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ABSTRACT 

The short-range evolution of small initial errors is numerically investigated with an f-plane 
shallow-water model. It is shown that this evolution can be approximated by a linearized 
model for meteorologically realistic situations. and for ranges of up to about 48 hours. The 
results are consistent with a description of the slow manifold as an attracting set along which 
the dynamics of the flow is dominated by an instability process. As a consequence of the 
relatively large time scale for the meteorologically significant components of the flow, the 
linear model valid for short periods can be further simplified to a constant coeficient model 
describing only the evolution of the large-scale components of the error. The possible 
implications of this result for the improvement of assimilation procedures are briefly 
discussed. 

1. Introduction 

An element still missing in numerical weather 
prediction is an estimate of the amplitude of the 
prediction error. The growth of error over periods 
of a few days or more, which is closely associated 
with the spectral interactions occurring in quasi- 
geostrophic turbulent flow, has been the subject 
of numerous studies, and there is now a wide 
consensus that the details of atmospheric flow 
cannot be deterministically predicted beyond a 
range of about 10 days. Less attention has been 
given, a t  least so far, to the growth of forecast 
error at short ranges, extending from a few hours 
to one or two days. From a theoretical point of 
view, error growth is related to the instabilities 
which develop in the atmospheric flow, and this 
by itself would justify a detailed study of the 
growth observed in operational forecasting 
model. From a practical point of view, a better 
knowledge of the error growth would help 
in assigning confidence limits to short-range 
numerical forecasts. These limits would depend, 
not only on the intrinsic quality of the model, but 
also on the accuracy with which the initial state 
of the forecast is known, and on the particu- 

larities of this initial state, such as for instance 
its closeness to conditions in which instabilities 
can occur. One methodical approach which has 
been proposed so far for establishing confidence 
limits on individual forecasts is Monte-Carlo 
prediction, in which the forecasting model 
is integrated from different initial conditions 
chosen so as to provide a fair representation of 
the uncertainty on the actual initial state of the 
atmospheric flow. The dispersion of the corre- 
sponding forecasts provides a direct estimation of 
the amplitude of the forecast error. However the 
numerical cost of this approach is obviously high 
and has so far forbidden its implementation in 
operational prediction. Simplified algorithms 
have been proposed for achieving the same basic 
goal a t  a lower cost (Leith, 1974; Hoffman and 
Kalnay, 1983; Thompson, 1986). It seems prob- 
able that techniques for assigning confidence 
limits to numerical forecasts will develop in the 
coming years. In this context, prior knowledge on 
the statistical properties of the growth of forecast 
error, and on the dependence of that growth in 
the current situation of the flow will certainly be 
useful. 

Another domain for which the same type of 
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knowledge would be very useful is assimilation of 
meteorological observations. In present oper- 
ational practice, assimilation is implemented by 
applying successive updates, as new data become 
available, on one integration of the model carried 
out over the time interval within which obser- 
vations have been performed. At each successive 
update, or anal-psis, the relative weights to be 
given to the current forecast on the one hand and 
to the available observations on the other, should 
depend on the relative quality of the forecast and 
on the observations. Optimal analysis, which is 
now the most commonly used assimilation 
method in major meteorological forecasting ser- 
vices, provides a systematic way for estimating 
these weights once the statistical variances and 
covariances of the forecast and observation errors 
are known. Kalman-Bucy filtering (e.g., Ghil et 
al., 1981), which generalizes optimal analysis to a 
dynamical system whose temporal evolution is 
governed by a linear system of differential 
equations, relates the statistics of forecast errors 
to the governing equations. In present practice 
however, the connection between the dynamics 
of the assimilating model and the analysis itself is 
rather loose. The growth of forecast errors is 
described by extremely simple empirical laws, 
which ignore most of the dynamics contained in 
the numerical model, in particular specific insta- 
bility processes. It is probable that the quality of 
assimilation, like the quality of short-range fore- 
casts, could be improved by using a more accu- 
rate description of the statistics of forecast error. 

The primary incentive for the work described 
in this article was precisely the improvement of 
assimilation procedures. One specific question 
which has been studied is the following: can the 
growth of forecast error, in the conditions which 
occur in the practice of data assimilation, be 
satisfactorily described over short ranges (up to 
one or two days) by a linear system of differential 
equations? If this is the case, the theory 
of Kalman-Bucy filtering will be applicable, 
through use of the local appropriate linear system 
at every stage of the process, to the problem of 
assimilation of meteorological data with non- 
linear models. The validity of that approach, 
called the extended Kalman filtering (Jazwinski, 
1970; Chi1 et al., 1982) has so far not been 
checked in the meteorological context. Another 
possible approach for data assimilation uses vari- 

ational techniques (Le Dimet and Talagrand, 
1986). In this context also, linearity of the evol- 
ution of the short range forecast error can be 
useful, in that it guarantees that the final analysis 
is to be legitimately considered as the conditional 
expectation of the current state of the atmos- 
pheric flow, knowing all the available obser- 
vations (including previous forecasts). 

