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ABSTRACT

The effects of the zonal mean wind variability on the energy propagation of a stationary Rossby
wave in a barotropic non-divergent atmosphere are studied. It is shown that the random nature
of the zonal wind fluctuations do not allow Rossby wave energy to propagate from its energy
source. The mechanism for this effect is strongly dependent on the spatial resolution at which the
zonal mean flow is assumed to be known. Some speculations are offered on the relation between
this mechanism and the systematic error of some low-resolution climate models.

1. Introduction

Presumably, the observed planetary scale
climatological eddies owe their existence to the
interactions between the free atmosphere and the
asymmetries of the lower boundary forcings, i.e.,
the earth’s topography and the large scale distribu-
tion of heat sources and sinks. Since the pioneering
works of Charney and Eliassen (1949) and
Smagorinsky (1953), the mechanisms involved in
these interactions have been studied extensively by
using models of increasing complexity.

Recently, some authors (notably Grose and
Hoskins, 1979; Hoskins and Karoly, 1981; Held,
1983 and James, 1988) have stressed the impor-
tance of spherical geometry in determining the
response of a model’s atmosphere to a stationary
forcing. In particular, it has been argued that beta-
channel models overestimate the actual response
to the topographical forcing because, by imposing
artificial lateral boundaries, they allow for a reso-
nant behavior. In spherical geometry, the distur-
bances are instead free to propagate away from
their midlatitude sources and, unless reflection
occurs, they will be absorbed poleward and, there-
fore, substantially influence the observed eddy
climatology and low frequency variability. This
mechanism may be important, for example, to
account both for the teleconnection patterns
described by Wallace and Gutzler (1981) and their
statistical relationship with the anomalous low
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level thermal field as documented in Horel and
Wallace (1981) (see Simmons et al., 1983).

The study of Rossby waves propagating in a dis-
persive medium by the method of geometrical
optics (Lighthill, 1978) provides a powerful
framework to describe the role of the earth’s
sphericity in the structure of large scale disturban-
ces. In this framework, it has been possible to gain
insight into the relative role of topography and
diabatic heating in determining the behavior of
atmospheric models, which, in turn, has helped
explain the observed statistics. Geometrical optics
theory is applicable to meteorological problems
when the governing equations are linearized
around a given mean flow (not necessarily
zonally symmetric). Customarily, the observed
climatological average is used for the mean flow. In
this case, the low frequency dependence of the
planetary scale disturbances upon the basic flow
can be studied by calculating, with high spatial
resolution, the system’s response to different mean
flow configurations. For the purpose of the present
paper, in accordance with Hoskins and Karoly
(1981), we assume that no interactions occur
between the instantaneous basic flow and large
scale eddies. The small portion of planetary scale
eddy variability explained by the zonal mean flow
daily fluctuations (Hansen and Sutera, 1987)
provides evidence supporting this assumption.
Equivalent observational evidence for the case in
which the basic state is zonally varying is not yet
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available. Therefore, in the present paper we will
restrict ourselves to the study of perturbations of a
zonally symmetric flow. To keep our work in the
same conceptual framework as Hoskins and
Karoly (1981) we also assume that no planetary
scale wave-wave interactions are allowed. Of
course, the assumptions inherent in the above
mentioned linear theories strongly limit their
applicability to atmospheric studies, although
many interesting results have been obtained along
this line.

Given the time scales (infinite for a stationary
wave) considered here, the basic state variability
should be taken into account. For this purpose,
unless the time dependent problem of the resulting
linear model is solved (e.g., by taking the zonal
wind time behavior from observations) an
assumption on the nature of the flow is needed.
Therefore, we will account for the effect of the basic
state fluctuations by assuming that they are inde-
pendent realizations of a random field and identify
the eddy response as the mean of responses in the
ensemble of the basic state realizations. We shall
see how some of the results presented in this
paper can be interpreted by simply extending the
geometrical optics theory in the case of wave
propagating in a random medium. Furthermore,
we will show that wave dispersion is strongly
affected by the zonal wind fluctuations.

