observations. It is shown how to relate the
observational error covariance matrix to the gradient error covariance matrix. This method is
applicable to any model once its adjoint is available and can be used to provide an estimate of
the accuracy of the final analysis. Applying it to the Lorenz model, it is shown that due to the
different local error growth rates, the same observational error can lead to very different

accuracies for the gradient vector.

1. Introduction

The purpose of quadri-dimensional data
assimilation is to extract information from obser-
vations contained in a finite time interval in order
to produce an analysis to be used in a numerical
forecast model. Integrating a model for given
initial conditions Z,, the solution is compared
against the observations and a functional J(Z,) is
defined to measure the misfit between this solution
and the observations. In variational assimilation,
the initial conditions that minimize this functional
are sought. This approach was first tried by
Thompson (1969) but the complexity of the
problem made it intractable at the time. The mini-
mization of J(Z,) requires the means to calculate
the gradient VJ(Z,), a key ingredient in any mini-
mization algorithm such as the conjugate gradient
or the quasi-newton methods (Navon and Legler,
1987). A direct approach leads to a prohibitive
cost and can only be used for simple models

(Hoffman, 1986). What made variational assimila-
tion to progress was the adjoint model technique
developed by Le Dimet and Talagrand (1986) and
studied also by Lewis and Derber (1985). They
showed that the gradient can be obtained at a
reasonable cost that is comparable to the estima-
tion of the functional itself. The method was
successfully applied to the analysis of real observa-
tions in spectral barotropic models on the sphere
by Courtier and Talagrand (1987, 1990) and
in a quasi-geostrophic baroclinic grid point
model by Derber (1987). At the present time, there
is ongoing work in forecast centers to perform
variational assimilation for operational weather
forecasting purposes.

In this paper, quadri-dimensional data assimila-
tion will be cast in terms of a least square fit in
which the functional

1 N i .
HZy)=——= Y (Z(t)—Z)\Z(t) - Z,)
=0

(N+1),
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has to be minimized. The following notations have
been introduced: the inner product is {f|g)> =
fTg (the superscript T stands for the matrix trans-
pose), Z(t) is the solution to the dynamical system

dz
—=F(2) (1)
obtained with initial conditions Z(0) = Z, while Z,
are observed values of Z at time ¢,. It has also
been assumed that ZeR” and F:R"—>R" An
infinitesimal change 6Z, to the initial conditions
leads to a different trajectory in phase space and
the evolution of the difference 4Z(t) between this
solution and Z(¢) is described to first order by the
tangent linear model

%5Z=DF(Z(1))5ZEA(t) 6Z, 2)

with DF(Z(t)), the jacobian matrix of F(Z).
Insofar as 6Z, is small enough, the trajectories
remain close over the time interval [z, 5 ]. In the
adjoint model technique, an expression for the
variation of J(Z,) is sought in the limit [6Z,]| - 0
to obtain the gradient of the functional. In this
limit,

0J(Zo)=VI(Z,)|6Z,)

and this holds for any change in the initial condi-
tions. Since

N

Y (Z(t)—Z,18Z(1,)>,

=0

5J(Z°)=(N_+T) ‘

and the evolution of 6Z(¢;) being determined from
(2), Le Dimet and Talagrand (1986) showed that

2 X .
VJ(Z"):mEo 0(Z(t)—Z)), (3)

where Q; stands for the backward integration from
t; back to ¢, of the adjoint model

4

* —_—
dt(s z

—AT(r)6*Z. (4)

For nonlinear systems, the divergence of trajec-
tories in phase space is expected to vary from one
region to another: this has an impact on the local
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predictability (Lorenz, 1982). This implies that if a
model is to be integrated up to a given time, the
accuracy needed on the initial conditions to obtain
a good forecast should be expected to vary with
the region of phase space. In meteorological terms,
some situations being very sensitive to small
changes in the atmospheric state, a detailed
analysis is required while other cases can do with
a less accurate one because the atmosphere can
sometimes be very stable. The purpose of the
present paper is to point out some difficulties that
may arise in quadri-dimensional data assimilation.
This will be done by using the Lorenz model
(Lorenz, 1963) that has only three spectral
components. It has been chosen because of its
known sensitivity to small changes in the initial
conditions: its properties have been investigated
by many authors and its description is now part
of textbooks on dynamical systems (e.g.,
Guckenheimer and Holmes, 1983).