It is known from the theory of differential 
equations that a small enough perturbation 
imposed on a solution of a dynamical system will 
evolve linearly over a time interval whose length 
will depend on the properties of the system. The 
corresponding linear system is called the tangent 
linear system in the vicinity of the solution under 
consideration, and is obtained by differentiating 
the equations describing the basic evolution of 
the system in the vicinity of that solution (e.g., 
Brauer and Nohel, 1969, p. 135-142). The ques- 
tion considered here can therefore be stated as 
follows: is the amplitude of forecast errors in data 
assimilation small enough so that its temporal 
evolution can be described, between successive 
updates, by the linear system tangent to the 
model? Another specific point considered in this 
article is the geostrophic or nongeostrophic 
character of the forecast error. In present oper- 
ational analysis procedures, the forecast error is 
assumed to be geostrophic. This assumption has 
the advantage that the corrections added to the 
forecast are also geostrophic, and that only a 
small amount of gravity perturbations is in conse- 
quence introduced by the analysis, but it has 
apparently been checked directly only in rather 
special cases (see, e.g., Daley, 1980, appendix). 

The general procedure followed in this study is 
outlined in Section 2. We describe the model used 
and its main properties in Section 3 and the 
numerical experiments in Section 4. Results are 
presented in Section 5 and discussed in Section 6. 
We show in Section 7 that, as a result of certain 
special features of the equations, we can simplify 
further the tangent linear model for the short- 
range evolution of the errors. Conclusions follow 
in Section 8. 

2. Experimental procedure 

The principle of the experimental procedure 
used in this article is extremely simple. A model 
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integration has first been performed, producing 
what will be called the rqftvence solution. Various 
perturbations have then been added to the initial 
state of this reference solution, and the ensuing 
evolutions of the perturbations have been studied 
in detail, in particular in terms of their linear and 
geostrophic character. For the sake of simplicity, 
and also because errors in the initial conditions 
have in practice a much larger impact on short 
range forecasts than model errors, the experi- 
ments are of the “identical twin” type, i.e.. a 
single model has been used and integrations 
performed with this unique model have been 
com pa red. 

Although this procedure is numerically very 
similar to Monte Carlo forecasting, the results are 
interpreted in a different way. In the Monte 
Carlo approach, which is intrinsically statistical. 
each individual trajectory must be associated 
with some weight representing the probability of 
the corresponding initial state. The averages ob- 
tained from a number of different trajectories can 
then be interpreted as mathematical expec- 
tations. An example is the study made by Lorenz 
(1982), based on the set obtained by taking the 
differences between a number of one-day fore- 
casts performed at the European Centre for 
Medium Range Weather Forecasts and the corre- 
sponding analyses. On the contrary, the point of  
view taken here is deterministic. The statistical 
mean state is replaced by the reference state 
considered as being the true state while each of 
the other initial states is interpreted as the sum of 
that true state plus an error or perturbation. The 
quantities in which we will be interested will not 
be ensemble averages, but quantities associated 
to individual trajectories. 

3. The model 

The numerical model used for the experiments 
described below is governed by the shallow-water 
equations on a plane rotating with constant 
angular velocity : 

where 

V : horizontal velocity 
c p :  free surface potential 
. / :  vorticity of the basic rotation (Coriolis 

parameter) 
f: vertical unit vector 
(: relative vorticity in the rotating frame 
1’: diffusion coefficient 

+ 

I t  is well-known that two different physical 
interpretations can be given to eqs. ( I ) .  In the 
first interpretation they describe the evolution of 
a three-dimensional incompressible fluid with 
horizontal velocity independent of  the vertical 
coordinate. cp being the potential of the free 
surface. In the second interpretation, they de- 
scribe the evolution of a two-dimensional com- 
pressible fluid, cp representing then the density of 
the fluid. 

The model is pseudo-spectral, which means 
that the different variables are expanded in trun- 
cated Fourier series, the spatial derivatives being 
computed in Fourier space while quadratic 
advective terms are evaluated in physical space 
by use of fast Fourier transforms. 

The dissipation terms in ( I )  are intended pri- 
marily to represent the effect of the unresolved 
scales of motion. The presence of a dissipative 
term in the height equation is justified by the fact 
that height is closely linked to vertical velocity 
in the three-dimensional interpretation of the 
shallow-water equations. Dissipation represented 
as above by a fourth-power Laplacian is highly 
selective in wave number, and has been success- 
fully used in the case of incompressible two- 
dimensional turbulence for parameterization of 
subgrid scale effects (Basdevant et al., 1981). 

While the total energy and the total potential 
enstrophy of the flow are t w o  invariants of the 
undiscretized eqs. ( I ) ,  spatial discretization re- 
sulting from truncation in Fourier space can 
conserve only energy and only at the expense of  
aliasing errors, which act as large scale sources 
balancing the exchanges of energy with subgrid 
scales. This is the case in the model used here. As 
for the effect of temporal discretization, numeri- 
cal tests have shown that the loss of energy 
remain small (less than one percent in relative 
value for the loss of  energy) in integrations of a 
few days which are of interest for us. 
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Eqs. ( I ) ,  when linearized about a state of rest, 
possess for each Fourier component the three 
classical eigenmodes: one low-frequency Rossby 
mode (stationary in the case considered here of a 
constant basic rotation) and two high-frequency 
inertia-gravity modes. When the amplitude of the 
fields become large, the linear space spanned by 
the Rossby modes is no longer invariant for the 
evolution equations, and the concept of a slow 
manifold has been introduced by Leith (1980) in 
order to account for the fact that atmospheric 
flow mostly consists of low-frequency motions. 
This slow manifold is tangent at the state of rest 
to the linear space of Rossby modes and is an 
invariant of the evolution equations, i.e., the 
model trajectory defined by an initial state lying 
on the slow manifold will itself lie on that mani- 
fold and will not in addition exhibit fast oscil- 
lations. From a theoretical point of view, the 
existence of such a manifold is a rather 
controversial theoretical question (Errico, 1982: 
Vautard and Legras, 1986). In practice, the sub- 
set of model states obtained by applying 
the normal mode initialization algorithm of 
Machenhauer (1977) approximately satisfies the 
properties of the slow manifold for integrations of 
a few days. It is only an approximation since 
numerical integration shows that this set is not 
exactly invariant, but fast oscillations are 
removed as can be seen from Fig. 1 which 
represents the temporal evolution of the free 
surface potential deviation from the mean at a 
given grid point in two integrations performed 
respectively with and without a normal mode 
initialization. 

