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1. Introduction 

The theoretical relationships between statisti- 
cal interpolation (Eliassen, 1954; Gandin, 1963) 
and correction methods of objective analysis 
(Bergthorsson and DGs, 1955; Cressman, 1959, 
henceforth C), and the convergence properties of 
the latter methods, have recently been investi- 
gated by Franke and Gordon (1983), Bratseth 
(1986, henceforth B), Lorenc (1986). and Franke 
(1988). In B, there was described an iterative 
method, similar in some respects to that of C, but 
which always converges in the limit to the 
statistical interpolation (SI) result. The purpose 
of this note is to present the results of some tests 
of the univariate interpolation accuracy of the B 
method, in comparison with SI and C on a large 
set of real data. 

2. Data base and evaluation method 

The tests were performed with a data set which 
originally had been compiled to evaluate the per- 
formances of univariate analysis schemes, over 
and adjacent to data-dense areas (Seaman and 
Hutchinson, 1985, henceforth SH). Briefly, the 
data were 20 years of 09.00 (local time) obser- 
vations of surface pressure from a network of up 
to 47 stations over southeastern Australia, cover- 
ing an area of about 8.105 kmz (Fig. 1 of SH). 
The observations were normalized by subtracting 
the climatological mean at each station. 

Interpolation accuracy was assessed by ran- 
domly selecting N observations, to be used in an 
analysis, and interpolating to the locations of 

Tellus 40A (1988), 2 

observations withheld from the analysis. Each of 
the N observations was used in the interpolations 
to the locations of every withheld datum; no data 
selection was employed. The process was re- 
peated for networks of N observations on many 
days, until comparisons had been made with 
10,000 pieces of withheld data. 

The particular data set was used because it was 
readily available; in its form described above, it 
is not ideal for testing the B method. The obser- 
vations are dense (average spacing about 150 km) 
in comparison to the characteristic length scale, 
and the ratio of observational error variance to 
background (climatology) error variance (“noise- 
to-signal ratio”) is low. These two circumstances 
do not apply in many practical situations. 
However, such biases were partially overcome, 
(i) by using small values of N ,  and constraining 
the observational separation, in some of the tests, 
and (ii) by adding a synthetic random error 
component to the data in other tests. 

For univariate analysis of normalized in- 
crements from a background field, and assuming 
uncorrelated observational errors, the basic B 
method uses the weights 

a ,  = rvj lMJ? (1) 
a,, = (r,, + 1: 6,J)/Mj, ( 2 )  
to iteratively interpolate the observed increments 
(“corrections”) at points j ,  to grid points (x) and 
observing points ( i ) .  Here, r is the spatial corre- 
lation coefficient, 1; is the normalized obser- 
vational error variance, and 13,~ is the Kronecker 
delta. The denominator M, is essentially a 
measure of “data density” at observing point j ,  
defined by 1 
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MI = c Ir,rl* (3) 
k 

where the summation is over all observing 
points k. 

To apply the basic B method, it is necessary to 
prespecify exactly the same parameters as are 
needed for statistical interpolation. Such par- 
ameters had already been obtained in SH, from a 
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5-year subset which was not used in subsequent 
tests. The observational and background error 
variances were respectively 0.834? and 7.94* 
hPa2, implying 1 = 0.105. The homogeneous and 
isotropic correlation function used was one of the 
two best found in SH, namely 

r f s )  = (1 + s/L) exp( -sit.), (4) 
where s is separation and L is a length scale 
parameter (824 km). 
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Fig. 1 .  Root mean square deviations RMSD (hPa) of interpolated minus withheld data for the B method (full 
curve), as a function of iteration number (k). and the number of observations ( N )  used to interpolate. Also shown 
are the corresponding deviations for statistical interpolation (SI), for the C method (dotted curve), and for the B 
method with reducing length scale (dashed curve). The noise-to-signal parameter A was 0.105, and the background 
error variance was 7.94' hPaz. 
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3. Tests of the basic method 

Fig. I shows plots of root mean square (RMS) 
deviations (interpolated minus withheld data) for 
the basic B method (full curves), as a function of 
iterations and network density. Also shown are 
the corresponding RMS deviations for SI, and for 
C (dotted curves). The panel for N = 30 corre- 
sponds to an average observational spacing of 
about 0.2L, and that for N = 2 to about 0.8L. The 
parameters of the C method had been optimized 
for five iterations: see SH for details. The RMS 
deviations are not strictly interpolation errors, 
since they are augmented by random obser- 
vational error. However they provide a valid 
basis for comparison of the methods. It is stressed 
that deviations are from withheld data, not from 
data used in the analyses. 

Consistent with the theory in B, the basic B 
result approaches the SI result with increasing 
iterations. However it is only for small N ,  or for 
large numbers of iterations, that the basic B 
method interpolation error is close to that of SI or 
five-iteration C. Note in particular that the C 
error is much below the B error at the first 
iteration, for large N .  Both however are well 
below the background error of about 8 hPa. 