There are many questions about data assimila-
tion that can be answered by using simple models.
Miller and Ghil (1990) tested the extended
Kalman filtering method on the same Lorenz
model that will be used in this paper while Lorenc
(1988) used a unidimensional shallow water model
to compare results obtained from quadri-dimen-
sional data assimilation against methods used in
operational practice (i.c., optimal interpolation in
an analysis-forecast cycle). Data assimilation with
the adjoint model technique being based on an
iterative minimization process, results obtained
from minimization algorithms such as the con-
jugate gradient or quasi-newton methods will
depend on the starting point of the search if
multiple minima are present. Moreover, it is to be
expected that the form of J should vary with the
region of phase space making the performance of
the method case dependent. Another issue that will
be looked at in this paper is the uncertainty in the
gradient vector due to observational error. Com-
pared to the true gradient that would be obtained
from perfect observations, the gradient vector
computed with a given set of observations would
be different and this difference depends on the local
error growth rate since, as can be seen from (3), a
backward time integration of the adjoint model is
involved.

In Section 2, the Lorenz model is introduced
and the numerical schemes employed to integrate
both the direct and adjoint models are discussed in
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the Appendix. Observations are then generated by
the model itself and data assimilation with the
adjoint method is done for different cases. A con-
jugate gradient algorithm and a quasi-newton one
are used for the minimization to compare their
relative performance. Different cases are examined
and for each one, a representation of the functional
is given. The impact of observational error on the
accuracy of the computed gradient is studied in
Section 3. In Section 4, a discussion of the implica-
tions of these results for real data assimilating
systems is presented.

2. Data assimilation with the Lorenz model

Studying a simplified form of the system
proposed by Saltzmann (1962), Lorenz (1963)
described the dynamics of finite amplitude convec-
tion in terms of a set of three nonlinear spectral
equations that are now referred to as the Lorenz
model. These equations are

d
=X =0(—X,+X3),

o (5a)
d
3= N XX - X, (5b)
d
T X3= X1 X, —bX;, (5¢)

dr

where g, r and b are external parameters related
to the Prandtl and Rayleigh numbers and a
geometric aspect ratio. A linear stability analysis
shows that different types of solutions can be
obtained depending on the values of these
parameters. When o=10 and b=2%, steady
convection becomes unstable when r=24.74.
Choosing the Rayleigh number to be slightly super-
critical (r=28), it can be shown that the system
then has an underlying strange attractor and the
solutions are seen to be aperiodic (or chaotic). The
reader is referred to Lorenz’s original paper and
the book by Guckenheimer and Holmes for a
thorough discussion of the properties of this
system. It should be mentioned that a similar
behavior has been observed in other contexts. In
relation to baroclinic instability, Pedlosky and
Frenzen (1980) showed that similar equations
can describe the dynamics of finite amplitude

baroclinic waves in a quasi-geostrophic two-layer
f-plane model. In Lorenz (1980, 1990) and Legras
and Ghil (1985), chaotic behavior is shown to be
emerging in forced-dissipative barotropic and
baroclinic flows.

This system being very sensitive to small
changes in the initial conditions, a small error on
these implies that it is possible to make an accurate
forecast only up to a finite period of time. Predic-
tability can be measured by the time it takes for the
error to grow up to a prescribed level and it usually
varies from case to case because the local error
growth rate does (Lorenz, 1982; Benzi and
Carnevale, 1989). The complex behavior of this
simple dynamical system makes it an ideal tool
to test ideas quickly for anyone with moderate
computer resources. In identical twin experiments,
observations are generated by the model itself and
noise is added (or not) to simulate observational
error.