For the experiments described in this article, 
the model domain D was taken to be a square 
with side L = 6400 km and with periodic bound- 
ary conditions, the Coriolis parameter f' was 
taken equal to s-I and the mean free 
surface potential Q0 to los m? s-?. The diffusion 
coefficient v depends on the resolution in such a 
way as to damp the largest wavenumber 
components with an e-folding time of about 
4 hours. Two resolutions have been used, corre- 
sponding to a 32 x 32 and a 64 x 64 point grid, 
respectively. The grid mesh is therefore 200 km 
in the first case and 100 km in the second. The 
main reason for using two different resolutions 
was to study the effect of truncation and 
dissipation. 

-2300 , 3 
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Fig. 1. Temporal evolution of the deviation from the 
mean value of the free surface potential at one grid 
point in: (a) an integration performed from an exactly 
geostrophic initial state (dashed line) and (b) an inte- 
gration performed from a state obtained by performing 
a nonlinear normal mode initialization on the initial 
state of (a) (dotted line). 

4. Experiments 

4 .  I ,  Reference solution 
The reference solution has been determined in 

such a way as to possess a very low level of 
inertia-gravity oscillations, to have a small 
Rossby number (Ro < 0.2) and to consist mostly 
of statistically equilibrated large-scale motions. 
The model was first integrated for one month, 
starting from a large-scale Rossby wave to which 
a wide-band spectrum random noise had been 
added. A nonlinear normal mode initialization 
was then performed, followed by a one-week 
integration and a new initialization, and finally 
by the reference integration itself, whose length is 
equal to two days. 

The energy spectrum changed very rapidly in 
the first days of the one-month preliminary inte- 
gration, but then quickly stabilized. The stabil- 
ized Rossby energy spectrum has a slope com- 
prised between -3.5 and -4 .  The first of the 
two initializations performed in the preliminary 
integration eliminated the fast oscillations which 
were still present in the model fields, but the 
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second initialization produced almost no change. 
This observation is in agreement with previous 
results about normal mode initialization (e.g., 
Daley, 198 1 ). 

The energy spectrum and the streamfunction of 
the reference integration, averaged over the two 
days, are shown in Fig. 2 .  The mean quadratic 
velocity U is 20 m s-l, the Rossby number can be 
estimated to lie between 0.15 and 0.2, and the 
Froude number (U/$&) is about 0. I .  

4 .2 .  Perturbations 
Three types of parameters have been taken 

into account in the choice of the perturbations to 
be added to the reference state : 

the scale of the perturbation; 
its physical type, i.e., whether it consists of 
Rossby or inertia-gravity motions; 
its amplitude. 
As concerns the scale, we have considered 

three different classes of perturbations, sketched 
in Fig. 3. All three have energy spectra of the 
same shape as the basic flow, but extend respect- 
ively over the small scales (class l), over the small 
and intermediate scales (class Z), and over the 
complete range of scales resolved by the model 
(class 3). Choices 1 and 2 are consistent with 
what happens in practical situations, where it is 
legitimate to consider that the real flow is exactly 
known in the large scales, but only statistically 
known in the small scales. Class 3 was used as an 
element of comparison and also because the 
possibility exists that the inhomogeneous spatial 
distribution of conventional and space borne 
observing systems might create systematic errors 
in large scales. 

For each of these three classes, we have taken 
three different physical types. namely a pure 
Rossby perturbation, a pure inertia-gravity per- 
turbation and a mixed perturbation, in which 
energy was equally distributed between Rossby 
and gravity modes. Nine directions have thus 
been defined in phase space, along which the 
amplitudes of the perturbations have been varied. 

The amplitude 1 of a perturbation (SV, 6 q )  has 
been defined as the square root of the total 
quadratic energy of the perturbation per unit 
mass of fluid, i.e., as: 

+ 

Fig. 2. (a) Energy spectrum (m*/s2) as a function of 
wavenumber (wavenumber uni t :  2n/L, L being the side 
of the domain) and (b) streamfunction (los m?/s) of the 
reference state (isoline interval 5 .  lob m'/s). 