2. The problem

Given the illustrative nature of the present
study, we shall restrict ourselves to the study of the
latitudinal energy propagation of a stationary
Rossby wave, forced by a localized pulse, in a
barotropic non-divergent atmosphere. By lineariz-
ing the potential vorticity equation around a zonal
mean flow U(y) the equation for the latitudinal
structure i of a Rossby wave of zonal wavenumber
n in a Mercator projection is (see Appendix):

Uy, + Vi (y; U, n)y

=38(y+ yo) —6(y — yo)s (1)
with boundary conditions
Y(lyl » 0)—-0, 2)

where v is the index of refraction defined in the
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Appendix and ¢ is a Dirac delta distribution.
Given the latitudinal dependence of v the problem
is to determine the solution of (1). If the solution is
a meridionally localized function, the energy
associated with the stationary wave remains near
its source; otherwise, propagation occurs. In
general, the solution (a Green’s function) will
depend on the location of the source. We consider
two cases:

(A) The forcing is located in the tropics, say
10°N. With this condition, we simulate some
heating disturbance which, captured by the
westerlies, may provide enough poleward energy
flux to significantly affect the eddies structure in
midlatitudes.

(B) The source is localized in the extratropics. In
this circumstance we wish to determine whether
the Rossby wave energy flux associated with this
forcing will decay away from the source. If this
occurs, the situation is similar to the beta-channel
approximation and it is likely that a resonant
response may be excited.

The solution of (1) requires the knowledge of v*
as a function of the zonal mean wind U, which as
discussed in the introduction is assumed to be a
fluctuating field. A way to fully account for the ran-
domness of the wind fluctuations is to solve (1) for
each individual realization of U but to consider the
ensemble average of the solution to be repre-
sentative of the actual latitudinal behavior. We will
contrast this case with the one in which the wind
fluctuations are disregarded and (1) is solved by
using v> computed as a function of the climatologi-
cal mean wind (U>.

3. The data

The data used for the computation of the
refraction index v are National Meteorological
Center’s (NMC) analyses available on the NMC-
UNIDATA compact disk. It consists of Northern
Hemisphere winter (here defined as the months of
December through February) analyses of the
200 mb and 500 mb geopotential heights. Because
from 1963 to 1974 this data set has only 0.7%
of the days missing (compared with 9% in the
remaining period) we decided to consider this as
the period covered by our basic data set. The zonal
velocities were calculated geostrophically from the
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geopotential heights. Since one of our problems is
to calculate the response to a forcing situated at
low latitudes but in a westerly environment we
decided to consider 200 mb fields. We notice that,
by choosing this pressure level, we have the advan-
tage that at this height no zonal mean easterlies are
encountered at low latitudes for the whole data set
here considered. Thus our solutions do not reflect
any critical line effect.

The equation that we wish to solve requires the
knowledge of v? through the whole latitudinal
domain. Unfortunately the data here considered
did not allow us to calculate v to any degree of
realism for latitudes equatorward of 20°N, both
because of the lack of data and the actual quality
of the analyses in this region. Thus, we assumed
that from 20°N to the equator v> has the same
constant value.

4. Results

In this section, results are presented for the case
in which the 200 mb height data are assumed to
have 1° x 1° resolution. Let us consider the case in
which

v=v(¢; <U>, n) (3)

where ¢ is latitude and { ) denotes the ensemble
average in our data set.