The impact of chaos on data assimilation will be
studied with the parameter values =10, b=3$

a) 20
10]
><P 04
_w_’V\W/\/VVV\/\/VW\/W\/\/\/\/VW
-20 . .
0 2 4 6 8 10 12 14 16
t
b) 2
10 ]
IS B
-10 ]
20
0 2 4 6 8 10 12 14 16

Fig. 1. Representation of the component X(¢) as a func-
tion of time: (a) Regular case generated from the initial
conditions Z,=(—9.42, —9.34, 28.3), (b) Case with
transition generated from Z,=(-592, —5.90, 24.0).
Data assimilation is performed over the time interval
0 <t <8 and a forecast is made from =8 up to 1 =16.
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and r=28 in the Lorenz model. Identical twin
experiments will be performed and to insure that
observations are on the attractor, the model is
run for some time (5 time units) before picking
up observations. If Z= (X, X,, X3)7, the adjoint
model is given by (4) with

—0 o 0
A= r=X5(1) -1 X\(1) |, (6)
Xa()  Xi(5) b

and the gradient is obtained from (3) with Q,
replaced by its discretized equivalent (see
the Appendix). Two cases were chosen: one for
which the solution is regular over the finite time
interval ¢ € (0, 16) and another that experiences a
transition of regime. They were generated from
initial conditions (—9.42, —9.34, 28.31) and
(—5.92, —5.90, 24.0) respectively and are shown
on Fig. 1. Data assimilation with the adjoint model
technique was performed over the time interval
{0, 8] and the resulting analysis is used to make a
forecast from ¢=8 up to t=16. For these two
cases, observations are taken as the exact solutions
at t=0, 2, 4, 6 and 8. The minimization of J(Z,)
has been performed with both a quasi-newton
algorithm (subroutine EO4KBF from the NAG
library) and a conjugate gradient (subroutine
ZXCGR from the IMSL library).

For the regular case, several experiments were

conducted with different starting points Z, for the
minimization and for Z,=(—8.0, —8.0, 29.0),
Fig. 2 represents the value of J versus the number
of function evaluations as the minimization was
carried on with a conjugate gradient or a quasi-
newton. In the early stages, both algorithms have
a comparable performance. However, in the final
stages, the iterations have brought the analyzed
point in the neighborhood of the true minimum.
Therefore, the quadratic approximation of the
functional becomes more reasonable and the
quasi-newton method is able to estimate the
hessian matrix correctly from the values of the
gradient calculated at different points. Having a
correct estimation of the quadratic part, the quasi-
newton method gains some speed over the con-
jugate gradient method that does not use this
information as efficiently. The convergence was
achieved in both cases and the final value of the
functional was virtually zero (~10~°) so that the
correct initial conditions were recovered perfectly
(to within the truncation order of the numerical
quadrature). It follows then that the forecast made
from this analysis was also nearly perfect over the
forecast time interval. In practice, however, it often
occurs that the process must be stopped when a
maximum number of iterations has been reached.
To see the impact of an imperfect analysis on the
forecast, an analyzed state for which J(Z,) = 0.037
was picked at some point during the minimization
process. Fig. 3 shows the resulting analysis and
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n

Fig. 2. Value of the cost function J(Z,) as a function of iterations for a Powell conjugate gradient algorithm (solid

line) and a quasi-newton algorithm (dashed line).
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Fig. 3. Component X,(¢) of the analysis and the resulting forecast for the regular case. The imperfect analysis is taken
from an intermediate step of the minimization process where J(Z,) = 0.037.

—_

Fig. 4. Representation of the functional J(Z,) for the regular case: Z,= (X, X, X,) was varied such that:
X¥—2<X, <X}¥+2,

XF-2<X,<X}+2,

with X;=X¥ and (X* X X3#)=(—942, —9.34,28.3). Contour intervals are evenly spaced for values of J(Z,)
between 0 and 50.
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Fig. 5. Values of J(Z,) versus X, along a straight line
going through the points

P.=(XF+2, X} +2,X¥)

forecast. Even though the error in the analysis is
not discernable, it results nevertheless in a forecast
error near the end of the forecast period.

Having a nonlinear model, the question of the
existence of multiple minima arises. To give a
picture of J(Z,), the functional was evaluated by
fixing X;3(0) to its true value while X,(0) and X,(0)
varied. From the contour levels of J(Z,) plotted on
Fig. 4, it is apparent that the functional is fairly
quadratic. If one is to use a reasonable first guess,
the minimization converges to the true minimum.
On the other hand, if the first-guess is far away
from the minimum, the method may converge
to a secondary one: this has happened while
experimenting with different starting points. This
may not be apparent on Fig. 4 but an indication of
such a secondary minimum can be seen on Fig. 5