Typical values for the uncertainty on the state of 
the atmospheric flow at  500 mb are in practice 
6 q  - 150 m2s-?  and 16VI - 4  ms-I, which lead 
to A - 3 ms-I. In our experiments, five values of 
A ,  in geometric progression with ratio r = $, have 

+ 
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FIR 3 Shdpes of the initial spectra corresponding to the three classes of perturbations ( I ,  2 .3 )  described in the text 

been taken along each o f  the nine perturbation 
directions: Let us denote by F ,  the mapping which to any 
A , = r ' A " .  i = 0 .  I ,  2, 3 , 4 ,  (2b) initial state X ( 0 )  = (V(O),  ~ ( 0 ) )  associates the 
with A,, = 10 ms-I. The main reason for varying state X ( T ) =  (V(T) ,cp(T))  obtained at time T by 
the perturbation energy was of course to check integration of the basic eqs. ( I ) .  F ,  is often called 
the linearity of the response for different the resolixwt of ( I )  between times 0 and T. What 
amplitudes of the initial perturbations. we will be interested in here is determining the 
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response SX(T)  resulting from an initial pertur- 
bation 6X(0) imposed on X ( 0 ) .  If system ( I )  is 
written in the symbolic form d(X)/dr = F ( X ) ,  a 
perturbed solution (A'(?) + 6 X ( r ) )  satisfies the 
equation : 
d 

- ( X ( r )  + 6 X ( f ) )  = F ( X ( r )  + 6 X ( r ) )  
dt 

(7F 
r'X 

= F( X ( t ) )  + ~ ( X ( f ) )  S X ( t )  + O(SX(t)), 

which, upon retaining only the first order terms 
in 6X, becomes: 

( 3 )  

This linear system of equations is called the 
tangeni linear s.vsrern of ( I )  in the vicinity of the 
particular solution X(r). It describes the temporal 
evolution of the perturbation bX( t ) ,  to first order 
with respect to the initial perturbation h X ( 0 ) .  The 
resolvent DF,  of ( 3 )  is the differential of 
the resolvent Fr of (1). Expliciting 6 X ( f )  = 

(6V(t) ,  a&)) the tangent linear system reads: 
+ 

c 
There exists one tangent linear system for each 

solution X ( r )  of ( I ) .  Except in the very special 
case when ( V ( t ) ,  cp(t)) is a stationary solution of 
( I ) ,  the coefficients of (4 )  will vary in time. These 
coefficients will normally also vary in space with 
the consequence that, contrary to what happens 
with linear systems whose coefficients are con- 
stant in space, different spectral components of 
(6V(r), Sp(t)) will mutually interact in the tem- 
poral evolution described by (4). 

The linear approximation represented by ( 3 )  
deserves some additional explanations. Let us 
consider in phase space a straight line A going 
through X ( 0 ) .  and parallel to some unit energy 
vector e .  The image F J A )  by the resolvent F ,  
will not in general be a straight line. But the 
tangent to F,(A) at point X ( T )  is precisely the 
image of A by the resolvent DF,  of the tangent 
linear system ( 3 )  (see Fig. 4). The problem of the 

+ 

+ 

Y 

Fig. 4. Schematic representation of the temporal evol- 
ution of a dynamical system in a two-dimensional phase 
space. Two straight lines A and A' going through a 
given point X(O), with unit vectors e and e' respectively, 
are transformed into curves F,(A) and FAA') in the 
exact nonlinear evolution and into straight lines defined 
by DF,(e) and DF,(r') in the tangent linear evolution 
about the solution X ( t )  

linearity of the response to a perturbation parallel 
to e is precisely to determine for which initial 
energy /1 the image by (1) of the perturbation k 
will be well approximated by IDF,(e).  The ques- 
tion of the global linearity of the response is 
reduced to a set of one dimensional problems, 
namely the comparisons for various directions e 
of the exact final perturbation : 

4, r (1)  = F r ( X ( 0 )  + 
and of the corresponding linear approximation 
ADF,(e). 

More generally one can write the Taylor expan- 
sion of A*,, ,(A) in powers of A :  

- F r ( X ( 0 ) )  

where 

e , =  D")F7(X(0))(e, e ,  . . .), 
L->- 

I 

D") being a synthetic notation for the differential 
of order i with respect to the initial state 
( V ( 0 ) ,  cp(0)) at time 0. For a system discretized to 

-+ 

k variables Y,, D"' is made up of the (y; I )  
partial derivatives of degree I 

D',' . . . 0:: with I ,  + .  . . + ik = i. 
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The first order term corresponding to the linear 
approximation, our primary purpose in this 
article is to evaluate the relative magnitudes of 
the leading terms in (5). el can be exactly com- 
puted by integration of system (4) between 0 and 
T (or more precisely, by integration of the linear 
equations obtained from the model discretized 
equations through the same process which led 
above from (1) to (4)). Exact computation of e2 
and of higher derivatives would also be possible 
in principle, although at a much higher numerical 
cost. In practice, finite difference estimates of el 
and e2 have been obtained as follows from the 
numerically determined differences Ae. T(L,) 

withi=O, 1 , 2 , 3 a n d r = a .  
These approximations are not the only possible 

ones. In particular, one could approximate e, by 
using L, + I, A,, A, - I .  It can be shown that this 
would basically be equivalent to the above 
expression. The accuracy of the a priori best 
estimates 01(3) and 02(3) has been checked by 
comparing At, JL) with the quadratic expression : 

1 2  

2 
AQ,, ,.(A) = A.01(3) + - 02(3). 

It can also be checked by computing 

(02(2)-02(3))=$r2(1 -r2)Loe3+O(R), 

which gives an estimate of the relative size of the 
third-order term in (5) and defines the domain of 
validity of the second-order approximation. 

