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ABSTRACT
We examine the perturbation update step of the ensemble Kalman filters which rely on covariance
localisation, and hence have the ability to assimilate non-local observations in geophysical models. We show
that the updated perturbations of these ensemble filters are not to be identified with the main empirical
orthogonal functions of the analysis covariance matrix, in contrast with the updated perturbations of the
local ensemble transform Kalman filter (LETKF). Building on that evidence, we propose a new scheme to
update the perturbations of a local ensemble square root Kalman filter (LEnSRF) with the goal to minimise
the discrepancy between the analysis covariances and the sample covariances regularised by covariance
localisation. The scheme has the potential to be more consistent and to generate updated members closer to
the model’s attractor (showing fewer imbalances). We show how to solve the corresponding optimisation
problem and discuss its numerical complexity. The qualitative properties of the perturbations generated from
this new scheme are illustrated using a simple one-dimensional covariance model. Moreover, we demonstrate
on the discrete Lorenz–96 and continuous Kuramoto–Sivashinsky one-dimensional low-order models that the
new scheme requires significantly less, and possibly none, multiplicative inflation needed to counteract
imbalance, compared to the LETKF and the LEnSRF without the new scheme. Finally, we notice a gain in
accuracy of the new LEnSRF as measured by the analysis and forecast root mean square errors, despite
using well-tuned configurations where such gain is very difficult to obtain.

Keywords: data assimilation, ensemble Kalman filter, ensemble square root Kalman filter, covariance
localisation, perturbation ensemble update

1. Context

The ensemble Kalman filter (EnKF) has been shown to
be a successful data assimilation technique for filtering
and forecasting in complex chaotic fluids (see Evensen,
2009, and references therein). Thus, it has been used as a
powerful tool for deterministic as well as ensemble fore-
cast of geofluids (Houtekamer et al., 2005; Sakov et al.,
2012). It is based on an unavoidably limited ensemble
size due to the numerical cost of realistic geofluid models.
As a trade-off, the noisy covariance estimates obtained
from this ensemble must be regularised, primarily using
the technique known as localisation. Localisation was
shown to be necessary with a chaotic model whenever the
ensemble size is smaller than the number of unstable and
neutral modes of the dynamics (Bocquet and Carrassi,
2017) and possibly still beneficial for larger ensemble size
(Anderson, 2012).

Localisation assumes that correlations between spa-
tially distant parts of the physical system decrease at a
fast rate with the physical distance, e.g. exponentially. As
a consequence, one can make the assimilation of observa-
tions local or, alternatively, artificially taper distant spuri-
ous correlations that emerge from sampling errors
(Hamill et al., 2001; Houtekamer and Mitchell, 2001). As
a result, two broad types of localisation techniques have
been considered so far: domain localisation and covariance
localisation.

Domain localisation consists of a collection of local
updates, e.g. centred on the grid points using nearby
observations (Houtekamer and Mitchell, 2001; Ott et al.,
2004). These updates can be carried out in parallel since
they are assumed independent. The full updated ensemble
is obtained by assembling these local updates. Moreover,
the transition between the updates of two adjacent
domains can be made smoother by tapering the precision
of the attached observations, which leads to refined�Corresponding author. e-mail: marc.bocquet@enpc.fr
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domain localisation approaches (Hunt et al., 2007;
Nerger and Gregg, 2007). This can reduce the imbalance
generated by assembling this collection of updates to
form the global updated ensemble (Kepert, 2009;
Greybush et al., 2011). Imbalance is defined in this study
as a measure of the distance between the updated ensem-
ble members and the model’s attractor, a discrepancy one
would like to be as small as possible.

The second type of localisation is covariance localisa-
tion which is enforced through a direct tapering of all
sample covariances. This is usually implemented using a
Schur product of the sample covariance matrix with a
correlation matrix with fast decreasing entries with the
distance. The Schur product output is mathematically
guaranteed to be a covariance matrix and, with a proper
localisation correlation matrix, is likely to make the regu-
larised covariance matrix full-rank.

Even though based on the same diagnostic, the two
types of localisation are distinct in their philosophy, and
in their algorithmic and numerical implementation.
Domain localisation does not allow assimilating non-local
observations such as radiances without ad hoc approxi-
mations, but the scheme is embarrassingly parallel by
nature. Covariance localisation is mathematically
grounded in the tapering of the background covariance
only and could hence be seen as a well understood
scheme, but its numerical implementation, relying on a
single global analysis, is much less simple, especially for
deterministic EnKFs. In practice, the two schemes have
been shown to coincide in the limit where the analysis is
driven by the background statistics, i.e. weak assimilation
(Sakov and Bertino, 2011). They could differ otherwise.

Note that a third route for localisation is through the
statistics technique known as shrinkage. It consists in
adding a possibly adaptively tuned full-rank covariance
matrix to the background error covariance matrix (see
Hannart and Naveau, 2014, and references therein). The
approach was successfully tested by Bocquet et al. (2015)
in the case of a hybrid EnKF.

From a theoretical standpoint, the localisation schemes
seem ad hoc in spite of their remarkable practical effi-
ciency. There could be room for improvements based on
theoretical considerations. For instance, localisation can
be made multiscale (Buehner and Shlyaeva, 2015) or
adaptive (Anderson and Lei, 2013; M�en�etrier et al., 2015;
De La Chevroti�ere and Harlim, 2017). However, these
two subjects are not topics of this paper.

In this paper, we would like to revisit the perturbation
update step of the EnKF when relying on covariance
localisation. We especially focus on the local ensemble
square root Kalman filter (LEnSRF). Traditional EnKF
schemes offer a consistent view on the perturbations
which are generated in the analysis and propagated in the

forecast. By consistent, it is meant here that the sample
statistics (mean and covariances) of the analysed and
forecast ensembles are supposed to match those of the
actual analysis and forecast distributions. This consist-
ency in the EnKFs is often approximate as evidenced by
the need for inflation. Our goal is to further improve on
this consistency and offer a more coherent view on the
perturbations in the EnKF.

In Section 2, we recall the principle of covariance
localisation, explain and shed some new light on how the
perturbations are updated. In Section 3, we discuss the
consistency of the perturbation update, and we propose a
new approach for this update. In addition, we discuss the
numerical cost of this approach. In Section 4, we present
numerical results on a simple covariance model as well as
on two low-order chaotic models that show potential ben-
efits of the new scheme. Conclusions are given in
Section 5.

2. Motivation

2.1. Principle of covariance localisation

In this study, the main focus is covariance localisation
within deterministic EnKFs, and in particular the
LEnSRF, defined as the ensemble square root Kalman
filter with covariance localisation. Nonetheless, some of
the results or remarks are likely to be valid for other var-
iants of the EnKF.

The ensemble is denoted by the matrix E of size Nx �
Ne; whose columns are the ensemble members fxigi¼1;:::;Ne

;

which are state vectors of size Nx: The mean of the ensem-
ble is

�x ¼ 1
Ne

XNe

i¼1

xi; (1)

and the normalised perturbations (or anomalies) are

Xi ¼ xi��xffiffiffiffiffiffiffiffiffiffiffiffi
Ne�1

p ; (2)

and form the columns of the normalised perturbation
matrix X of size Nx �Ne: The sample or empirical covari-
ance matrix based on ensemble E is

Pe ¼ XX>; (3)

which is an unbiased estimator of the error covariance
matrix of the normal distribution the perturbations,
seen as random vectors, would be drawn from. The
matrix Pe is of rank Ne�1 at most, and hence for Ne

� Nx is strongly rank-deficient. As a result of sampling
errors, it exhibits spurious correlations between distant
points.
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To fix this, covariance localisation uses a localisation
(i.e. correlation) matrix q of size Nx �Nx and regularises
the background error sample covariance matrix via a
Schur product

B ¼ q � Pe; (4)

defined entry-wise by ½q � Pe�n;m ¼ ½q�n;m½Pe�n;m: If q is
positive definite, Pe is guaranteed to be a positive semi-
definite matrix and hence a covariance matrix (Horn and
Johnson, 2012). In practice B is always full-rank (and
hence positive definite).