20 1
—=— Exact solution
1 [eeemeeee Analysis and forecast
10 1
-
> 0
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1054 | —— Powell \
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106 - r T T — T T
0 10 20 30 40 50 60 70

Fig. 6. Same as Fig. 2 but for the case with transition.

representing values of J(Z,) along a line going
through the points

P¢=(X1*i2aX2*i2,X3*)

which corresponds to a cross-section along one
diagonal of the region shown on Fig. 4. Since the
phase space has more than one dimension, this
may not be a minimum at all. But even if it were,
this minimum would not be very significant since
the point X; = —7 implies a relative error level of
over 25% in the first-guess and one could argue
that in practice, the first guess would not be that
far from reality. From this first experiment, one
therefore concludes that assimilation with the
ajoint model approach has succeeded in providing
a dependable analysis that leads to an accurate
forecast.

The case with transition however is more of a
test for quadri-dimensional data assimilation and

—esr;

-20 T T MR SN R S SNAS S A B A T |
0 2 4 6 8 10 12 14 16
t

Fig. 7. Same as Fig, 3 but for the case with transition. The imperfect analysis is taken from an intermediate step where

HZo) =0.023.
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can be related to atmospheric events where the
flow configuration experiences a sudden change.
One could think of the formation and dissolution
of a blocking regime or the development of a syn-
optic system through baroclinic instability. As was
pointed out earlier, in both cases the dynamics can
be linked to a chaotic regime similar to what the
Lorenz model exhibits (see Pedlosky and Frenzen
(1982) for baroclinic instability and Legras and
Ghil (1985) for blocking). Using the point ( —3.99,
—7.50, 24.0) as a first guess, Fig. 6 shows the
results of data assimilation for the case with
transition generated with initial conditions ( —5.92,
—5.90, 24.0). Convergence to the right solution
was obtained even though at a much slower rate
than in the previous case. Again the quasi-newton
method is improving the convergence in the latter
stages while the conjugate gradient method has a

comparable performance at the beginning. At the
end of the assimilation, the value of the functional
is nearly zero and the true solution was accurately
recovered. The impact of using a good but not
perfect analysis was looked at by choosing an
analyzed state at some intermediate stage of the
minimization process for which J(Z,)=0.023
which is comparable to what was considered for
the regular case to obtain Fig. 3. The analysis and
the resulting forecast are represented on Fig. 7:
they indicate that this situation is less predictable
than the previous one since for a similar error on
the initial conditions, the forecast ceases to be
accurate sooner than in the regular case.

The most important result for the case with
transition is that convergence to secondary
minima was obtained several times while
experimenting with different starting points for

Fig. 8. Same as Fig. 4 but for the case with transition with

(X* XX X¥)=(-592, —5.90, 24.0).

Contour intervals are evenly spaced for values of J(Z,) between 0 and 50. Values of J(Z,) above 50 are not shown.

Tellus 44A (1992), 1
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Fig. 9. Same as Fig. 5 but for the case with transition
with

(X*, X X#+)=(-592, —5.90, 24.0).

the minimization. To shed some light on this, the
functional was again plotted by holding X;(0)
fixed to its true value while X,(0) and X,(0) were
varied; Fig. 8 shows the resulting contour levels of
J(Z,) with a contour interval identical to the one
used in Fig. 4. Since values above 50 were
discarded on this figure, a more complete picture is
obtained by evaluating the functional on a cross-
section of the region shown on Fig. 8 along the
diagonal going through the points P, defined
earlier (Fig.9). Fig. 8 and 9 show that any mini-
mization algorithm is bound to have problems
because of the very narrow region around the
absolute minimum where the functional can be
well approximated by a quadratic function. There-

r.m.s. error

fore, to obtain convergence a first guess that stands
very close to the true solution should be used. The
contour levels of Fig. 8 show that low values of the
functional can be obtained at points that are not
close to the true minimum. Measuring the error
associated with a solution by || Z(¢) — Z (¢)|| with
Z, the true solution, Fig. 10 shows that the
solution that used point B = (—5.80, —5.80, 24.0)
as initial conditions leads to a more important
error at the end of the time interval than a solution
that used point 4 = (—3.99, —7.50, 24.0) as initial
conditions: the relative position of these two
points is shown on Fig. 11. The result is that the
functional has a lower value at point A than
point B even if this one is closer to the true
solution. Moreover, using B as a first guess leads
to convergence to a secondary minimum (its
projection on the plane defined on Fig. 11 has been
indicated as point C on this figure) while point A
converged to the right one. In fact, convergence to
a secondary minimum never occurred in several
experiments that used first guesses having low
values for the functional.