The geometrical optics approximation (forward
scattering assumption) consists in calculating the
WKB solution. In this approximation the
propagating or decaying nature of solutions of (1)
is determined by considering the separatrix v=0.
In regions where v is a real-valued function, ¥
describes an energy propagating wave; otherwise
it describes a decaying (trapped) solution (e.g.,
Held, 1983). For a given zonal wavenumber, the
latitudinal location where v=0 represents a
turning point for the wave. In Fig. 1 v=_01s plotted
as a function of the latitude ¢ and the zonal
wavenumber n. At variance with other studies,
here zonal wavenumber 3 may be trapped in
midlatitudes while zonal wavenumber 2 may be
trapped in the region poleward of 70°N. In agree-
ment with other studies, zonal wavenumber 1 can
propagate through the whole hemisphere. The par-
tial disagreement of the present results with the
ones presented in other studies is partly due to our
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choice of calculating the wind at 200 mb. The pur-
pose of the present paper is not to make a claim
whether a stationary Rossby wave of a particular
zonal wavenumber in the real atmosphere is likely
to have a latitudinal structure which allows for
energy propagation, but rather to shed some light
upon the effects that a fluctuating wind has on a
wave which propagates energy when these fluctua-
tions are suppressed. Therefore, in what follows,
we will concentrate on the behavior of zonal
wavenumber 1 which manifestly possesses the
required (propagative) structure. We present in
Fig. 2 the numerical solutions of (1) for a forcing
located at each of the three latitudes 10°N, 70°N

zonal wavenumber

0 . 2 L .
0 20 40 60 80

latitude (°N)

Fig. 1. The curve separating propagating from trapped
(upper plane) solutions as a function of the zonal
wavenumber and latitude.

o 20 40 60 80

latitude (°N)

Fig. 2.  as a function of latitude for the case of v2 com-
puted by considering {U) and by having the forcing
located at 10°N (solid), 70°N (dashed) and 82°N
(crosses).
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and 82°N. For the sake of comparison, all the cur-
ves have been normalized to unity. We emphasize
the poleward increase of the amplitude, which is
consistent with a WKB solution (Hoskins and
Karoly, 1981), is entirely reproduced by our
numerical approach. We recall also that it is this
peculiar latitudinal behavior of the amplitude
which allows us both to interpret atmospheric
teleconnections and to discuss whether resonant
amplification of waves in midlatitudes as property
of propagating Rossby waves can be dismissed.
For a stationary wave, energy is propagated. A
good proxy for the perturbation’s energy is y*. For
future comparison in Fig. 3 we plotted y* as a
function of the latitude.

Next we study the case in which the zonal wind
fluctuations are considered. We solve (1) for each
day in our data set, normalize to unity each
individual realization and then take the ensemble
average. In Fig. 4 we show {y*) as a function of
latitude for the same forcing locations previously
discussed. A considerable difference between these
solutions and the ones previously discussed is
readily seen. In particular, for disturbances
generated in the tropical region the Rossby wave
energy can only propagate up to 35°N and then,
toward higher latitudes, is significantly attenuated.
On the other hand, in response to a high latitude
forcing the energy tends to be trapped in that
region with less penetration to middle or lower
latitudes. Similar conclusions can be drawn if we
consider the forcing to be located at any other
latitude. For example, the solution (not shown) for

1.0

0.8

latitude

Fig. 3. ? as a function of latitude for the case of v’ com-
puted by considering {U)» and by having the forcing
located at 10°N (solid), 70°N (dashed) and 82°N
(crosses).
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Fig. 4. (Y*) as a function of latitude for the case of v?
computed by considering daily values of U and by having
the forcing located at 10°N (solid), 70°N (dashed) and
82°N (crosses).

a forcing located at 40°N is undistinguishable
from the one obtained with the forcing location at
10°N

Because the refraction index is inversely propor-
tional to U it may be thought that the above result
may be caused by a small number of days during
which the wind achieves very small values, thus
generating very high barriers to be tunnelled by
the solution. In the sample set here considered
about 10 % of the cases (days) have some locations
¢; in midlatitudes (to the north of the jet axis)
where the daily wind U(¢;) is close to O m/s. To
exclude this as the cause for the observed decay we
climinated the above mentioned 10 % of days and
computed the new ensemble average. The corre-
sponding <{¥?> (not shown) reproduces essen-
tially the same behavior shown in Fig. 4.