2.2. Mean update with regularised covariances

The mean analysis in the EnKF is then typically carried
out using the Kalman gain matrix

K ¼ BH> RþHBH>ð Þ�1
; (5)

where H is the observation operator (or tangent-linear
thereof), and where the regularised B; as defined in
Eq. (4), is used in place of the sample Pe: This is, how-
ever, numerically very costly and usually enforced in
observation space whenever the observations can be seen
as point-wise, i.e. local. Then BH> � qxy � ðPeH>Þ and
HBH> � qyy � ðHPeH>Þ where qxy represents q acting in
the cross product of the state and observation spaces and
qyy represents q acting in the observation space. As a
result, it is common to approximate the Kalman gain
matrix as

K� qxy � PeH>ð Þ Rþ qyy � HPeH>ð Þ
h i�1

: (6)

Note that an alternative way to implement the mean
update is to use the a control variable trick, which is
meant to be used in an hybrid or EnVar context (Lorenc,
2003; Buehner, 2005; Wang et al., 2007), but can also be
used with the LEnSRF (see sections 6.7.2.3 and 7.1.3 of
Asch et al., 2016). Nonetheless, to our knowledge, this
does not simply generalise to perturbation update. Our
focus in this paper is on the perturbation update, which
often discriminates variants of the EnKF. This is dis-
cussed in the following sections.

2.3. Perturbation update of deterministic EnKFs

With the local stochastic EnKF (Houtekamer and
Mitchell, 2001), the perturbation update is exclusively
based on the computation of the gain Eq. (6), which is
applied to each member of the ensemble and the associ-
ated perturbed observations.

The perturbation update with a local deterministic
EnKF is not as straightforward since localisation must
also be enforced in the square root update scheme besides

the mean update. However, there are deterministic
EnKFs where this operation is actually simple. In the
DEnKF (Sakov and Oke, 2008a), which stands for deter-
ministic EnKF but is actually one member of the family,
the deterministic update is an approximation of the
square-root update, which is based on the gain Eq. (6)
only, similarly to the stochastic EnKF. In the local serial
square root Kalman filter (serial LEnSRF), the tapering of
the covariances is applied entry-wise using entries of qxy: The
square-root correction to the gain needed for the perturb-
ation update, for the global as well as for the serial LEnSRF,
is just a scalar and can easily be computed (Whitaker and
Hamill, 2002). Serial EnKFs, however, come with their own
issues, and it is also desirable to have a competitive perturb-
ation update for the EnSRF in matrix form. Both the local
DEnKF and the serial LEnSRF can be seen as approximate
implementations of the LEnSRF. Note that the local ensem-
ble transform Kalman filter (LETKF) of Hunt et al. (2007)
achieves the update in a more straightforward manner, but it
does not rely on background error covariance matrix local-
isation and it uses local domains instead. Let us now recall
how the perturbation update is usually enforced in the global
and then local EnKF.

2.3.1. Global deterministic EnKFs. In the absence of
localisation, the perturbation update of a deterministic
EnKF is rigorously implemented by a transformation on
the right of the prior perturbation matrix (Bishop et al.,
2001; Hunt et al., 2007):

Xa ¼ XTeU with Te ¼ Ie þ Y>R�1Y
� ��1

2; (7)

where Y ¼ HX; Ie is the identity matrix of size Ne �Ne

and Te is of size Ne �Ne: The U matrix can be chosen
arbitrarily provided it is orthogonal of size Ne �Ne and
satisfies U1 ¼ 1; where 1 is the vector of entries 1 of size
Ne; in order for the updated perturbations to be centred
(Livings et al., 2008; Sakov and Oke, 2008b). The
updated perturbation matrix Xa is of size Nx �Ne:

The 1
2 exponent in Eq. (7) denotes the square root of

any diagonalisable matrix with non-negative eigenvalues
that we choose to define as follows. If M ¼ GDG�1;

where G is an invertible matrix and D is the diagonal
matrix containing the non-negative eigenvalues of M;

then M
1
2 ¼ GD

1
2G�1; where D

1
2 is the diagonal matrix con-

taining the square root of the eigenvalues of M: Other
choices would be possible.1

Equation (7) is algebraically equivalent to the left
transform:

Xa ¼ TxXU with Tx ¼ Ix þ PeH>R�1H
� ��1

2; (8)

where Ix is the identity matrix of size Nx �Nx: The
equivalence between Eq. (7) and Eq. (8) is proven in
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section 6.4.4 of Asch et al. (2016). Note that the matrix
Ix þ PeH>R�1H is not necessarily symmetric. However, it
is diagonalisable with non-negative eigenvalues. To see
this, assume for the sake of simplicity that B is positive
definite. Then BH>R�1H is similar (in the matrix sense)
to B�1

2BH>R�1HB
1
2 ¼ B

1
2H>R�1HB

1
2 which is obviously

symmetric positive semi-definite. Hence, BH>R�1H is
diagonalisable with non-negative eigenvalues and Ix þ B
H>R�1H is diagonalisable with positive eigenvalues. The
generalisation to positive semi-definite matrices is given
in Corollary 7.6.2 of Horn and Johnson (2012).

Equation (8), where Tx is of size Nx �Nx; is the update
form which, in this paper, defines the EnSRF. When
observations are assimilated one at a time, the scheme is
called serial EnSRF. The EnSRF is algebraically equiva-
lent and shares the left transform update with the adjust-
ment EnKF (Anderson, 2001).

From now on, we shall omit the rotation matrices U in
Eqs. (7,8) for the sake of clarity. Nonetheless, it should
be kept in mind that these degrees of freedom could be
accounted for.

2.3.2. Local EnSRF. The right-transform Te acts in
ensemble subspace. As a result, there is no way to enforce
covariance localisation (defined in state space) using this
approach. By contrast, the left-transform Tx acts on state
space and can thus support covariance localisation.

An approximate update formula extrapolates Eq. (8)
to the local case using B ¼ q � Pe in place of Pe ¼ XX>

(Sakov and Bertino, 2011):

Xa ¼ TxX with Tx ¼ Ix þ BH>R�1H
� ��1

2: (9)

Similarly to Eq. (8), note that Ix þ BH>R�1H is not
necessarily symmetric. But it is diagonalisable with non-
negative eigenvalues and its square root is well-defined as
per the above definition of the matrix square root. Note
that, contrary to domain localisation (e.g. the LETKF),
Eq. (9) is applied globally and only once per assimilation
cycle. This update defines the LEnSRF.

2.4. Mode expansion of the perturbation left update

It is numerically challenging to apply Eq. (9) to high-
dimensional systems since it requires the inverse square
root of a hardly storable covariance matrix defined in
state space. Part of a solution consists in the mode (i.e.
empirical orthogonal function, EOF) expansion of q � Pe

using a preliminary mode expansion of the climatological
q: This modulation was proposed by Buehner (2005) and
later applied to localisation in the EnKF by Bishop and
Hodyss (2009); Brankart et al. (2011). It is not difficult to
check that the resulting modes are those on which the a

control variable is based (Bishop et al., 2011). The inter-
est of a direct mode expansion of q � ðXX>Þ; in place of
the modulation, and its potential numerical advantage is
investigated in Farchi and Bocquet (2019).

Independently from how it was obtained, this mode
expansion can be written as B�XrX>

r ; where Xr is of size
Nx �Nr: Nr should be large enough to capture the spatial
variability of B and small enough to be computationally
tractable and storable, typically Ne � Nr � Nx:

Considering chaotic low-order models, Bocquet (2016)
has argued that the number of modes Nr should typically
be greater than the dimension of the unstable and neutral
subspace of the model dynamics.

With such a mode expansion, the updated perturbation
matrix reads:

Xa �TxX with Tx ¼ Ix þ XrY>
r R

�1H
� ��1

2
; (10)

where Yr ¼ HXr: This update still seems intractable for
high-dimensional state spaces because Ix þ XrY>

r R
�1H is

still of size Nx �Nx: However, Bocquet (2016) has shown
that this update is algebraically equivalent to a formula
where computations are mostly done in the ensemble (X)
or in the mode (Xr) subspaces:

Xa ¼ TmX with

Tm ¼ Ix�Xr

�
Ir þ Y>

r R
�1Yr

þ Ir þ Y>
r R

�1Yr

h i1
2
��1

Y>
r R

�1H;

(11)

where Ir is the identity matrix of size Nr �Nr: A heuristic
proof has been given in the Appendix B of Bocquet
(2016). For the sake of completeness and because we will
use it again, we propose an alternate but rigorous proof
in Appendix A of the present paper.

This update was later rediscovered in Bishop et al.
(2017) and the principle behind it named Gain Form of
the Ensemble Transform Kalman Filter. It is not difficult
to show that their formula Eq. (25) is actually mathemat-
ically equivalent to Eq. (25) of Bocquet (2016). However,
their formula is prone to numerical cancellation errors as
opposed to Eq. (11).