Since convergence to secondary minima is a
real concern when performing data assimilation
through minimization algorithms, it is worth
looking at what makes the points having low
values of J(Z,) immune to this problem: under-
standing why would give us an edge on picking up
a good first guess. The first argument that comes to
mind is that the data being located on the attractor
of this dynamical system, the problem should

4 5 6 7 8

Fig. 10. Root-mean-square error for two solutions generated from different initial conditions in the case with
transition: A corresponds to the initial conditions (—3.99, —7.50, 24.0) and B to (—5.80, —5.80, 24.0).

Tellus 44A (1992), 1
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Fig. 11. Intersection of the Lorenz attractor with the plane used in Fig. 8. The contour level of low values of J(Z,)
has been represented with larger dots. Points A and B discussed in Fig. 10 have also been indicated while point C
corresponds to the projection of the secondary minimum to which converged a minimization using B as a first guess.

somehow be restricted to points located on it.
While performing data assimilation with a
barotropic shallow water model, Courtier and
Talagrand (1990) pointed out that the constraint
of being on the slow manifold had to be imposed to
obtain a good analysis: in this context, the balance
constraint characterizes the underlying attractor of
the dynamics. Here, it is not possible to impose
that initial conditions be on the Lorenz attractor
or even approximately on it. However, it is
possible to represent this attractor by plotting its
intersection with a plane: this can be done by
running the model for a long period of time (in
climate mode) and marking the points each time
the trajectory intersects a given plane. Employing
the same plane used in Fig. 8, the intersection
of the attractor was plotted on Fig. 11 and the
contour level of low values of the functional was
also indicated on it for reference because it is
representative of those points that would converge
to the true minimum. This contour level is nearly
perpendicular to the attractor therefore implying
that to choose a first guess on the attractor may
not be worth the effort. This shows that the set of
points corresponding to first guesses that lead to
convergence to the absolute minimum can be
different from the attractor associated with the
dynamics.

As was pointed out to the author by Olivier
Talagrand, this feature can be understood by the
fact that in a chaotic dissipative system, the orbits
will simultaneously converge toward the attractor

while diverging on the attractor. Therefore, a per-
turbation of given amplitude along the attractor
will lead to rapid divergence while a perturbation
of similar amplitude but taken in a direction per-
pendicular to it will be damped as the perturbed
solution relaxes back to the attractor. The fact
remains that if it is known that the dynamics pos-
sesses an attractor, the final analysis should be on
it or at least lead to an evolution that is close to it:
this is exactly what happens here since the true
solution lies at the intersection point between the
contour level and the attractor.

3. Impact of observational error on the
accuracy of the calculated gradient

In the following discussion, it will be assumed
that there is no model error but observations Z;
are such that

Z:=Z'+b,

where Z' stands for the true value of Z at time ¢,
while b, represents an unbiased observational error
that is representative of both the measurement and
representativeness inaccuracies. In the preceding
section, observed values were assumed to be exact
so that the functional

1 al t 1
J(Z,) ) E,O (Z(t)—=Z\Z2(t)—Z >
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vanishes when Z, corresponds to the correct
analyzed state at =0 (noted by Z).
By using imperfect data, the functional

N A
=JI(ZO)_(]V—+_1—) Z, <Z(ti)—zi|bi>
i=0
1 N
+N_+—1,-§o <bilb;> 7

and J(Zg) no longer necessarily vanishes.

By cumulating statistics, it is possible to have an
idea of what the observational error is on average.
If restricted to measurement error only, it is
a reasonable assumption to state that b; does
not depend on the atmospheric state and also
that the error involved between two different
measurements are statistically independent. To
assess the impact of this error on the functional, an
ensemble average is made over many experiments
using different sets of measurements for the same
atmospheric case. Therefore for experiment “k”,
the observed values would be

Zu=Z\+by,

so that the true state is always the same. The
ensemble average of (7) is then

1 N
_ b;|b
+N+1i§0<’

J(Zy)= J(Zy)

where the overbar stands for the ensemble average.
At Zy=ZF, J(Z{) does not vanish but is a
measure of the total observational error variance.