Another possibility is that the above result may
be a function of the interannual variability of the
data. This dependence can be excluded since we
have repeated the calculation for a single month
without noticing a substantial change in the nature
of the solution (see Section 5). Thus we can con-
clude that the novel features found here are due
essentially to the random nature of the wind
fluctuations. Therefore we should interpret our
results as saying that perturbations originating in
midlatitudes remain confined there and hence con-
ditions for resonance are possible. Analogously,
perturbations generated in the tropics are likely to
remain in these regions with a limited effect on
higher latitudes.
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5. Interpretation

In order to understand the nature of our results,
let us consider the case where v=v(y; (U, n).
Here the refraction index is a smooth function of
space; therefore, the agreement between the
numerical solution and the WKB approximation
implies that the medium is transparent to Rossby
wave energy propagation. Only forward scattering
processes occur and the geometrical optics limit
fully applies.

The situation is sharply different when the fluc-
tuations are considered. The irregularities induced
by the zonal mean wind fluctuations in the profiles
of v2 act as scattering centers which strongly affect
the energy propagation. The presence of a scatter-
ing center increases the effective distance that the
signal has to travel decreasing the effective group
velocity. This effect is clearly demonstrated by the
comparison of the behavior of (i2) (Fig. 4) with
¥ (Fig. 3). Moreover, the scattered fluid parcel is
advected by the zonal mean flow in regions of dif-
ferent ambient potential vorticity which may or
may not increase the effectiveness of the Coriolis
force in acting as a restoring mechanism (Keller
and Veronis, 1969).

The situation is reminiscent of the one encoun-
tered in solid state physics when a wave travels
across a material doped with impurities (see
for example, Anderson, 1958; Lifshitz and Kir-
pichenkov, 1979). For these systems, it has been
proved that waves travelling through the medium
are damped (i.e., localized) by the randomness of
the refraction index, regardless of the occurrence in
the domain of any turning point. In order to estab-
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Fig. 5. The index of refraction squared for the day of 4
December 1963.
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Fig. 6. Latitudinal behavior of 2 for the day of 4
December 1963. The forcing is located at 10°N.

lish this analogy on a firmer ground, let us examine
in more detail the nature of the refraction index for
a typical realization of the zonal wind. The func-
tion v? for the day of December 4, 1963 is displayed
as a function of latitude in Fig. 5. We notice that
northward of the jet maximum v? varies erratically
and the amplitude of the variations are large (com-
pare with Fig. 1). In this environment, WKB
theory fails and other means of analysis are
required. A complete mathematical treatment (see
Mysak, 1978 for a review) of such a problem is not
the purpose of the present paper. However, we can
illustrate further the source of the attenuation that
we observed by considering the following argu-
ment. From Fig. 5 we notice that v? is not a
positive valued function. Hence, we might argue
that the overall decay can be caused by the
occurrence of turning points. To exclude this inter-
pretation we have added to v? a constant value
such that the new v’ is a strictly positive valued
function in the entire domain and we again
integrated (1) for a forcing located at 10°N. The
behavior of y? (Fig. 6) shows a decay which is
inconsistent with a WKB solution, but is consis-
tent with the general behavior of (2. Thus, we
can conclude that the averaged behavior shown in
Section 4 is the result of the spatially random
nature of v2.

6. The sensitivity of wave propagation to
model resolution

To further emphasize the role of the spatial
fluctuations in determining the structure of the
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solutions discussed above, we extract the data at
a different, 4°, resolution. In this case, we expect
that v? will be a rather smooth function of ¢. Here
again we consider the cases:

(1) index of refraction v(¢; <UD, n) calculated
from the climatological mean, zonally averaged
flow;

(2) ensemble average solution {y*(#))> ob-
tained by averaging the normalized daily solutions
?(¢) determined as response to the daily, zonally
averaged flow U.