As for the domain of validity of the first order 
approximation, the ratio R = 2101(3)(/102(3)1 
gives an upper bound of the values of 1 leading to 
a linear evolution since for L = R the first and 
second order terms in ( 5 )  are of the same magni- 
tude. For each individual wavenumber k we will 
use the corresponding spectral ratio R(k) = 

21el(Wl~2(k)l. 

5. Results 

5.1. Quadratic approximation 
For the perturbation amplitudes which have 

been considered ( A  ,< 10 m s-I), the third-order 

term in (5) is always negligible in comparison 
with the second-order term for forecast ranges of 
24 hours or less (less than 10% for large and 
medium scales perturbations). It becomes com- 
parable to the second-order term at a range of 
about 48 hours, and then only in the smallest 
scales of the motion. 

5.2. Linear approximution 
For a forecast range of 24 hours, and for pure 

Rossby perturbations, R varies between 10 ms-' 
for large-scale perturbations and 0.2 ms-l for 
small-scale perturbations. For gravity pertur- 
bations, the value of R, which does not vary 
significantly with the scale of the perturbation, is 
about 15 ms-l. 

Comparison of the spectra of e2 and el shows 
that, for all types of perturbations, the former is 
much flatter than the latter. The shape of 
R(k)  = 21el(k)l/le2(k)l will then be similar to the 
shape of el&). Since the spectrum of the error 
Ae, ,. is the same as the spectrum of e ,  in the linear 
regime, it results that R(k) will be maximum in 
the scales where the error is itself maximum. This 
is clearly visible in Fig. 5, relative to an inter- 
mediate scale perturbation, where the maximum 

t 

\ 
T 

I 
I 

I 

Fig. 5. Coefficient R(k)  (m/s) for a medium scale 
gravity perturbation (dashed line). The horizontal solid 
line represents the global coefficient R. 
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of R(k)  coincides with the maximum of the initial 
perturbation (see Fig. 3.2). This means that the 
error will behave more linearly in the scales 
where it is larger. This result, which may seem 
paradoxical, is due to the fact that the relative 
influence of the nonlinear terms, whose ampli- 
tude is almost independent of the wave number, 
is larger in the scales where the error is small. 

5.3. Spectral evolution of the perturbations 
Our numerical results show that a Rossby 

perturbation does not create gravity components 
and vice-versa. In particular, an initially geo- 
strophic perturbation remains geostrophic. This 
fact, which is obvious for small perturbations 
added to a state of rest, was not a priori obvious 
for perturbations added to a fully developed 
meteorological flow. 

As regards the energy growth, there is a crucial 
difference between the Rossby and gravity 
perturbations. Large-scale Rossby perturbations 
grow exponentially, with an amplitude doubling 
time of about two days. For intermediate-scale 
Rossby perturbations, there is initially a transfer 
of energy to larger scales which then grow at  an 
exponential rate. Thus intermediate scale Rossby 
perturbations have the particular property of 
exciting larger scales. This is associated with a 
change in the shape of the perturbation spectrum, 
the relative importance of the larger scales 
tending to increase in the first day of the forecast. 
Inertia-gravity perturbations on the contrary tend 
to decrease at  an exponential rate which is 
relatively small in large scales (one week halving 
time) and more rapid in small scales. The 
e-folding time of dissipation varies as k-* with 
wavenumber k, and it is only in the smaller scales 
that dissipation can contribute to this decrease. 
In addition, inertia-gravity perturbations do not 
excite scales which were not originally excited, 
and there is no significant change in the shape of 
their spectrum over the time periods considered 
here. Keeping in mind what has been said about 
the spectral variations of R(k), it is seen that it is 
in the large scales that the evolution of Rossby 
perturbations will be most linear, while for 
inertia-gravity perturbations the evolution will be 
most linear in the initially most excited scales. 

A consequence of the fact that Rossby 
perturbations are amplified while gravity pertur- 
bations are not is that the former will tend to 

progressively dominate the latter. Thus, even 
though, as said above, there is no interaction 
between the two kinds of perturbations, any 
initial error will in fact tend to become more and 
more geostrophic. This is consistent with the 
assumption of geostrophy usually made on the 
forecast error in operational analysis. It is also 
consistent with results obtained by Daley (1980) 
on perturbations with only kinetic initial energy 
where it was seen that the growth of the error was 
concentrated in the Rossby component. 

Finally, except for a more rapid decrease of the 
intermediate scale gravity perturbations with the 
low-resolution grid, no difference has been 
observed between the results obtained with the 
two grids. This more rapid decrease is due to the 
dissipation, which is more active at low 
resolution. 

6. Interpretation 

If, as our results strongly suggest, the evolution 
of the Rossby perturbations is independent of the 
evolution of the gravity perturbations, it should 
be possible to describe the former as the evol- 
ution of a two-dimensional incompressible flow. 
This is so because the interaction between 
Rossby modes conserves the linearized potential 
vorticity, which means that the equation for the 
streamfunction Y of a Rossby perturbation 
reads : 
S((V2 - 1;) Y) 

~ + J(Y, v2 Y) = 0, 
?t 

where J is the Jacobian and 1, the inverse of the 
Rossby deformation radius. 