As proven in Appendix A, we can go further and write
this left update mainly using linear algebra in observation
space as

Xa ¼ TyX with

Ty ¼ Ix�XrY>
r

�
Rþ YrY>

r þR Iy þ R�1YrY>
r

h i1
2

��1

H;

(12)

which is useful if Ny � Nx:

Note that both Eq. (11) and Eq. (12) support an
approximation similar to the DEnKF by Sakov and Oke
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(2008a), which yields:

Xa �X� 1
2
Xr Ir þ Y>

r R
�1Yr

� ��1
Y>

r R
�1HX; (13)

Xa �X� 1
2
XrY>

r Rþ YrY>
r

� ��1
HX; (14)

where Eq. (13) was already proposed in Bocquet (2016)
and Eq. (14) is new. These are useful update formulas
since they avoid the square root and fall back to an
ensemble Kalman gain.

This type of updates can make the LEnSRF numeric-
ally affordable, especially with parallelisation (Farchi and
Bocquet, 2019). It also becomes affordable when com-
bined with an approach based on local domains (�a la
LETKF) by enforcing covariance localisation on a
decomposition of subdomains, or enforcing covariance
localisation on the vertical while domain localisation is
used on the horizontal.

3. A new perturbation update scheme

In Section 2, we have defined the LEnSRF and explained
how it could be implemented. In this section, we focus on
the perturbation update step of the LEnSRF.

3.1. On the consistency of the perturbation update

The regularised background error covariance matrix B ¼
q � ðXX>Þ; which is likely to be full-rank, can be written
in the form B ¼ XrX>

r provided Xr is of size Nx �Nx; i.e.
Nr ¼ Nx: With this B; the theoretical analysis error
covariance matrix

Pa ¼ Ix þ BH>R�1H
� ��1

B (15)

is our best estimation of the posterior uncertainty. Using
B ¼ XrX>

r with Nr ¼ Nx perturbations, then Eq. (15) can
be factorised as

Xa;r ¼ TxXr; (16)

where Tx given by Eq. (9) is a matrix of size Nx �Nx and
Xa,r is the anomaly matrix of the Nx updated perturba-
tions. It is an exact (hence consistent by definition) repre-
sentation of the uncertainty since it is readily checked that

Xa;rX>
a;r ¼ Pa: (17)

Of course, this is only theoretical, since, in practice, we
can only afford to generate and propagate Ne � Nx such
perturbations. Since we look for Ne perturbations that
capture most of the uncertainty of the update, it is tempt-
ing to apply the left transform Tx to X̂r; defined as the
perturbation matrix of the Ne dominant modes (EOFs) of
Xr: Hence, we could propose:

X̂a �TxX̂r; (18)

where X̂a is of size Nx �Ne: It is remarkable that this
formula differs from Eq. (9). On the one hand, Eq. (9)
smoothly operates a left transform on the initial perturba-
tions X so that one would think that it could generate
fewer imbalances compared to a left transform on the
truncated EOFs X̂r: On the other hand, the Frobenius
norm of the difference between the exact posterior error
covariance matrix Eq. (15) and XaX>

a must be, by
construction, larger than the norm of its difference with
X̂aX̂

>
a ; a fact which can also be checked numerically.

Unfortunately, synthetic experiments using a cycled
LEnSRF based on the update Eq. (18) and the L96
model (Lorenz and Emanuel, 1998) show that this update
is ineffective and systematically leads to the divergence of
the filter. This seems contradictory with the fact that this
update captures as much uncertainty as possible, at least
as measured using matrix norms.

The reason behind this apparent paradox is that in a
cycled LEnSRF experiment based on Eq. (18) the local-
isation is essentially applied twice per cycle. Indeed, X̂r

already captures the dominant contributions from a regu-
larised B; hence a first footprint of localisation. The
resulting perturbations would then form an ensemble to
be forecasted. The next cycle background statistics would
be based on this forecast ensemble. The regularisation of
the covariances would then require localisation, once
again. Since localisation by Schur product is not idempo-
tent – unless one uses a boxcar-like q in which case q

would not be a proper correlation matrix – localisation is
applied once too many. That is why Eq. (18) is not fit to
a cycled LEnSRF.

In retrospect, this clarifies why Eq. (9) is well suited to
a LEnSRF: localisation is applied once in each cycle.
This argument also implies that the perturbations should
not be blindly identified with the modes that carry most
of the uncertainty. However, it is tacitly hoped that the
forecast of the ensemble at the next cycle will be
adequately regularised by the localisation matrix q:

The perturbations of the serial LEnSRF, the DEnKF
and the local stochastic EnKF follow the same paradigm.
By contrast, the local update perturbations of the
LETKF are meant to capture most of the uncertainty
within each local domain. Hence, the anomalies of the
forecast ensemble are representative of the main uncer-
tainty modes, as opposed to the other EnKF schemes.
However, even though the local updated perturbations of
the LETKF may offer better samples of the conditional
pdf, this property could eventually fade away in the fore-
cast because of their local validity.

Incidentally, this suggests that the LETKF could be
better suited for ensemble short-term forecast, which
could be investigated in a future study. Numerical clues
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supporting this idea are nonetheless provided at the end
of Section 4.

3.2. Improving the consistency of the
perturbation update

We have just seen that the widespread view on the local
EnKF perturbation update which assumes a low-rank
extraction Xa from Pa with the hope that Xa captures the
most important directions of uncertainty: Pa �XaX>

a ; is
only accurate for the LETKF. For the other schemes
mentioned above, the perturbations do not have to coin-
cide with the dominant modes.

For the LEnSRF update, we believe that it would be
more consistent with how the perturbations are defined
to look for a low-rank perturbation matrix Xa such that

Pa �q � XaX>
a

� �
(19)

instead of employing Eq. (9). Indeed, within Eq. (19), Xa

should not be interpreted as the dominant modes of Pa

but as intermediate objects, perturbations whose short
range covariances are indeed representative of the short
range covariances of Pa; but whose long range covarian-
ces are not used and possibly irrelevant. In the LEnSRF
scheme, the proper covariances will anyway be recon-
structed with the Schur product after the forecast. A solu-
tion Xa of Eq. (19) trades the accuracy of the
representation of the long range covariances (which may
eventually be discarded at the next cycle) for a potentially
better accuracy of the short range covariances. Indeed,
applying q via the Schur product relaxes the long-range
constraints and a better match with Pa can potentially be
achieved for short range covariances.

With the definition

Sq : X 7!Sq Xð Þ ¼ q � XX>ð Þ; (20)

Eq. (19) reads Pa �SqðXaÞ: Our objective is to look for a
solution to the optimisation problem

S?
q Pað Þ ¼ arg min

rank Xð Þ6Ne�1
L Xð Þ;

with L Xð Þ ¼ ln kSq Xð Þ � PakF;
(21)

where jj 	 jjF is the Frobenius matrix norm (the square
root of the sum of the squared entries of the matrix). As

discussed in the following, this minimisation problem
may have several solutions, so that S?

qðPaÞ is in principle
a set. However, we assume here that one of the solutions
from this set is selected so that S?

qðPaÞ actually maps Pa

to one of the solutions Xa of the minimisation problem.
The log-transformation applied to the norm is monoton-
ically increasing and hence leaves the minima unchanged.
This choice will be justified later on.

This problem is similar to the weighted low-rank
approximation (WLRA) problem, which consists in
solving

arg min
rank Að Þ6Ne�1

jjq � A� Vð ÞjjF (22)

for a given target matrix V to be approximated and a
weight matrix q (Manton et al., 2003; Srebro and
Jaakkola, 2003). With the identification Pa 
 q � B and
imposing A to be symmetric positive semi-definite, our
optimisation problem Eq. (21) is seen to belong to the
class of WLRA problems. As opposed to the uniform
case, ½q�n;m 
 1; for which the minimiser of jjXX>�PajjF
simply coincides with the truncated singular value decom-
position of Pa (Eckart-Young theorem), the q-based
problem has no simple solution.2

Hence, we expect that our problem Eq. (21) has no
tractable solution. Note that the literature of the WLRA
problem focuses on the non-symmetric case which would
correspond for our problem to LðX;YÞ ¼ ln jjq � ðXY>Þ�
PajjF: By contrast, our focus is on the symmetric case,
which has less degrees of freedom. Still, it is unlikely to
be amenable to a convex problem. Let us see why.