In this section, we consider solutions for the
forcing located at 10°N and 82°N only. For
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Fig. 7. The curve separating propagating from trapped
(upper plane) solutions as a function of the zonal
wavenumber and latitude, for the 4° case.
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Fig. 8. y as a function of latitude for the case of v? com-
puted by considering {U)> and by having the forcing
located at 10°N (solid) and 82°N (crosses), for the 4°
case.
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case 1, as can be seen by comparing Fig. 1 and
Fig. 7, the effect of lower resolution on the index of
refraction seems to have been to smooth out any
sharp irregularities. As a consequence, the numeri-
cal integration (Fig. 8) is well approximated by the
WKB solution, which was to be expected on the
ground that this solution was already a good fit to
the numerical solution for the integration at 1°
resolution.

For case?2, the behavior of (y?) compares
rather well (Fig. 10) with the one obtained with the
average wind (Fig. 9) when the forcing is at 82°N
and it appears that any signature of a decaying
behavior (localization) has been lost. More
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latitude (°N)

Fig. 9. Y as a function of latitude for the case of v com-
puted by considering {(U) and by having the forcing
located at 10°N (solid) and 82°N (crosses), for the 4°
case.

0.8 — T T T v

latitude

Fig. 10. {y*) as a function of latitude for the case of v2
computed by considering daily values of U and by having
the forcing located at 10°N (solid) and 82°N (crosses),
for the 4° case.

(°N)
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precisely, if any location occurs, it is confined in
high latitudes (which can be seen by comparing the
solid curves in Figs. 9 and 10 corresponding to a
forcing located at 10°N). This can be argued on
the ground that, compared with the behavior
obtained considering {(U), a somewhat slower
increase is observed northward of 65°N when the
forcing is at 10°N. This peculiar behavior seems to
suggest that if we consider models with low spatial
resolution we should expect a poleward shift of the
planetary scale eddy variance with an overall
weaker amplitude. This is indeed the case for some
general circulation models, as has been documen-
ted by Hansen and Sutera (1990). Hence we are
led to the speculation that the confinement
mechanism discussed in the present paper may
play a role in explaining some features of the
systematic error of general circulation models with
low spatial resolution.

7. Conclusions

We have analyzed the role of the zonal mean
flow fluctuations in determining the nature of the
energy propagation of a stationary Rossby wave in
spherical geometry. It has been shown that the
irregularities of the background flow significantly
affect the latitudinal propagation of the wave’s
energy. In contrast with the case of a smoother
background flow, the wave amplitude and energy
are attenuated by a mechanism which is reminis-
cent of the stochastic damping occurring when
waves propagate in a random medium.

The localized nature of the averaged solution
obtained suggests that the wind fluctuations may
provide a viable energy trapping mechanism which
may establish favorable conditions for perturba-
tions to resonantly amplify by interacting with the
lower zonally asymmetric boundary forcing. On
the other hand, the same attenuation process does
not particularly favor the propagation of tropical
disturbances to higher latitudes. The localization
mechanism is not very efficient when the zonal
mean flow is computed at low resolution. We have
suggested that this inefficiency may play a role in
explaining the deficit of variance observed in some
low resolution climate models.

The work presented here can be expanded in
several directions. In particular, we intend to con-
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sider the case of perturbations which propagate on
background flows which are not zonally sym-
metric.
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9. Appendix

Derivation of the meridional structure equation

Spherical coordinates

Our investigations are based on the non-
divergent barotropic vorticity equation

%A‘P+/(‘I’,A‘I‘+f)=0, (A1)
which in spherical coordinates reads
0 oY oaAY + oy
ot adgacos ol acos g oA
X —6 AW+ECOS¢ =0, (A2)
adp a
with
1 0 kg
‘I"--azcos ¢%(cos¢%)
1 Y
a?cos? ¢ 012’ (A3)
—10¥
u= a w, (A4)
oy
Y= dcos g on’ (AS)
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and where ¥ is the horizontal streamfunction, ¢
the Jacobian operator:

