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ABSTRACT 
The statistical effect of a time-changing zonal forcing on the large scale, barotropic 
components of the atmospheric circulation is considered. It is suggested that maxima of the 
statistical distribution of the zonal wind and traveling planetary wave intensity are the results 
of transitions between different, locally in time, dominating regimes. This interpretation is 
substantially different from that commonly adopted, which identifies the statistical maxima 
with the attractors of the theoretical models. To clarify this point, results from a numerical 
simulation, clearly showing the effects of transitions on distributions, are discussed. It is 
shown in particular how the properties of the basin of attraction of different regimes can 
deeply affect the resulting distributions of the relevant physical quantities. It is also shown 
how maxima of distributions have no simple connections with equilibria computed under the 
assumption of constant zonal forcing. These results suggest new interpretations of the 
statistics. 

1. Introduction 

After the introduction of low-order truncated 
models of the dynamic equations (Lorenz, 1963; 
Charney and De Vore, 1979) and others, 
researches on the statistical properties of large- 
scale atmospheric circulation were undertaken to 
verify such theories. Most of the work was 
devoted to the analysis of the low-frequency 
variability (time scales exceeding 10 days) that 
dominate the planetary flow patterns (Sawyer, 
1970; Blackmon, 1976; Dole, 1982). The com- 
parison between truncated spectral model predic- 
tions and statistical results were carried out com- 
paring fixed stable points of the models with 
relative maxima of the statistical distribution of 
the real data; in other words, peaks of the 
statistical distributions were taken as representa- 
tive of "equilibria" of the large-scale circulation 
(Charney et al., 1981; Reinhold and Pierre- 
humbert, 1982; Rambaldi and Mo, 1984; 
Speranza, 1986). Truncated models of large-scale 
atmospheric circulation are based on an arbitrary 
choice of eigenfunctions of some operator (often 
the Laplace operator) and most of the relevant 

predictions produced (attractors, stable equi- 
libria, etc.) strongly depend on the choice of the 
number and the structure of the modes. We know 
that from the mathematical point of view, the 
convergence in some norm of the spectral series 
cannot be demonstrated for differential opera- 
tors, such as those present in large-scale 
barotropic or baroclinic equations. Moreover, we 
know that in geophysical fluid dynamics, relevant 
features of the resulting truncated system, such as 
the nature of attractors and of bifurcations, de- 
pend on the chosen geometry (Lupini and 
Pellacani, 1984). The choice of the modes needs 
then to be based on some physical grounds, or on 
the capability of explaining some relevant 
observed feature. The analysis of meteorological 
data is rather difficult as far as the number of 
degrees of freedom is in fact infinite. The r6le of 
simple truncated models as theoretical guidance 
is very important as they can capture some 
relevant prototypes of non-linear phenomena in 
the atmosphere. 

In this paper, we use a low-order truncated 
model of a barotropic, dissipative atmosphere 
with a varying (in time) zonal forcing to show 
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how the maxima of statistical distributions of 
zonal wind and wave amplitude are affected by a 
non-stationary zonal-forcing. It is found that the 
zonal wind distribution is essentially unimodal 
while the wave amplitude statistics exhibit a clear 
bimodality. Such features are then interpreted by 
showing that with a time-varying zonal forcing, 
different attractors globally dominate the 
dynamics in different time intervals. As the 
global attractiveness of different regimes can 
change abruptly when the non-stationary zonal 
forcing crosses critical values (see Section 2), the 
motion of the representative point in the phase 
space is deeply affected by such changes of the 
global attractor. The representative point starts 
moving toward the new attractor and the evol- 
ution of the system is dominated by the features 
of the basin of attraction quite far from the 
attractor itself. We show that the contributions of 
such transitions to the statistical distributions of 
zonal wind and wave amplitudes, are relevant. 

The imposed oscillation of the zonal forcing 
(introduced to simulate the real variability of the 
zonal flow due to physical processes external to 
our model, such as baroclinic activity) is such 
that the two global attractors (an essentially zonal 
equilibrium and a periodic attractor with strong 
wave amplitudes) dominate the system in differ- 
ent parts of the period. In fact, the system is 
continuously approaching one of the attractors, 
but it never reaches it because the typical time of 
attractiveness of both attractors is significantly 
shorter than the time needed by the system to 
approach them. 