The value of VJ is at the heart of most minimiza-
tion algorithms and it is then important to
examine the impact of having imperfect data on its
accuracy. From (3), one gets that

VIZy,)=VI(Z,)+ G’

where

G’“—mZQb (®)

is the error made on VJ due to observational error.

Tellus 44A (1992), 1

Remembering that Q; does not involve the obser-
vations, then

— 2 N ___
G=_'_:Ii§oQ1bx

2 I
=Ny L b=

the error on the observations being assumed
unbiased. Therefore, the ensemble average of VJ
corresponds to its exact value and the gradient is
seen to be unbiased.

Because G'=G'(Z,), it also depends on the
local error growth rate and as a consequence, it is
to be expected that a given b; could lead to a
different error on VJ. From (8), the gradient error
covariance matrix is seen to be

4

GGT= (N+1)2 Z Z 0,b,bT0 9)
=0m=

0

A reasonable assumption about observational
error is that it is uncorrelated in time, an assump-
tion that is also made in the derivation of the
Kalman filter equations (Ghil, 1989). Conse-
quently,

bﬂbz = 5”’” Rﬂ

with §,,,, the Kronecker delta function and R, is
the observational error covariance matrix at time
t,: (9) then boils down to

- 4 N
GO = L QRO (10)
n=0

This relates the gradient error covariance matrix
to R,. The cost of performing this calculation
corresponds to 2K integrations of the adjoint
model with K being the number of model
variables: this can be done by using the adjoint
model alone and can be applied to any model
insofar as its adjoint is available.

This relation is now applied to the Lorenz model
for the two cases studied in Section 2. In all cases
to be described below, R, has been considered to
be diagonal with its diagonal elements D being
equal and the gradient error covariance matrix has
been computed at the point Z,=Z§ where the
true gradient vanishes. Data insertions were
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regularly spaced and occurred at every 0.8 time
units over the time interval [0, 8] and D=0.01.
For the regular case, the result obtained was

0.006 0.010 —0.004
GGT= 0.010 0.023 —0.005 |, (1
—0.004 —0.005 0.005
while for the case with transition,
4.494 6.375 —3.950
GGT= 6.375 9.056 —5.586 (12)
—3950 —5.586 3.504

This reveals that the same observation error does
not have the same impact on the accuracy of the
gradient and this is a consequence of the different
local error growth rates.

The error vartance is obtained from the diagonal
elements of this covariance error matrix and it then
makes it possible to investigate for instance, the
dependence of this error on the quality of the data
and their geographical distribution. For the
Lorenz model, the impact of different strategies on
the accuracy of the gradient is looked at by either
improving the quality of the observations or by
increasing their number. Considering the case with
transition, if the number of data insertions is
increased from 11 up to 41 while keeping the
accuracy fixed (D = 0.01), then

0.519 0.741 —0.449
GGT= 0.741 1.060 —0.638 |,
—0449 —-0.638 0.392

and this leads to a more accurate gradient. On the
other hand, keeping the same number of data
insertions fixed to 11 but increasing the quality of
the observations by setting D =0.001 gives the
result that

0.449 0.638 —0.395
GG = 0.637 0.906 —0.559
—-0395 —0.559 0.350

and the gradient is also improved. However, one
should note that in both cases, the gradient

remains less accurate than it was in the regular
case.

The trace of this covariance matrix gives a
measure on the uncertainty there is on |VJ|| due to
the presence of observational error. Since the
criterion of convergence of minimization algo-
rithms is usually based on the fact that |VJ] is
small enough, it is to be expected that in one
realization, |VJ(Z§)|| would not vanish and the
analyzed state would correspond rather to a point
Z¥* where ||[VJ(Z*)| vanishes but the true
gradient does not. To illustrate this argument,
variational data assimilation with the adjoint
model technique was done with a non-divergent
barotropic model on the sphere, a model that was
used in Talagrand and Courtier (1987) (TC here-
after): their paper gives a complete description of
the adjoint equations altogether with details about
the implementation of the technique in a pseudo-
spectral model. Here, spherical harmonics Y7’
normalized with respect to the inner product

Se>=5- || e didu

are employed with a triangular truncation of order
21 and all harmonics (even and odd) are kept: the
system has therefore 483 degrees of freedom. These
equations were integrated with a leap-frog scheme
and the first timestep is Eulerian: the adjoint of
the discretized scheme (as described in TC) is
used. Observations were kept at every timestep
(At =30 min) and assimilation is performed over a
period of 12 h.