This is supported by the evolution of the 
streamfunction of a Rossby perturbation. Since 
the basic flow is almost meridional, the regions 
where the perturbation extracts kinetic energy 
from the basic flow are characterized by the 
condition (SV/Sx.uc < 0). where V is the meridi- 
onal component of the basic flow velocity and 
(u, u)  the Components of the perturbation velocity 
(e.g., Pedlosky, 1979, Subsection 7.3). It is seen in 
Fig. 6 that these regions (framed) coincide with 
the regions where the basic flow presents a strong 
velocity shear, i.e.. with the saddle points of the 
reference streamfunction (see Fig. 2b). This is 
exactly what occurs in barotropic instability of a 
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Fig. 6 .  Streamfunction of a large scale perturbation, 
initially (a), and after a one day integration (b) (arbi- 
trary units). The isoline interval is the same in the two 
figures. Framed regions represent the part where the 
perturbation extracts energy from the basic flow. 

two-dimensional incompressible flow. It is also 
consistent with the experiments of Balgovind et 
al. (1983) where the statistical evolution equation 
of the forecast error for a 24-36 hour range is 
dominated by the potential enstrophy conser- 
vation equation. 

As for the behaviour of the inertia-gravity 
perturbations, it cannot of course be interpreted 
in the context of incompressible turbulence. 
When evaluating the importance of the various 
terms that contribute to the evolution of the 
gravity modes, we found that the leading term is 
the wave term, i.e., the term obtained by 
linearization around the state of rest. This is not 
surprising since the linear frequency of gravity 
modes is very high. In addition, the Froude 
number being small, the additional linear term 
resulting from the interaction with the basic flow 
will itself be small. It then results that, as when 
the basic state is the state of rest, gravity 
perturbations will produce fast oscillations. This 
is consistent with the logic of nonlinear normal 
mode initialization, for which any perturbation of 
the initialized state in the gravity mode direction 
gives rise to fast oscillation. Nonlinear normal 
mode initialization can be successful only if the 
velocity is not too large (e.g., Thaning, 1984), 
which precisely ensures that the linear wave term 
dominates the evolution of a gravity pertur- 
bation. This would probably not be the case if the 
basic state had a large Rossby number. All this 
explains why gravity perturbations behave more 
linearly than Rossby perturbations. It leads us to 
think that the evolution of the latter would be 
more linear in the presence of a p-effect, which 
produces a nonzero linear wave term in the 
corresponding evolution equation. It also ex- 
plains why the interaction between the basic flow 
and gravity perturbations does not produce any 
transfer between different Fourier components: 
because of the fast oscillations of the gravity 
perturbations, the interaction term is on the 
average almost zero. 

The progressive damping of high-frequency 
gravity motions is in agreement with the classical 
description of geostrophic adjustment and with 
the existence of an attracting slow manifold 
towards which the orbits of the system tend to 
converge in phase space. In addition, the fact 
that the Rossby components of intermediate and 
large scales are amplified without interacting 
with the gravity components strongly suggests 
that the structure of the phase flow in the vicinity 
of the reference solution is hyperbolic, Le., that 
the slow is split asymptotically between contract- 
ing and expanding directions. If this is true of 
every trajectory in phase space, the theory of 
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dynamical systems (Eckmann and Ruelle, 1985) 
predicts that the local stable and unstable 
manifolds will be approximately tangent at the 
reference trajectory to the gravity modes and to 
the Rossby modes of intermediate and large scale 
respectively. The attractor being the union of the 
unstable manifolds, it will be tangent at each 
point to the linear space spanned by these Rossby 
modes. 

In summary, the dynamics of Rossby pertur- 
bations is dominated by a linear instability 
process which transfers energy to large scales. 
This process is perfectly explained by the classi- 
cal phenomenology of two-dimensional incom- 
pressible turbulence, and must be related in some 
way to the local unstable directions of the slow 
manifold. The residue obtained by subtracting 
the linear process from the whole map A<, results 
from highly nonlinear phenomena which saturate 
at a relatively small level. 

7. Variability of the tangent linear system 

Using the tangent linear system for describing 
the temporal evolution of the error (e.g., in an 
assimilation process) can be useful in practice 
only if this does not increase too much the 
required amount of computation. In this respect, 
it is important to investigate two particular 
points. (1) The sensitivity of the tangent linear 
system to the particular reference solution in the 
vicinity of which it is defined. (2) The influence 
of the temporal variations of that solution on the 
resolvent of the tangent linear system. 

A very powerful tool for sensitivity studies 
which involve the integration of a numerical 
model is the adjoint of that model (Le Dimet and 
Talagrand, 1986). For a given reference solution, 
the adjoint system is a linear system of differen- 
tial equations whose resolvent is the adjoint (in 
the sense of the theory of linear operators) of the 
resolvent of the tangent linear system (4). The 
adjoint equations provide an extremely efficient 
way for computing the gradient of a given output 
parameter of the model with respect to the input 
parameters such as, for instance, the initial 
conditions. 

The adjoint system of (4) reads: 

(7) 

I + v ~ 4 x c p = 0 ,  

where, in order to avoid any confusion, primes (') 
have been used for denoting the variables of this 
new system. The form of (7) depends on the 
definition of a scalar product on the space of 
perturbations (SV, 6cp). The scalar product used 
here is the scalar product associated with the 
quadratic form (2a), which measures the total 
energy of the perturbation (6b,6cp). The 
interested reader can find in Talagrand and 
Courtier (1987) indications on how the adjoint 
system is obtained from the tangent linear 
system. 