The minimisation problem Eq. (21) is defined on the
space of the X which is a convex subspace. It is equiva-
lent to minimise LðXÞ or jjSqðXÞ�Pajj2F; which is alge-
braic but nonetheless quartic in X and hence cannot be
guaranteed to be convex. The problem is also equivalent
to finding P of rank smaller or equal to Ne�1 which min-
imises jjq � P�Pajj2F: This function is quadratic in P:
However, the space of the P of rank lower than Ne�1<
Nx is not convex. Hence our problem may have several
or even an infinite number of solutions (a variety). For
instance, there are many redundant degrees of freedom
such as SqðXUÞ ¼ SqðXÞ with U an Ne �Ne orthogonal
matrix, so that the optimisation problem Eq. (21) is

Fig. 1. Sequence of steps of a deterministic EnKF with covariance localisation, where the updated perturbations are obtained using
the new scheme. Note that B and Pa need not be fully computed.
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degenerate. The modified LEnSRF with this new update
scheme follows the paradigm depicted in Fig. 1.

With a view to efficiently minimising LðXÞ; let us com-
pute its gradient with respect to X of size Nx �Ne: The
variation of LðXÞ with respect to X is

dXL Xð Þ ¼ 1
2
jjDjj�2

F dXjjDjj2F ¼ 1
2
jjDjj�2

F dXTr DD>½ �

¼ jjDjj�2
F Tr q � dXXð ÞX>	 


Dþ q � X dXXð Þ>
n o

D
h i

;

(23)

where D ¼ q � ðXX>Þ�Pa: Now, we use the identity

Tr A � Bð Þ 	 C½ � ¼ Tr A 	 B> � Cð Þ½ �; (24)

for any compatible A;B;C matrices and obtain:

dXL Xð Þ ¼ 2jjDjj�2
F Tr dXXð Þ> q � Dð Þ 	 X

h i
: (25)

This yields the matrix gradient

rXL Xð Þ ¼ 2jjDjj�2
F q � Dð Þ 	 X; (26)

i.e. the gradient of LðXÞ with respect to each component of
matrix X: When implementing the new LEnSRF, we provide
the gradient rXLðXÞ as well as the value of LðXÞ to an off-
the-shelf numerical optimisation code, such as L-BFGS-B
(Byrd et al., 1995). Note that the function
LðXÞ may not only have many global minima, but it may also
have many local minima. As a consequence it may not be pos-
sible to find a global minimum with the L-BFGS-B method.

3.3. Parametrised minimisation

Instead of minimising L over X which has redundant
degrees of freedom, we use an RQ decomposition of X;
which is obtained from a QR decomposition (Golub and
van Loan, 2013) of X>:

X ¼ XU; (27)

where U is an orthonormal matrix of size Ne �Ne and X
is a lower triangular (actually trapezoidal) matrix of size
Nx �Ne: Hence, XX> ¼ XX> only depends on X: The
number of degrees of freedom of this parametrisation is
that of X; which is

NeNx�Ne
Ne�1
2

¼ Ne Nx�Neð Þ þNe
Ne þ 1

2
: (28)

A parametrised minimisation can easily be imple-
mented using the function

L Xð Þ ¼ ln kq � XX>ð Þ � PakF (29)

and the gradient

rXL Xð Þ ¼ 2jjDjj�2
F PX 	 q � Dð Þ 	X; (30)

where PX is the projector that sets to 0 the upper tri-
angular part of ðq � DÞ 	X conformally to X; i.e. as in X:

We use this parametrised minimisation in all the
numerical experiments. However, the plain method
using the unparametrised minimisation on X works as
well, although there is no guarantee to find the same
local minimum because of the potential non-convexity
of LðXÞ:

In Appendix B, we address the question of the matrix
norm choice in Eq. (21). In particular, we test the use of
the spectral and nuclear matrix norms, and, more gener-
ally, of the Schatten p-norms. We found that these
choices did not make much of a difference but that the
choice of either the spectral or the nuclear norm, at the
ends of the Schatten range, could lead to inaccurate
numerical results.

Finally, coming back to the definition of LðXÞ; we
have chosen to apply a logarithm function to the norm to
level off the ups and downs of the function. Since the
functions are non-convex, a quasi-Newton minimiser such
as BFGS may behave differently in terms of convergence
and local minima depending on the nature of the trans-
formation. Hence, the log-transformation should not be
considered totally innocuous. In practice, we found using
the log-transform systematically beneficial.

3.4. Forecast of the q � ðXX>Þ representation
Because we have offered a novel view on the posterior
perturbations and how they are generated in the analysis,
we now need to examine how the forecast step of the
scheme is affected by this change of standpoint. If not,
there would be a risk of breaking the consistency in the
forecast step of the cycle.

As previously explained at the end of Section 3.1, an
asset of the LETKF approach is that the updated per-
turbations represent the dominant modes of the poster-
ior error covariance matrix Eq. (15). Hence, the
forecast uncertainty must be approximated by the fore-
cast of these modes. Nonetheless, by construction, the
statistics of these modes before or after forecasting are
only valid on local domains, i.e. for short spatial
separations.

By contrast, with the new LEnSRF scheme, recognising
that the posterior error covariance matrix is q � ðXaX>

a Þ
makes forecasting more intricate. This representation
q � ðXaX>

a Þ is meant to model statistics valid for larger
spatial separations. How would one forecast this repre-
sentation of the posterior error covariance matrix?

With the assumption that the error dynamics are linear,
which would only be valid on short time scales, Bocquet
(2016) has proposed a way to forecast q � ðXaX>

a Þ: First,
the Xa are assumed to be genuine physical perturbations
that are forecasted by the tangent linear resolvent Mkþ1:k

from time tk to time tkþ1:
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X kþ1ð Þ
a ¼ Mkþ1:kX kð Þ

a : (31)

The tangent linear modelM0
k at tk is defined by the expan-

sion of the resolvent: Mkþ1:k ¼ IþM0
kðtkþ1�tkÞ þ oðtkþ1�tkÞ:

Second, the localisation matrix should be made time-
dependent and satisfy – in the time continuum limit – the
following Liouville equation:

@vec qð Þ
@t

¼ K; vec qð Þ� �
; K ¼ M0

t � Iþ I� M0
t

� �>; (32)

where vec qÞ is the vectorised q; a vector of size N2
x whose

entries are those of q and � is the Kronecker product
between two copies of the state space.

In the case where the dynamics can be approximated as
hyperbolic, and in the limit where space is continuous, a
closed-form equation can be obtained for qðx1; x2; tÞ (see Eq.
(A14) of Bocquet, 2016). If diffusion is present, there is no
such closed-form equation. See also Kalnay et al. (2012);
Desroziers et al. (2016) who have considered this issue in
other contexts.

The key point is that in practice and for moderate
forecast lead times, q can roughly be assumed to be
static. This is what will be used in the numerical experi-
ments of Section 4. For larger tkþ1�tk; one could assume
at the next order approximation that the localisation
length used to obtain the prior at tkþ1 is larger than the
one used in the perturbation update new scheme at tk,
because of an effective diffusion either generated by genu-
ine diffusion or by averaged mixing advection (as stressed
in the Appendix A of Bocquet, 2016).

This suggests that q � ðXfX>
f Þ; obtained from the fore-

cast perturbation matrix Xf from Xa; is an acceptable
approximation of the forecast error covariance matrix.

3.5. Numerical cost of computing the gradient and
the cost function

In this section, we analyse the cost of computing the cost
function and the gradient. Indeed, both would be required
by a quasi-Newton minimiser and both involve Pa: In the
following, q will be assumed either sparse or homogeneous.
These are sine qua none conditions for the feasibility of
covariance localisation with high-dimensional models.

3.5.1. Bottlenecks. The cost function LðXÞ requires
computing

jjq � XX>ð Þ�Pajj2F
¼ jjq � XX>ð Þjj2F þ jjPajj2F�2Tr q � XX>ð ÞPa

	 

¼ Tr q � XX>ð Þ q � XX>ð Þ � 2Pa

� �	 

þ jjPajj2F

¼ Tr XX>q � q � XX>ð Þ � 2Pa
� �	 


þ jjPajj2F
¼ Tr X>q � q � XX>ð Þ � 2Pa

� �
X

	 

þ jjPajj2F:

(33)

As a consequence, the cost of evaluating LðXÞ is essen-
tially driven by the evaluation of

q2 � XX>ð Þ 	 X�2 q � Pað Þ 	 X; (34)

where q2 ¼ q � q: The gradient Eq. (26) unfolds as

rXL Xð Þ ¼ 2jjDjj�2
F q2 � XX>ð Þ 	 X� q � Pað Þ 	 X
	 


: (35)

Thus, we need to consider the cost of evaluating both
terms in the right-hand side. The normalising factor jjDjj2F
coincides with Eq. (33).