In our analysis, the maxima of the statistical 
distributions are generated by the effects of the 
transitions between different regimes rather than 
by the regimes themselves. The effect is more 
evident for the zonal wind distribution which 
does not retain any information of the two 
equilibria alternatively dominating the phase 
space. Its only maximum does not correspond to 
any dominating zonal equilibrium. 

The model discussed below is a simple proto- 
type we use to show the r61e possibly played by 
the transitions on the statistics of the quantities 
involved. We consider a dissipative, three-mode, 
barotropic model with one zonal and two-wave 
components with a non-stationary forcing acting 
on the zonal flow only. The forcing is varied in 
time in different ways and the resulting statistics 

are considered and compared. It is shown that 
the most relevant features of the different distri- 
butions are similar and depend on the character- 
istics of the attraction basins of the attractors that 
become attractive during the forcing variations. 

Further experiments have been carried out 
increasing the number (4 and 6) of spectral wave 
components according the selection rules. Quali- 
tatively similar results have been obtained on the 
statistics for transitions between zonal fixed 
points, and for periodic oscillations with associ- 
ated significant mean wave amplitudes, showing 
that in the limits of our experiments, the features 
of the statistical distributions are stable with 
respect to the introduction of new wave-like 
spectral components. 

2. The basic theory 

In this section, we briefly review the basic 
properties of the system of equations used in our 
analysis of the effects of transitions on the 
statistics. This system has been extensively 
studied (Lupini et al., 1983; Lupini and 
Pellacani, 1984). The truncated form of the two- 
dimensional non-divergent barotropic vorticity 
equation in spherical geometry for a forced dissi- 
pative flow can be written in the following form: 

where 3, and r y  represent the complex amplitudes 
of the two wavelike spectral components we 
consider in our model, and 5, is the amplitude of 
a zonal component interacting with the two 
waves. 3, corresponds to a spherical harmonic Y," 
with no longitudinal structure and 3, and ry to the 
spherical harmonics Y$ and Y$ with both lati- 
tudinal and longitudinal structure. Im means 
imaginary part, v,, v, and vy are dissipation 
coefficients; c, and g, are structure parameters 
(Platzman, 1962; Lupini and Pellacani, 1984). 
For a given spherical harmonic YL, j and p are 
called longitudinal and latitudinal indexes. With 
the restriction ny > nB and I ,  = 1, = I, the inter- 
action coefficients Zppa and 1,. satisfy well-known 
selection rules (Platzman, 1962): 

Z,,,#O for a = l , 3  , . . . ,  2 k - 1 .  (2.4) 
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f, represents the forcing acting on the zonal 
flow component. The problem is simplified 
without losing important information if the fol- 
lowing hypothesis is assumed for the dissipation 
coefficients acting on the wave components: 
v, = vg = vy = v. 

In a previous paper (Lupini and Pellacani, 
1984), henceforth referred to as “LP”, the system 
of eqs. (2.1), (2.2) and (2.3) was studied for 
constant values of the zonal forcing. It was found 
that if the structure parameter S, defined by 

- 

S = ( I g g ,  - I,,)’ + 4(cS - c,) (cy - c,) ki (2.5) 

satisfies the condition S < 0, two different 
globally attracting equilibria are found: if the 
forcing amplitudes belongs to the finite interval 
(v, (:I), v, ( A 2 ) )  where (6‘) and 4:’) are given by: 

(6’”’ = S-’{ - A g A I f  2t(Ag2 - 4V*) 
x (c, - C J ~ ;  - V2 AI’]”*} (2.6) 

and A g  = gg - gy and A I  = Igga - I,,, then a 
stable, globally attracting zonal equilibrium 
dominates the phase space of the system. Outside 
this range, a forced periodic oscillation becomes 
the only attractor, with constant values of the 
waves amplitudes. 

The case S > 0 has been considered (Lupini et 
al., 1983) (LPR hereafter) and is not discussed 
below as the bifurcation patterns for such triads 
are affected by the spherical geometry, and have 
no counterpart in truncated models in /?-channels. 
For simplicity, we have concentrated on the more 
interesting case S < 0. 

In the following, we will always refer to 
numerical and analytic results obtained for a 
zonal flow with meridional index 3 and for two 
waves with meridional indexes 2 and 4, and a 
longitudinal index 2. The angular velocity of the 
reference frame is taken to be 1 ,  and the typical 
dissipation time is assumed to be of the order of 
20 days (V = 0.05). The results considered below 
can be applied, with attention, to all those cases 
where the selection rules and the condition S < 0 
are satisfied. From a mathematical point of view, 
the quantity f, acts as a bifurcation parameter; 
when it crosses one of the points given by eq. 
(2.6) from the interior of the interval, a new 
stable periodic solution appears and the zonal 
flow becomes unstable due to a supercritical 
Hopf bifurcation. 