Because of its very nature, the adjoint system 
proceeds from the output of the model to its 
input, which means that it must be integrated 
backwards in time. This does not create any 
theoretical or numerical problem. In particular it 
is seen that dissipation terms in (7) remain dissi- 
pative for backward integration (this can be 
easily understood if one notes that a dissipated 
variable must have a small derivative with 
respect to the model's initial conditions). 

For the adjoint model as for the linearized 
model, we are in effect dealing with the 
discretized form of eq. (7) whose resolvent is thus 
a finite dimensional operator which we can rep- 
resent by a matrix M:. This matrix is the adjoint 
of the resolvent matrix M ,  of the discretized 
analog of the tangent linear system (4) for the 
scalar product (2a). 

It is easy to see that the directions in which the 
resolvent of the tangent linear system is most 
sensitive to a change in the reference solution are 
the directions in which an initial error is most 
rapidly amplified in the linear approximation. In 
order to identify these directions, we have 
determined the initial perturbations which grow 

-+ 
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most rapidly for a given forecasting range T. 
These perturbations maximize the amplification 
factor 

A(e)  = 

where S,  = MT M,. Geometrically the equation 
(S , .e ,e )  = 1 defines an hyperellipsoid the small- 
est axis of which maximizes A. It is well-known 
that this axis is associated with the largest 
eigenvalue of the symmetric operator S,. The 
fastest growing perturbations are the eigenvectors 
of S, associated with the largest eigenvalues. 

The very form of the operator S, shows that, 
for given e, the determination of S,.e requires 
one integration of the direct model between 0 and 
T, followed by one backward integration of the 
adjoint model between T and 0. Following Urban 
(1985), we have used to so-called Lanczos algor- 
ithm based on the Householder reduction method 
for symmetric matrices (e.g., Parlett, 1980) in 
order to determine the dominant eigenvectors. 
This algorithm does not require the computation 
of the whole matrix S, but only the vectors S,.e 
for a few appropriately selected perturbations e’s. 

The results obtained are at first sight surpris- 
ing. For very short ranges, the growth is larger 
than the growth corresponding to the exponential 
48-hour doubling time found above (for a 12-hour 
forecast range, the dominant eigenvalue is equal 
to 5.2, which would correspond to a doubling 
time of about 10 hours for the error amplitude), 
but is also less than exponential (for a 24-hour 
forecast range, the dominant eigenvalue is only 
14 rather than 27.04). This can be explained as 
follows. Suppose that the resolvent can be repre- 
sented as the integration of a linear system with 
constant coefficients. The eigenvectors have then 
an exponential behaviour. If we consider the 
limit as the time goes to infinity of the vector that 
grows fastest, we obtain the eigenvector associ- 
ated with the eigenvalue having the largest real 
part, that is the first Lyapunov vector. But if 
instead, we are interested in finite time growth, 
the fact that the eigenvectors are not necessarily 
orthogonal allows vectors other than eigenvectors 
to grow fastest. In more mathematical terms, the 
eigenvectors of the symmetric operator S, are 
different from the eigenvectors of the direct 
resolvent DF, because the transposed resolvent 
D F f  does not commute with DF,. We show in 

(M , .e ,  Mr.e)  - (S , .e ,e )  

( e ,  e> (e ,e> ’ 
-- 

Fig. 7. Streamfunction of the fastest growing pertur- 
bation over a 24-hour period, at the beginning (a) and 
at the end (b) of the period. Extrema values are printed. 
The unit (arbitrary) is the same in both charts but the 
contour interval in (b) is four times the contour interval 
in (a). 

the appendix an example of a linear differential 
system of dimension 2 with constant coefficients 
having such a behaviour. 

The fastest growing perturbations are geo- 
strophic and concentrated in small scales. Fig. 7 
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shows the streamfunction of the dominant pertur- 
bation for a 24-hour forecast range, at the initial 
and final times. The perturbation streamfunction 
shows dipoles in the vicinity of the saddle-nodes 
of the reference streamfunction, around which 
barotropic instability has already been seen to 
develop in the direct perturbation experiments. 
Similar situations have been observed in the 
evolution of Lyapunov vectors (Legras, pers. 
comm.) in the case of incompressible two-dimen- 
sional turbulence on the sphere. It is also seen in 
Fig. 7 that the scale of the dominant perturbation 
increases over the time range under consider- 
ation. This remains true for longer ranges, and 
the dominant eigenperturbation at 48 hours has a 
structure very similar to that obtained at 24 hours 
by direct explicit perturbation (Fig. 6) .  

The resolvent is therefore very sensitive to the 
location of the saddle-nodes of the stream- 
function. But the modes which are most sensitive 
to the saddle-nodes are restricted to small scales 
and we have seen in the preceding section that if 
something can be useful for the analysis it is the 
large-scale part of the resolvent. 