In the first experiment, observations were
generated by integrating the model with the initial
conditions

{2 0)=a¥]+BYS,

for the vorticity field { with a=1.187x 10 %s~!
and f=1x10"s~': as usual, 4 is the longitude
and u = cos 6, 6 being the colatitude. The solution
corresponds to a Haurwitz wave moving with a
phase speed of 9.55° day ~' and this experiment is
very similar to the one reported in TC except for
the fact that only the odd harmonics were kept in
their paper. The minimization of the functional
was performed with the same conjugate gradient
algorithm that was used in Section 2 and the first
guess was chosen to be a random state generated

Tellus 44A (1992), 1
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Fig. 12. Latitude-longitude representation of the vorticity field at =0 as a function of iterations for an assimilation
that used perfect observations at every time step over a 12-h time interval. The domain is such that 0 < 4 < 2x is the
horizontal axis and 0 < u < 1 is the vertical axis.

Tellus 44A (1992), 1
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=0

Fig. 13. Same as Fig. 12 but for the case where observations with a 5% relative error level are used: the field for ¥

is representative of those observations. The last panel shows the configurations of the exact solution at ¢

=0.

Tellus 44A (1992), 1
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with pseudo-random numbers p times 10 ¢ with
—0.5<p<0.5 to fill all spectral components. By
contrast, the first-guess used in TC was a state of
rest. Fig. 12 shows the configuration of the vor-
ticity field at r=0 over the Northern hemisphere
as the iteration went on. After 18 iterations, the
solution was correctly recovered at which point
IVJ| < 0.1 while initially, the norm of the gradient
was bigger by three order of magnitudes.

In a second experiment, these same observations
were contaminated with a random error field
generated with pseudo-random numbers to create
a 5% relative error level with respect to f, the
initial amplitude of the Haurwitz wave. Fig. 13
shows the analyzed state over the Northern
hemisphere as the iteration went on and the first
guess (N =0) corresponds to the observations
used for #=0. If one thinks of the observations as
the best analysis available from a 3D scheme,
these results show that more information can be
extracted from their time evolution by imposing
the constraint that they be dynamically consistent.
Since it is not possible for the model to find initial
conditions that would fit the random noise,
the variational scheme extracts the part of
the information that is dynamically coherent.
However, the uncertainty on the gradient causes
the convergence to occur at point Z* where |[VJ|
vanishes but the true gradient may not. Since the
truth is available in this type of experiment, the
true gradient was calculated: it has been found
that, at Z*, |VJ || ~ 6.6 while |VJ| ~ 0.06. So, had
perfect observations been used, the iteration
process would not have stopped at this point.
A comparison of the final analyzed state against
the exact solution (shown in the last panel of
Fig. 13) shows that although the variational
technique is able to improve upon the 3D analysis,
the final analysis still differs from the truth.

4. Discussion and conclusion
The analysis and gradient error covariances can

be related by making use of the tangent linear
model. Since Z(t;,)— Z'=Q7(Z,— Z}), then

VIZ) =1 T QLQNZo-Zi) =8 (13)

Tellus 44A (1992), 1

The analysis Z,=Z* being defined as the point
where the gradient vanishes, (13) then implies that

N
MZF—Z5)= 3, Qb

i=0
with

M=3 0,07
i=0

Each term of the sum that defines .# is seen to

- correspond to a forward integration of the tangent

linear model followed by a backward integration
of the adjoint model. If .# can be inverted, the
analysis error is

N
Z'=Z¥-Zo=M"" Z Q:b;.

i=0

If the observational error is assumed to be
uncorrelated in time as before, the analysis error
covariance is shown to be

Z,Z,T=(N+1)2

(14)