Hence, for both the cost function and its gradient, we
need to evaluate a first term in the form q2 � ðXX>Þ 	 X;
and a second term in the form ðq � PaÞ 	 X:

3.5.2. Efficient evaluation. It can be shown that

q � XX>ð Þ 	 v ¼
XNe

i¼1

Xi � q 	 Xi � vð Þ½ �; (36)

where X is a matrix of size Nx �Ne and v a vector of size
Nx; Xi represents the i-th column of X: This can easily be
shown by writing the matrix and vector indices explicitly
(see e.g. Desroziers et al., 2014).

The numerical complexity of Eq. (36) is:
i. If q is banded with a bandwidth of Nb : OðNeNxNbÞ:

Hence, the numerical complexity of computing the
first term of Eqs. (34,35) is OðN2

eNxNbÞ in this case.
ii. If q represents homogeneous correlations,

corresponding to an invariance by translation:
OðNeNx lnNxÞ: Hence, the numerical complexity of
computing the first term of Eqs. (34,35) is
OðN2

eNx lnNxÞ in this case.
Let us now consider the complexity of computing the

second term. Assuming P is entirely known, we have

q � P 	 v½ �n ¼
X
m

q½ �n;m P½ �n;m v½ �m ¼
X
m

P½ �n;m qn � v½ �m
¼ Pnqn � v;

(37)

where qn ¼ ½q�?;n and Pn ¼ ½P�n;?:
If q is banded, then the cost of the evaluation of

½q � P 	 v�n is OðNbÞ; so that the cost of evaluating
q � P 	 v is OðNxNbÞ and the cost of evaluating q � P 	 X is
OðNxNbNeÞ: This cost is acceptable, i.e. it does not
departs much from OðNxÞ: However, it does not account
for the cost of evaluating P; which is the real issue when
one considers Pa:

3.5.3. Mode expansion estimation of Pa. If we assume
that we have extracted Nr modes stored in X̂a such that
Pa � X̂aX̂

>
a (the Nr largest EOFs of Pa), then the second

term of Eqs. (34,35) can be written q � ðX̂aX̂
>
a Þ 	 X which

can also be computed using Eq. (36) since, typically,
Ne6Nr � Nx: The cost of obtaining X̂a is the subject of
Farchi and Bocquet (2019). Still assuming that we have
X̂a such that X̂aX̂

>
a �Pa; the numerical complexity of
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computing the second term of Eqs. (34,35) becomes OðNe

NrNxNbÞ (OðNeNrNx lnNxÞ) in case (i) (case (ii)), respect-
ively. However, note that these computations can be
embarrassingly parallelised, easily alleviating the cost by
a factor of Ne or Nr on a parallel computer.

Note that Eqs. (9, 10, 11) may be irrelevant in comput-
ing the required X̂a since they do no strictly represent a
mode expansion of Pa: Instead, a systematic, variance-
driven, expansion of Pa; as studied in Farchi and
Bocquet (2019) would be required. The alternative is to
use the modulation by Bishop and Hodyss (2009). But it
could yield a substantially larger Nr and might be numer-
ically costly.

3.5.4. Local evaluation of Pa. If the observations are
assumed to be local, i.e. each one of them is only corre-
lated to nearby model variables, then the main diagonals
of Pa can be estimated using local approximations, in a
way similar to the strategy followed by the LETKF.
Indeed, the LETKF is able to estimate rows or columns
of Pa using local analyses. Denoting Pa

n 
 ½Pa�n as the n-
th column of Pa; one has

Pa
n ¼ XP̂

a
nX

>
h i

n
(38)

where P̂
a
n ¼ ðIe þ Y>R�1

n YÞ�1 is the analysis error covari-
ance matrix in ensemble space at site n and where R�1

n is
the tapered precision matrix with respect to site n.

Hence, the evaluation of Pa
n is of complexity OðNbN2

e

þN3
e Þ; so that the evaluation of the entries of Pa required

in the evaluation of q � Pa is OðNxNbN2
e Þ; and a factor

less if parallelisation is enforced.
Of course, one of the primary reasons for using covari-

ance localisation is its ability to assimilate non-local
observations. Hence, the assumption of locality made
here defeats one of the key purpose of using covariance
localisation. Nonetheless, we shall see that even with local
observations, the update scheme developed in Section 3.2
can be beneficial.

4. Numerical experiments

4.1. Properties of the new perturbations

At first, we are interested in comparing the shape of the
updated perturbations from a standard scheme compared
to those of the new scheme. We also wish to explore how
much can LðX?Þ be rendered small, i.e. if there exists X?

such that q � ðX?X>
? Þ�Pa: To that the end, we first con-

sider a (random) Gaussian model of covariance B over a
periodic one-dimensional domain for which Nx ¼ 400:
The vector r of the standard deviations of B is obtained
from a random draw from a log-normal distribution
with Gaussian covariance matrix of correlation length

Lv ¼ 10: The correlation matrix C associated to B is built
from the piece-wise rational Gaspari–Cohn (Gaspari and
Cohn, 1999) function (hereafter referred to as the GC
function) with correlation length parameter Lc ¼ 10:
From these definitions, we have B ¼ RCR where R ¼
diagðrÞ is the diagonal matrix of the standard deviations.

We compare the shape of Ne ¼ 8 perturbations, whose
sample covariance matrix may be regularised using a cor-
relation matrix q built with the GC function with a local-
isation length parameter Lq ¼ 10: The perturbations are
generated by
i. random draws Xe from the covariance matrix B: We

associate to them the sample covariance matrix
Pe ¼ XeX>

e and its regularised counterpart
Pe
q ¼ q � Pe;

ii. extracting the main Ne modes, X̂ of B: We associate
to them the sample covariance matrix P̂ ¼ X̂X̂

>
; and

its regularised counterpart P̂q ¼ q � P̂;
iii. extracting Ne modes using the new scheme,

X? ¼ S?
qðBÞ: We associate to them the sample

covariance matrix P? ¼ X?X>
? ; and its regularised

counterpart P?
q ¼ q � P?: The starting point of the

minimisation (first guess) is chosen to be X̂:

Figure 2 displays, for a single realisation of the covari-
ance model, the true covariance model B; the sample
covariance matrices Pe; P̂;P?; and the regularised sample
covariance matrices Pe

q; P̂q and P?
q:

For the same realisation, Fig. 3 displays the perturba-
tions Xe; X̂; X?: We also consider a second optimal solu-
tion where the first guess is Xe; which yields another set
of perturbations, X� in order to investigate the depend-
ence on the starting point of the minimisation.

It is clear from Fig. 2 that P? seems unphysical with
rather long-range correlations, but that P?

q is, as a result
of its construction, a remarkably close match to B: P̂
seems a rather good approximation of B: However, it is
clear that P̂q has a thinner structure along the diagonal
than B; which can be seen as a manifestation of the dou-
ble application of localisation. These visual impressions
on a single realisation are confirmed by computing the
Frobenius norm of the difference between the true covari-
ance matrix B and either the sample covariance matrix or
the regularised sample covariance matrix. The norm is
averaged over 103 realisations. The results are reported in
Table 1. In particular, either P?

q or P�
q are a close match

to B; and their residual discrepancy to B as measured by
these matrix norms are very small and similar, though
not identical.

As seen in Fig. 3 the perturbations X̂ are rather local
and peaked functions, which could be expected since
they represent the first EOFs of B: The perturbations
X? obtained with the new scheme starting with X̂ are
much broader functions with a larger support. This is
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due to the weaker constraints imposed on these modes.
However, they remain partially localised, in that they
partly vanish on the domain. The perturbations X�
obtained with the new scheme but starting with Xe are
also broad functions. However, as opposed to X?; they

do not partially vanish, and are barely local. This
shows that SqðBÞ indeed represents a set of potentially
distinct solutions and that the solution to which the
minimisation converges captures traits of the starting
perturbations.