The fact that the growth of large-scale Rossby 
modes is exponential suggests that it is governed 
by a constant coefficient linear differential sys- 
tem. Indeed the evolution of the basic flow is 
slow and the coefficients of the tangent linear 
system (4) vary slowly in time. We have therefore 
performed a linear integration, the coefficients of 
the system (4) being now kept at their initial 
values. For large-scale Rossby waves, the results 
are very similar to those obtained in the direct 
perturbation experiments. In particular, the 
dominant eigenvectors have a two-day doubling 
time and are associated with a large-scale 
geostrophic flow whose pattern is such that 
kinetic energy is extracted from the basic flow. 

These results suggest that it may be sufficient, 
in order to describe the temporal evolution of the 
error in an assimilation scheme, to use a 
simplified constant-coefficient version of the 
tangent linear system, restricted to large-scale 
Rossby modes. With respect to present assimi- 
lation procedures, the main gain achieved by 
proceeding so would be that the specific features 
of the current atmospheric flow would be 
explicitly taken into account, in particular in 
terms of the instabilities which are likely to 
develop. Additional work must of course be 

performed in order to define explicitly the most 
appropriate form of the simplified linear system 
describing the evolution of the forecast error. 

8. Conclusion 
The results presented and discussed in this 

article show that the short-time evolution of the 
dominant components of the forecast error can be 
approximated to a high degree of accuracy by a 
linear differential system. In addition, the tem- 
poral variation of the coefficients of that system 
can be ignored without significant degradation of 
the accuracy of the results. 

However these results have been obtained with 
a rather simple numerical model which is far 
from containing all the features of atmospheric 
physics relevant for short-range forecasting. One 
question has to do with the use in this article of 
plane rather than spherical geometry. It has 
already been mentioned that the fl-effect, by 
increasing the linearity of Rossby wave evolution, 
should make the linear approximation even more 
valid. The use of plane geometry makes some- 
what arbitrary the choice of the ratio between the 
two intrinsic scales of the flow, namely the size of 
the periodic domain and the Rossby radius 
of deformation. Preliminary experiments have 
shown that reducing the relative size of the 
Rossby radius reduces in approximately the same 
proportion the scale of the most unstable modes. 
This is consistent with results recently obtained 
by Farge and Sadourny (1986) and with the 
interpretation these authors have given of the 
role of the inverse Rossby radius I ,  in eq. (6).  

Atmospheric dynamics is dominated to a larger 
extent by baroclinic instability than by barotropic 
instability and an important question is of course 
whether the conclusions obtained here would 
remain valid for a more realistic baroclinic 
model. Although results obtained by Balgovind et 
al. (1983) with a primitive equation model indi- 
cate that the linearity hypothesis is coherent from 
a statistical point of view, further numerical 
experiments will obviously be necessary in order 
to answer precisely to that question. But the fact 
that baroclinic instability develops at  a roughly 
exponential rate over time periods of about 48 
hours can be taken as an indication that the 
results presented here would not be drastically 
altered with a more realistic primitive equation 
model. 
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10. Appendix 

We will present an example of a constant 
coefficient linear differential system for which 
the fastest growing mode over a given time 
interval is not the dominant eigenvector, the 
corresponding largest amplification factor being 
larger than the amplification factor associated to 
the largest eigenvalue. 

We consider the 2 x 2 matrix A given by: 

A = ( :  :). 
and the associated linear differential system of 
equations dX/dt = A . X .  We look for the time 
behaviour of the Euclidean norm IlX(t)l12 = 
x , ( t ) ?  + ~ ~ ( t ) ~  where x, and x2 are the two 
components of the vector X. 

and the corresponding 
unit eigenvectors v ,  , v 2  are: 

I /-\ 

The eigenvalues A,, 

The resolvent of the system at  time T is then 
easily obtained: 

Computing the amplification factor for the unit 

vector e2 = ( y )  at  time T we obtain : 

IIM,(ez)t12 = (exp(T) - 

This coefficient is larger than the amplification 
coefficient (exp(l, T))z .  

+ (exp(T))*. 

The reason for which unitary vectors can grow 
faster than the eigenvectors is that, since the 
eigenvectors are not orthogonal, there are unitary 
vectors, such as eZ, whose component along the 
dominant eigenvector u2 is larger than 1 (,,& in 
our case). Since these vectors have non-zero 
component along the other eigenvector 0, , the 
norm of their image by M ,  can be larger than the 

In the present case the matrix S ,  whose domi- 
nant eigenvector maximizes the amplification 
factor is: 

norm l l~7(u2) t l .  

S ,  = M ;  M ,  

As time goes to infinity, S ,  is equivalent to: 

which shows that the growth rate (exp(T)) of the 
dominant eigenvector of A is asymptotically 
recovered. 

Remark. The fact that A is singular in the 
above example has no importance since it is only 
with the resolvent M,, which is non-singular, that 
we are dealing. The important condition is that 
the eigenvectors of A must be non-orthogonal for 
the scalar product chosen in the definition of the 
amplification factor. We thus see that the fastest 
growing modes over a finite time interval, are 
not, contrary to the eigenvectors, independent of 
the norm. 

In the context of Section 7,  the fact that the 
largest amplification coefficient, associated with 
some small scale perturbation, is initially differ- 
ent from the eigenvalue which asymptotically 
appears in the exponential behaviour of pertur- 
bations for large time scales can be interpreted as 
follows : these small scale perturbations, when 
decomposed along the eigenvectors of the con- 
stant coefficient tangent linear system, have 
relatively large components along the large-scale 
Rossby eigenvectors which dominate the time 
evolution of the tangent linear system. 
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