4. Some variations 

4.1. Tuning the B method 

In its basic form, the B method can be re- 
garded as an alternative computational route to 
the SI result; for this purpose the values of 1, and 
rlJ should be as close as possible to the true noise- 
to-signal ratios and increment correlation coef- 
ficients. However it was suggested in section 6 of 
B that a more rapid convergence, perhaps to 
a suboptimal limit, could be achieved by 
decreasing L on later iterations. 

The long dashed curves in Fig. 1 were the 
result of reducing L by a factor b at  each 
iteration. The value of b, typically 0.554.8, was 
optimized so as to minimize the theoretical 
interpolation error (eq. (2) in B) after 5 iterations. 
Fig. 1 confirms that such progressive reduction of 
L does improve the convergence rate, particularly 
for dense networks, although the scheme no 
longer converges to the SI result. 

A further modest gain is achievable (results not 
shown) by replacing M, (eq. (3)) by MJa where ci 
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is an overrelaxation factor which varies with 
iteration. Also, following a suggestion by Bratseth 
(personal communication), the values of both L 
and 1 at each iteration, including the first, were 
treated as tunable parameters. As with over- 
relaxation, the small improvements from ad- 
ditional tuning of  L and 1 did not alter the 
general picture conveyed by Fig. I .  However the 
latter tests were not exhaustive, and further 
efforts may be worthwhile. 

4.2. Larger obserttational separations 

In view of the apparent sensitivity of the basic 
B method's convergence rate to data density, the 
experiments for N = 2  were repeated with 
the observational separation constrained to be 
greater than 1200 km (about 1.5L). Fig. 2 indi- 
cates a definite improvement of the basic B 
method relative to the C method, and a rapid 
convergence to the SI result. Note that for clarity 
the ordinate scaling in Fig. 2 has been changed 
relative to Fig. I ,  and that for practical purposes 
the performances of all three methods were still 
very close (3.57 to 3.64 hPa RMS). Unfortunately 
the available data base did not permit tests with 
much larger observational separations, but it 
seems reasonable to speculate that the trend 
indicated in Fig. 2 might continue. 

4.3 .  Higher noise-to-signal ratios 

Idealized experiments shown in B indicated an 
improved convergence rate when 1 was larger. 
The value of 1 is likely to be greater than the 
0.105 used so far in this note, when a short-range 
forecast rather than climatology is used as 
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Fig 2 As for Fig I .  with N = 2. and observational 
separation constrained to greater than 1200 km Note 
the change in ordinate scaling from Fig 1 
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Table 1. Root mean square deviations (hPa) of 
interpolated minus withheld data, for networks of’ N 
obseraations and noise-to-signal ratio A 

I = 0.105 I = 0.3 I =  1.0 

N = 3 0  N = 2  N = 3 0  N = 2  N = 3 0  N = 2  

SI 1.022 3.402 1.461 3.777 2.685 5.368 
BB5 2.555 3.662 2.601 3.868 3.061 5.368 
BR5 1.316 3.575 1.606 3.826 2.739 5.368 
CR5 1.056 3.614 1.559 3.830 2.987 5.589 

SI = statistical interpolation. BB5 = basic B method 
( 5  iterations). BR5 = B method with reducing L 
( 5  iterations). CR5 = C method (5 iterations). 

background. To simulate such situations with the 
available data, a synthetic random error com- 
ponent was purposely added to the observations, 
to increase their noise-to-signal ratio to 0.3 and 
1 .O. These values correspond approximately to 
those calculated by Lonnberg and Hollingsworth 
(1986) for 1000 and 150 hPa geopotentials. Table 
1 indicates that with A sufficiently large, and the 
data sufficiently sparse, the B method becomes a 
little better than the C method, for the same 
number of iterations. However, slow convergence 
of the basic B method is still a problem with 
dense data, even when 1 = 1 .O. 

noise-to-signal ratio. In all cases, SI produced the 
best result, as would have been expected since the 
covariance structure of the data was well known. 
For dense data and low noise-to-signal ratio, the 
performance of the C method after 5 iterations 
was close to SI, while the basic B method con- 
verged very slowly. On the other hand, with 
sparse data and noise to signal ratio close to 
unity, the basic B method converged rapidly to 
the SI result, and was slightly more accurate than 
the C method for the same number of iterations. 

It should be emphasized that a contributory 
factor to the C method’s performance was its 
objectiw tuning, by minimization of its theoreti- 
cal interpolation error with respect to the tunable 
parameters (Seaman, 1983). Smoothing between 
iterations was an essential ingredient. 

When the data is dense, it also appears essen- 
tial to tune the B method (via L and perhaps A). 
This requirement makes the B and C methods 
more similar. However, even in a simple 
univariate setting, the two approaches still differ 
with respect to (i) normalization of the weights, 
(i i)  interpolation t o  observing points, and (iii) 
form of the influence function. Future research 
might focus on the individual impacts of these 
3 factors. 
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