Fig. 2. Density plots of the covariance matrices discussed in the text, except for P� and P�
q: The raw sample covariance matrices are

on the left, while the regularised (by localisation) sample covariance matrix are on the right. The true covariance matrix (B) cannot be
visually discriminated from P?

q (bottom-right corner).

10 M. BOCQUET AND A. FARCHI



4.2. Accuracy of the scheme

4.2.1. Lorenz–96 model. The performance of the new
scheme is tested in a mildly nonlinear configuration of
the discrete 40-variable one-dimensional Lorenz–96 (L96)
model (Lorenz and Emanuel, 1998), with the standard
forcing F¼ 8. The corresponding ordinary differential
equations defined on a periodic domain are for
n ¼ 1; :::;Nx ¼ 40 :

dxn
dt

¼ xnþ1�xn�2ð Þxn�1�xn þ F: (39)

where xNxþ1 ¼ x1;x0 ¼ xNx and x�1 ¼ xNx�1: These equa-
tions are integrated using a fourth-order Runge–Kutta
scheme with the time step dt ¼ 0:05 in L96 time unit.

We consider twin experiments where synthetic observa-
tions are generated from the true model trajectory every
Dt ¼ 0:05: The observation operator is chosen to be
H ¼ Ix; in particular, the model is fully observed. The
observation errors are Gaussian with distribution Nð0;RÞ
and observation error covariance matrix R ¼ Ix: A sparse
observation network configuration will be studied in
Section 4.3.

We test the following data assimilation schemes:

i. The standard LETKF as defined by Hunt
et al. (2007).

ii. The LEnSRF as defined in Section 2.3.2. The Tx

matrices are computed exactly in this low-order
setup. Section 2.4 would be used for higher
dimensional models.

iii. The new LEnSRF with the new updating scheme.
The Pa matrices are computed exactly in this low-
order setup. The strategies defined in Section 3.5
would be used for higher dimensional models. We
choose to start the minimisation of LðXÞ from the
background perturbations, the natural
incremental standpoint.

When Ne�1614; which corresponds to the size of the
unstable and neutral subspace of this model, localisation
is mandatory to avoid divergence of the filters (Bocquet
and Carrassi, 2017). The localisation function used to
build the localisation matrix for covariance localisation
(LEnSRF) or for tapering the observation error precision
matrix (LETKF) is the GC function. In order to achieve
a good (though approximate) match between the LETKF
and the LEnSRF, the tapering of the perturbations in the
LETKF, known to be equivalent to the tapering of the

Fig. 3. Plot of the Ne ¼ 8 perturbation sets: Xe; X̂;X? and X�; with respect to the grid-point index.
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precision matrix, is carried out using the square root of
the GC function (Sakov and Bertino, 2011). The perform-
ance of the algorithms are mainly assessed by the time-
averaged root mean square error (RMSE) between the
analysis and the truth. The multiplicative inflation (in the
range k 2 ½1; 1:08�), which is applied to the prior pertur-
bations, and the localisation radius (in the range r 2
½4; 38� sites) are optimally tuned so as to yield the lowest
RMSE. Random rotations are applied after each update
(Sakov and Oke, 2008b). It does marginally improve the
RMSE scores for large values of Ne:

For each configuration, 10 data assimilation experi-
ments are run. Each run is 2� 104 cycle-long after a
spin-up of 2� 103 cycles. All statistics are averaged over
these 10 runs. The results are displayed in the left column
of Fig. 4.

First, the LETKF and the LEnSRF show similar
RMSEs, and optimal inflation for all ensemble sizes, but
the LETKF has the edge for both the RMSE and the
inflation. The optimal localisation lengths for the three
schemes are similar, in particular thanks to the approxi-
mate correspondence between the way the observation
precision matrix is tapered in the LETKF and the way
the background error covariance is tapered in the
LEnSRF. Nonetheless the localisation length of the trad-
itional LEnSRF is smaller than the other two EnKFs,
especially for larger ensemble sizes.

Second, the new LEnSRF with the new update shows
lower RMSEs, and significantly lower optimal inflation
than the other two schemes. The improvement in the
RMSE is in the range 3%�6%; which is significant in
these very well-tuned and documented configurations,
where such gain is very difficult to obtain.

Focusing on the multiplicative inflation requirement,
we have computed the RMSE as a function of the infla-
tion, with the localisation length optimally tuned so as to
minimise the RMSE, for three ensemble sizes Ne ¼
4; 8; 16: The results are plotted in the left column in
Fig. 5.

It shows that the requirement of the new LEnSRF for
inflation is actually very small. In the case Ne ¼ 8; 16
inflation is barely needed, while the extreme case Ne ¼ 4
does show a need for inflation but much smaller than

that of the LEnSRF and LETKF. This points to the
robustness of the new LEnSRF.

By construction, SqðS?
qðPaÞÞ as implicitly relied upon

in the new LEnSRF is a better match to Pa than SqðXaÞ
where Xa is defined by Eq. (9) as used in the LEnSRF.
This might explain the lesser requirement for multiplica-
tive inflation.

We speculate that this lesser need for multiplicative
inflation in the new LEnSRF may also be interpreted as
a reduced imbalance of the updated perturbations. If
true, this implies that for the L96 model in this standard
setup, the residual inflation required in the LETKF and
LEnSRF does not so much originate from the sampling
errors but from the imbalance generated by localisation.
This, however, can only be validated on physically more
complex, 2� or 3�dimensional models, beyond the scope
of this paper.

4.2.2. Kuramoto–Sivashinsky model. We have performed
similar experiments with the Kuramoto–Sivashinsky (KS)
model (Kuramoto and Tsuzuki, 1975, 1976; Sivashinsky,
1977). It is defined by the partial differential equation

@u
@t

¼ �u
@u
@x

� @2u
@x2

� @4u
@x4

(40)

over the domain x 2 ½0; 32p�: As opposed to the L96
model, the KS model is continuous though numerically
discretised in Fourier modes. It is characterised by sharp
density gradients so that it may be expected that local
EnKFs are prone to imbalance. We have chosen
Nx ¼ 128 modes, corresponding to Nx ¼ 128 collocation
grid points. The model is integrated using the ETDRK4
scheme (Kassam and Trefethen, 2005) with the time step
dt ¼ 0:50 in time unit of the KS model. Synthetic obser-
vations are collected every Dt ¼ 1 on all collocation grid
points. The observation operator is chosen to be H ¼ Ix;
in particular, the model is fully observed. The observation
errors are Gaussian with distribution Nð0;RÞ and obser-
vation error covariance matrix R ¼ Ix: Like for the L96
model experiments, the localisation matrix used in either
the LEnSRFs or the LETKF is built from the GC func-
tion, and random rotations are applied after each update.
The performance of the algorithms are assessed by the
time-averaged analysis RMSE as well. The multiplicative
inflation (in the range k 2 ½1; 1:16�) and the localisation
radius (in the range r 2 ½10; 80� sites) are optimally tuned
so as to yield the best RMSE.

For each configuration, 10 data assimilation experi-
ments are run. Each run is 2� 104 cycle-long after a
spin-up of 2� 103 cycles. All statistics are averaged over
these 10 runs. Note that for Ne�1614; which corresponds
to the size of the unstable and neutral subspace of this
model, localisation is mandatory to avoid divergence of

Table 1. Averaged Frobenius norm that measures the
discrepancy between the target covariance matrix B and several
raw (first row) or regularised (second row) sample error
covariance matrices.

Norm Pe P̂ P? P�

jj � �BjjF 194 50 331 335
jj�q�BjjF 49 49 0.05 0.06

For the sake of comparison note that, on average, jjBjjF ¼ 87:
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the filters. The results are displayed in the right column
of Fig. 4.

The results are very similar to those of the L96 model.
The LEnSRF with the new update scheme outperforms
the other two schemes, with a much lower need for infla-
tion, and optimal localisation lengths similar to that of
the LEnSRF without the new update scheme. For this

model, the optimal localisation length for the LETKF is
however larger than for both LEnSRFs.

The requirement for multiplicative inflation is further
studied similarly to the L96 case. The right column of Fig. 5
shows the RMSE as a function of multiplicative inflation for
optimally tuned localisation length and for Ne ¼ 4; 8; 16:
Again, it shows that the need for inflation is substantially

Fig. 4. Comparison of the LETKF, the LEnSRF and the LEnSRF with the new update scheme, applied to the L96 model (left
column) and to the KS model (right column). The RMSE, optimal localisation and optimal inflation are plotted as functions of the
ensemble size Ne:
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reduced and not really needed for Ne ¼ 8; 16; and even
Ne ¼ 4; demonstrating the robustness of the new LEnSRF.