However for the Lorenz model, .# cannot be
inverted. This is a consequence of the fact that the
action of this operator corresponds to a forward
integration of the tangent linear model followed by
a backward integration of the adjoint model. As
can be seen from (6), the flow in phase space
associated with both of these models has a con-
stant divergence, negative for the tangent linear
model and positive for the adjoint model. There-
fore, a forward (backward) integration of the
tangent linear model (adjoint model) will shrink a
volume element to zero as ¢ — co: this property is
related to the relaxation towards the attractor.
Since .# describes the combined action of these
two integrations, it has to be singular. This can be
verified on the two cases discussed in the preceding
section. For both of them, the observation error
covariance matrix is of the form R, = cI, with I the
identity matrix and c, a constant. It can then be
shown from (10) that

G-t 4

N+12™" (13)
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The determinants of the two matrices given by (11)
and (12) are seen to be vanishingly small and as a
consequence, .# cannot be inverted. However, it is
to be expected that .# is invertible for the inviscid
barotropic model considered in Section 3 since it
preserves volume in phase space in which case
(14) can be used to obtain the analysis error
covariance. Finally, it should be mentioned that in
Lacarra and Talagrand (1988), the linear operator
Q,0T (which is part of the definition of our .#) has
been used to define the error amplification over a
finite time interval.

The interest for quadri-dimensional data
assimilation stems from its ability to extract the
information contained in observations available
over a finite time interval. The temporal aspect of
the analysis raises new questions and the purpose
of this paper was to illustrate some of these by
using the Lorenz model. In Section 2, it has been
shown that the presence of secondary minima can
be a problem in some regions of phase space while
not causing any serious difficulty in other regions.
This shows that the performance of the method
can be case dependent because the local error
growth rate can vary from one situation to another
(Benzi and Carnevale, 1989). This growth rate
being more important for the case with transition,
the same uncertainty in the analysis was seen to
lead to a poorer forecast than what was observed
in the regular case. (see Fig. 3 and 7). In Section 3,
it has been shown how to relate the observation
error covariance matrix to the gradient error
covariance matrix and that the same error on the
observations can have a different impact on the
calculated gradient: this also is a consequence of
the different error growth rates. Convergence of a
minimization algorithm being determined by
having a zero gradient, this incertitude in the
gradient can be thought of as a measure of the
accuracy of the final analysis and the gradient
error covariance matrix provides an estimation of
this uncertainty. Since it can be calculated for any
model once its adjoint is known, it may prove to be
a useful tool in more realistic systems to evaluate
different scenarios proposed in observing systems
simulation experiments.

Other aspects of data assimilation are worth
looking at within the context of simple systems. In
the present paper, all experiments were of the iden-
tical twin type, the model used to generate the
observations being the same as the one employed

to perform the assimilation. It could prove to be
interesting to perform instead a distant cousin
experiment for which the two models would be dif-
ferent: this is an important issue that is related to
some aspects of the spin-up problem. This could be
studied again with the Lorenz model by generating
observations with a different parameter setting
than the one used by the assimilating model.
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6. Appendix

Numerical integration scheme

As in Lorenz (1963), (5) is integrated with a
second order Taylor scheme. With a timestep of
At =0.001, this scheme is sufficiently accurate not
to lead to a significant error after an integration
over 16 time units such as those considered in
Section 2. If Z=(X;, X,, X;)T and using the
short-hand notation of (1), it can be formulated as
a predictor-corrector of the form

Z, 1 =2Z,+ AtF(Z), (A.1a)

Zooi=Zot B FZ)4 R0, (AlD)
with the subscript » referring to evaluation at time
t=n At. This form is valid for any autonomous
dynamical system.

For a non autonomous system such as the
tangent linear model, the second order Taylor
scheme is equivalent to

8Z,,,=06Z,+AtA,8Z,,

At ~
6Z,‘+1=5Z,,+—2-(A,, 6Zn+1 +4,, 0Z,),

Tellus 44A (1992), 1
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with A(t) given by (6) and A,= A(t,). The
linearity allows it to be put in the explicit form
5Zn+ 154 52",

with

qn= 1+ At(An + An+1) + % AtzAnAn»

I being the identity matrix. A solution of the
tangent linear system can therefore be written as
8Z,= QT 6Z,,

with
QiT=‘1i—1qi—2"'¢10

being the discretized form of the resolvent. It then
follows immediately that its adjoint is

T

Qi=ng1T‘”qi—1-
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