A¥ the vertical component of vorticity, f =
2Q sin ¢, A represents longitude and ¢ latitude.
Since we are interested in studying the effects of
daily wind fluctuations on the simplest form of
(A2) we linearize (A2) about a zonally symmetric
basic state with zonal flow U(g, t). We then write

W(h g 0)=—a| UG, 0 ds+V'( 1), (AS)

with ' denoting the perturbation part of V.
Because of the assumption of no correlation
between the basic state zonally averaged flow and
wave perturbations described by (A2) we take the
zonally averaged daily winds to be independent
realizations of a stochastic field. Therefore (A6)
becomes

¥(h 4,0)= —a | U ds

+¥'(4, ¢, 1), (A7)
with U(¢) time-independent. Now, to study the
latitudinal structure of the wave perturbations ¥’
we concentrate on a given zonal wavenumber n
and frequency w and look for a solution of the
form

¥'(4, ¢, 1) = Y(¢) exp[i(nd — wt)]. (A8)

Substituting (A7) and (A8) into (A2), linearizing
and multiplying by a® cos ¢/in yields

—%i(cos¢%)+ o |II+L

d¢ dg) cos¢’ acos¢

d dy n?
X [aﬁ (cos ¢ a) ~ o8 py |/1:|
+|//[2Qcos¢ ! dd¢ [cols ¢d¢ (U cos ¢):|:|

(A9)
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which for stationary waves (w = 0) becomes:

d dy cos¢ d 1
55( d¢> [ U d¢[cos¢@w°°s¢]

2 2
n 2Qa cos qﬁ:l =0,

cos ¢— U (A10)

With the addition of suitable boundary conditions
(A10) represents a Sturm-Liouville problem for y
which can be written simply as

LY=—F@). (4l =n2)=0, (AL1)
where

d Vi($; U n)
P d¢(cos¢d¢>+ zon (A12)
Vi(¢; U, n)

_ cos¢ d 1 i
——cos¢[ T @I:md(ﬁ(UCOS(ﬁ)]

N n*>  2Qacos® ¢
cos ¢ U ’

(A13)

is the square of the index of refraction and F
corresponds to some forcing function. This
problem would be well posed over the whole inter-
val ¢e[—3n, sn] were it not for the limited
latitudinal extent of the index of refraction v.
Due to practical considerations (as discussed in
Section 3) the available data (geopotential height
fields at 200 mb and 500 mb) extend only from
19°N to 84°N. Solving (Al1) in that meridional
range would actually mean imposing arbitrary
boundary conditions at the end points. Instead we
define a new index of refraction v such that

VA($) = V§aa(20°N), 0° < ¢ <20°N,
VA($) = Viaa(4)s 20°N < ¢ <83°N,
Vi($) =v3.(83°N),  83°N<4<90°N,
Vi(—¢)=v(9), < $<90°,
(A14)

the last line implying that a Southern Hemisphere
is present but that it is an identical replica of the
Northern one (reflection symmetry with respect to
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¢=0°). This will allow us to keep the correct
boundary conditions, as given in (A11), for the end
points. It is now possible to apply a localized
forcing in the form of delta distributions
(F(¢)=0(¢ — ¢o) — (¢ + @) to generate a wave
perturbation, the latitudinal structure of which will
be governed by (A11l). The presence of two delta
distributions in F (corresponding to a unit source
at ¢ =@, and a unit sink at ¢ = —@,) comes from
the fact that we are solving the Sturm-Liouville
equation for two hemispheres one of which is a
mirror image of the other.
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plane, we give below the transformed version of
(A11). Using

1+sin ¢
=gln| ——%
y=a n|: cos 4 :|, (A15)
which implies that:
cosg d d

the non-dimensional version of (All) on the
Mercator plane, reads

. . d 2
Mercator projection t;//(2}’) +v(y: U, nW(y) = —F(y),
Since many theoretical considerations in the text Y
are made using (A11) projected onto the Mercator Y(ly| » ©0)-0. (A17)
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