4.3. Sparse and infrequent observations

Localisation schemes can behave differently in pres-
ence of sparse and inhomogeneous observations.

Moreover, we have conjectured that the new pertur-
bations update scheme could generate an ensemble
with less imbalance (closer to the attractor), which
could be evidenced with longer forecasts in the
EnKF than those considered so far. Hence, in this
section, we consider:

Fig. 5. Time-averaged RMSE as a function of the multiplicative inflation, the localisation length being tuned so as to minimise the
RMSE. The L96 results are displayed on the left panels while the KS results are shown on the right panels, for Ne ¼ 4; 8; 16: An absent
marker means that at least one of the 10 sample runs has diverged from the truth.
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i. A first set of experiments where the state vector
entries are uniformly and randomly observed with a
fixed density Ny=Nx; which is varied from 0.25 to 1.
Specifically, at each observation time, Ny grid cells
are randomly selected (without replacement) over the
total Nx grid cells and the observation operator H
directly yields the value of the state vector at each of
these grid cells. The observations are collected every
Dt ¼ 0:05 time unit.

ii. A second set of experiments where the observations are
spatially densely observed (H ¼ Ix) but with a fixed
time step which is varied from Dt ¼ 0:05 to the much
less frequent Dt ¼ 0:40: For such long forecast, the
more accurate local iterative ensemble Kalman filter
(IEnKF) would yield better RMSEs (Bocquet, 2016),
but applying the new update scheme to the IEnKF with
localisation is outside the scope of this paper.

We choose to focus on the L96 model and an ensemble
size of Ne ¼ 8 and R ¼ Iy: In both experiments, the local-
isation length is optimally tuned so as to minimise
the RMSE.

For the first set of experiments, we plot in Fig. 6 the
time-averaged analysis RMSE (left panel) and the opti-
mal inflation (right panel) required to minimise this
RMSE as a function of the fixed density of observations
Ny=Nx; for the three EnKFs considered in the previous
experiments. The localisation length is optimally tuned so
as to minimise the RMSE.

The results are very similar to those obtained in the
previous subsection: the new LEnSRF scheme yields a
typical 5% improvement in the RMSE, while using a
significantly lower multiplicative inflation. In the left
panel of Fig. 8, the RMSEs of the three schemes for
Ne ¼ 8;Dt ¼ 0:05 and Ny=Nx ¼ 0:50; are plotted as a

function of the multiplicative inflation, while the localisa-
tion length is optimally tuned so as to minimise the
RMSE. Again, this emphasises the little need for multi-
plicative inflation of the new LEnSRF.

For the second set of experiments, we plot in Fig. 7
the time-averaged RMSE (left panel) and the optimal
inflation (right panel) required to minimise this RMSE as
a function of the time interval between observations Dt;
for the three considered EnKFs. Again, the new LEnSRF
yields smaller RMSEs than the classical LEnSRF and the
LETKF. As Dt increases, the multiplicative inflation
required to compensate for the error generated by sam-
pling errors increases too. This is known to be due to the
increased nonlinearity of the forecast (Bocquet et al.,
2015; Raanes et al., 2019). The optimal multiplicative
inflation required by the new LEnSRF does increase with
Dt but remains significantly smaller than the one required
by the other two EnKFs. Differently from the previous
numerical experiments, the LETKF outperforms the clas-
sical LEnSRF and its RMSE curve gets closer to that of
the new LEnSRF with larger Dt: This supports our claim
made in Sect. 3.1 that the LETKF might generate better
forecast ensembles.

In the right panel of Fig. 8, the RMSEs of the three
schemes for Ne ¼ 8;Dt ¼ 0:20 and Ny=Nx ¼ 1; are plotted
as a function of the multiplicative inflation, while the
localisation length is optimally tuned so as to minimise
the RMSE. This shows that the new LEnSRF can yield
good RMSE scores even with small inflation factors and
for longer forecasts.

We have also computed the ratio of the analysis
RMSE over the ensemble spread, as Dt is increased, the
multiplicative inflation and localisation length being
tuned so as the minimise the RMSE. The new LEnSRF

Fig. 6. Comparison of the LETKF, the LEnSRF and the LEnSRF with the new update scheme, applied to the L96 model, for a fixed
ensemble size Ne ¼ 8 and a fixed observation time step Dt ¼ 0:05: The RMSE (left panel) and the optimal inflation (right panel) are
plotted as functions of the observation density Ny=Nx:
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and the LETKF behave quite similarly with a ratio pro-
gressively increasing from 1 to 1.10 when Dt goes from
0.05 to 0.40. Quite differently, the classical LEnSRF
shows a ratio that increases from 1 to 1.30 when Dt goes
from 0.05 to 0.40. Again, this supports the idea that the
forecast ensembles of the new LEnSRF and the LETKF
are of better quality than those of the classical LEnSRF.

Note that we have also considered time-averaged fore-
cast RMSE and spread for a range of forecast lead times.
They follow the same trend as the analysis RMSE and
analysis spread but are progressively amplified with
increasing lead time.

All of these experiments have also been conducted with
the KS model. The results are qualitatively very similar
and yield the same conclusions for both the sparse and
infrequent observation experiments.

5. Conclusions

In this paper, we have looked back at the perturbation
update scheme in the EnKFs based on covariance localisa-
tion. We have argued that updated perturbations in the
local EnKFs based on covariance localisation do not repre-
sent the main modes of the analysis error covariance matrix,
in contrast to the updated perturbations of the LETKF. In
particular, we have focused on the LEnSRF. We have
explained why Eq. (9) still is, on theoretical grounds, a
good substitute for generating these perturbations.

Using these considerations, we have proposed a per-
turbation update scheme potentially more consistent in
the sense that the perturbations X are related to the error
covariance matrix by P� q � ðXX>Þ throughout the
EnKF scheme. It consists in getting one solution of the
minimisation problem Eq. (21). The updated

Fig. 8. Time-averaged RMSE for the L96 model as a function of the multiplicative inflation, the localisation length being tuned so as
to minimise the RMSE in the two configurations where the observations are sparser (Ny=Nx ¼ 0:50; left panel) and where the
observations are infrequent (Dt ¼ 0:20; right panel). Ne ¼ 8 in both configurations.

Fig. 7. Comparison of the LETKF, the LEnSRF and the LEnSRF with the new update scheme, applied to the L96 model, for a fixed
ensemble size Ne ¼ 8 and a fully observed model. The RMSE (left panel) and the optimal inflation (right panel) are plotted as functions
of the observation time step Dt:
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perturbations are expected to be more accurate in form-
ing short spatial separation sample covariances because
less constraints are exerted on large separation sample
covariances. Since we can compute the gradient of the
function to be minimised, the solution can be obtained
using an off-the-shelf quasi-Newton algorithm. The evalu-
ation of the function and its gradient requires knowledge
of q � Pa; hence a partial knowledge of Pa; which is one
difficulty of the method. Depending on the problem, its
geometry and dimension, such knowledge could be
obtained through mode expansion or through local esti-
mations of Pa:

We have tested this idea and defined a new LEnSRF
with the new perturbation update scheme. We have com-
pared it numerically to the LETKF and to a vanilla
LEnSRF based on an implementation of Eq. (9), using
two low-order one-dimensional models: the discrete 40-
variable Lorenz–96 model and a 128-variable spectral dis-
cretisation of the continuous Kuramoto–Sivashinsky
model. We have shown that for both models, the require-
ment for residual multiplicative inflation still needed in
spite of localisation is much weaker with the new
LEnSRF than with both the LETKF and the LEnSRF.
For large enough ensemble sizes, the new LEnSRF actu-
ally performs very well without any inflation. This weaker
requirement for inflation stems from a better consistency
of the analysis error covariance matrix as inferred by the
updated perturbation to the actual one. We conjecture
that it could be physically interpreted as a much weaker
imbalance generated by the new update scheme.
Moreover, there is an accuracy improvement of up to 6%
in the analysis RMSE in mildly nonlinear conditions,
which is significant in these very well-tuned configura-
tions. The RMSE/spread score is shown to be closer to 1
for the LETKF and the new LEnSRF than for the van-
illa LEnSRF. These results have been confirmed and fur-
ther strengthened in sparse and infrequent observation
network configurations.

We plan on testing this new scheme on two-dimen-
sional models and more sophisticated physics. We also
plan to study the potential benefit of such update scheme
in an hybrid setup (i.e. using hybrid covariances).
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NOTES

1. There are actually two main definitions of a matrix square
root. The main one in mathematics defines a square root of

A as a solution B of B2 ¼ A: An alternate definition,
sometimes used in geosciences and which gave its name to
the square root filters, is B defined as a solution of
BB> ¼ A: In both cases, the solution is usually not being
unique. Moreover, these definitions are incompatible so
that we have to make a clear choice. The choice that we
make (i) complies with the mathematical definition and (ii)
unambiguously select one solution when there at least one.

2. It is actually known to be NP-hard.
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Appendix A: left-transform update in
perturbation space and in observation space

In this appendix, we (i) give an alternate and rigorous
derivation to the heuristic one proposed in appendix B
of Bocquet (2016), (ii) re-derive Eq. (11), (iii) proves
Eq. (12) and (iv) shows how this latter result
generalises the filter formalism developed in
Anderson (2003).

Let A be a matrix of size Nx �Ne and B be a matrix
of size Ne �Nx: For any z 2 C which is an eigenvalue of
neither AB nor BA; we have the identity:

zIx � ABð Þ�1 ¼ 1
z

Ix þ A zIe � BAð Þ�1B
n o

; (A1)

which can be straightforwardly proven by showing
that the product of the right-hand side with the
inverse of the left-hand side is Ix and the product of
the inverse of the left-hand side with the right-hand
side is Ix:

Let f be a function such that fð0Þ ¼ 1; and which is
analytic in a connected domain D of contour C in the
complex plane C which encloses the eigenvalues of both
AB and BA: Define gðxÞ ¼ ðfðxÞ�1Þ=x: We have

f ABð Þ ¼ Ix þ f�1ð Þ ABð Þ

¼ Ix þ 1
2pj

ð
C
f � 1ð Þ zð Þ zIx � ABð Þ�1dz

¼ Ix þ 1
2pj

ð
C
f � 1ð Þ zð Þ 1

z
Ix þ A zIe � BAð Þ�1B
n o

dz

¼ Ix þ A
1
2pj

ð
C
g zð Þ zIe � BAð Þ�1dz

 �
B

¼ Ix þ Ag BAð ÞB;
(A2)

where j ¼ ffiffiffiffiffiffiffi�1
p

: From the first to the second line, we
applied Cauchy’s integral formula of matrix argument.3

From the second to the third line, Eq. (A1) was used.
From the third to the fourth line, we relied on the null
contribution of the first term in the integral and the
definition of g.

In particular, let us apply Eq. (A2) to fðxÞ ¼ 1ffiffiffiffiffiffiffi
1þx

p ; so

that gðxÞ ¼ � 1
1þxþ ffiffiffiffiffiffiffi

1þx
p : Both functions are analytic in the

complex plane except for a cut and a pole on ��1;�1�:
Let us assume that the eigenvalues of AB and BA have a
non-negative real part, so that a contour C with the
aforementioned properties can easily be defined. Under
this assumption, which is systematically met in this paper,
one has

Ix þ ABð Þ�1
2 ¼ Ix�A Ie þ BAþ Ie þ BA½ �12

� ��1

B : (A3)

Choosing A ¼ Xr and B ¼ Y>
r R

�1H; it can readily be
checked that both AB and BA have a real and non-
negative spectrum, invoking in particular corollary 7.6.2
of Horn and Johnson (2012) as in Section 2.3.1. Equation
(A3) can then be applied to Eq. (10), which turns out
equivalent to Eq. (11). If we alternatively choose
A ¼ XrY>

r and B ¼ R�1H; with AB and BA having a real
and non-negative spectrum, we obtain

Xa ¼ TyX with

Ty ¼ Ix�XrY>
r

�
Iy þ R�1YrY>

r þ Iy þ R�1YrY>
r

h i1
2
��1

R�1H;

(A4)

or, equivalently, Eq. (12). Iy is the identity matrix of size
Ny �Ny: This establishes a left-transform update formula
mainly performed in observation space, which connects
with the two-step filter by Anderson (2003) where the
updated perturbations are computed in observation space
and then extrapolated in state space by linear regression.

3It generalises the classical Cauchy’s intregral formula using the
Jordan decomposition of matrices. See for instance, Eq. (2.7) in
Kassam and Trefethen (2005).
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To further unveil this connection, let us note that, since
ð1þ xþ ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p Þ�1 ¼ ð1�ð1þ xÞ�1=2Þ=x and choosing

x ! R�1YrY>
r ; we get

Iy þ R�1YrY>
r þ Iy þ R�1YrY>

r

h i1
2

� ��1

R�1

¼ YrY>
r

� ��1
Iy � Iy þ YrY>

r R
�1

� ��1=2
� �

:

(A5)

Here, we have assumed that NyPNr þ 1 in order for
YrY>

r to be almost certainly invertible. Using Eq. (A5) in
Eq. (A4), we obtain:

Ya ¼ Iy þ YrY>
r R

�1
� ��1=2

Y; (A6a)

Xa ¼ Xþ XrY>
r YrY>

r

� ��1
Ya � Yð Þ: (A6b)

This two-step update (update in observation space
followed by a linear regression in state space) generalises
the algorithm of Anderson (2003) in two ways: to the
matrix case (instead of a serial/scalar update) and to two
sets of perturbations X and Xr:

Appendix B: use and test of the Schatten
p-norms

In this appendix, we study the dependence of the new
perturbation update on the choice of the matrix norm. A
generic Nx �Nx matrix M has the following singular
value decomposition:

M ¼
XNx

n¼1

rnunv>n ; (B1)

where fungn¼1;			;Nx
and fvngn¼1;			;Nx

are the normalised
left and right singular vectors, respectively, and rnP0 are
the singular values of M: The Schatten p-norm of M is
defined by:

jjMjjp ¼
XNx

n¼1

rpn

" #1
p

: (B2)

The case p¼ 2 corresponds to the Frobenius norm.
The case p¼ 1 corresponds to the nuclear norm (sum of
the singular values) and the case p ¼ 1 corresponds to
the spectral norm (the maximum singular value). This
broad range is one strong reason why this continuum of
norms is of special interest.

We generalise the perturbation update function
Eq. (21) to the Schatten p-norm by defining

Sp
q Pað Þ ¼ arg min

rank Xð Þ6Ne�1
Lp Xð Þ;

with Lp Xð Þ ¼ ln jjSq Xð Þ�Pajjp:
(B3)

Once again, we have chosen to apply a logarithm
function to the Schatten p-norm to level off the ups
and downs of the function. In particular, we have

observed that, using L-BFGS-B, the proposed
ln -transformation enables a satisfactory minimisation
in the case p¼ 1 (nuclear norm) which would fail in
its absence.

It turns out that it is possible to analytically compute
the gradient of LðXÞ using the lemma that the variation
of the n-th singular value is simply given by

drn ¼ v>n dMun: (B4)

Using this lemma, we obtain the matrix gradient:

rXLp Xð Þ ¼ jjDjj�1
p rXjjDjjp

¼ 2jjDjj�p
p q �

XNx

n¼1

unrp�1
n v>n

 !
	 X

¼ 2XNx

n¼1

rpn

q �
XNx

n¼1

unrp�1
n v>n

 !
	 X:

(B5)

Note that in the limiting case of the spectral norm
(p ¼ 1), we have

L1 Xð Þ ¼ ln r1; (B6)

assuming the singular values are indexed in decreasing
order, and

rXL1 Xð Þ ¼ 2
r1

q � u1v>1
� � 	 X: (B7)

We have tested the choice of these Schatten norms in
the range p 2 ½1; 11� following the experimental setup
described in Section 4 for the L96 model, and for
ensemble sizes Ne ¼ 4; 8 and 16. The mean analysis
RMSEs of those runs are displayed in Fig. 9. These
scores are remarkably insensitive to the choice of p.

Fig. 9. Average analysis RMSE as a function of the norm p
parameter in the range ½1; 11�; and for Ne ¼ 4; 8 and 16, applying
the new LEnSRF scheme to the L96 model.
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However, when very close to the spectral norm limit
(p ¼ 1), the function minimisations seem to fail to
converge (not shown). We also remark that the optimal
inflation and localisation length are also very similar in

the whole range of p (not shown). Note that, with larger
p, the singular spectrum elevated to the p-th power is
steeper and could lead to faster convergence of the
minimisation.
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