3. Transitions, a qualitative picture 

As suggested in LPR, we can intuitively con- 
sider the effect of slow forcing variations, at least 
in the limit of almost adiabatic change: we 
imagine that the representative point in phase 
space asymptotically follows one of the attractors. 
When the forcing crosses the stability boundary, 
the point abruptly becomes attracted by the other 
attractor and starts moving towards it. The 
characteristics of the trajectories depend on the 
properties of the basin of attraction during this 
transition. There are some obvious consequences 
of this fact: first of all, if the basin of attraction is 
rather flat, then the approach speed of the rep- 
resentative point in phase space will be rather 
slow, and such a transition will have a relevant 
effect on the resulting statistics. Moreover, the 
structure of the basin of attraction does not 
depend on the particular time evolution of the 
zonal forcing, and is therefore, a stable property 
of a given model. Other numerical experiments, 
not shown here, suggest that the smoothness of 
the far basin of attraction of the zonal flow 
regimes is maintained in truncated models with 
more than 2 (4 and 6) spectral wave components, 
with almost identical effects on the statistical 
distributions of the amplitudes of waves and 
zonal flow components. 

By numerical simulations (to be described in 
Section 4), it was found that the transitions from 
wave regime to zonal regime are characterized by 
a very slow motion of the representative point 
and therefore deeply affect the statistics, while 
the opposite transitions typically take place over 
a short time (of the order of 10 days) and do not 
play a relevant r6le ih the statistics. 

To properly understand the mechanism respon- 
sible for such basic features of our system, the 
almost adiabatic model can be adopted; two 
points are to be investigated, namely the location 
in phase space of the equilibria for the 
corresponding stationary model at a given time 
and their stability (or instability). Let us first 
notice that, by inspection of eqs. (2.1), (2.2) and 
(2.3) (see also LP), the wave regime equilibrium, 
when it exists, is stable and is characterized by a 
constant zonal component, corresponding to the 
critical value at which the Hopf bifurcation takes 
place. In Fig. 1, the heavy horizontal segment 
represents the locations of wave equilibria during 
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Fig. 1. Location of the stable equilibria with time- 
independent zonal forcing, for different amplitudes of 
the forcing. Increasing the forcing, the stable equilib- 
rium moves from Z to T along the vertical solid 
segment and then from T toward W along the 
horizontal solid segment. 

the part of the forcing oscillation when they exist; 
if they exist, they are stable, and the heavy 
vertical segment represents the locations of zonal 
equilibria, when stable, during the same oscil- 
lation. In the limit of the almost adiabatic analy- 
sis, there is always just one stable attracting point 
at a given time of the oscillation; such an attrac- 
tor moves along the trajectory represented by the 
two segments described above. The attractor 
moves, during a period of the forcing from Z to T 
along the vertical segment and from T to W along 
the horizontal segment; then it reverses the direc- 
tion of its motion following the same path. 

By inspection of Fig. 4, we are left with the 
problem of interpreting the upper portion of the 
trajectory where the representative point still 

moves toward zonal regimes with higher values 
of zonal wind intensity that do not correspond to 
any attracting equilibria during the forcing 
period (all the equilibria stay on the couple of 
segments Z-T and T-W). 

Let us briefly review what is observed in 
numerical simulations as those of Fig. 4. When 
the attractor is in the lower part of the vertical 
segment (near to the point Z), the representative 
point is not far from it, and once the equilibrium 
has reached its extremum at Z and reverses its 
motion, the point starts following it. When the 
point T is reached, no more attracting zonal 
equilibria exist and the only attractor of the 
system is the wave-like one which moves, 
increasing the forcing, from T to W. The rep- 
resentative point of the truncated system never- 
theless continues its motion along the vertical 
axis and only after a considerable time interval 
does it leave the region of zonal regimes and 
rapidly moves toward the attracting wavy regime. 
For forcing periods of the order of those 
considered in this paper, the representative point 
sits, after some oscillations, in such a regime and 
follows it. This typically happens after the equi- 
librium has reached its maximum at point W and 
has inverted the direction of its motion. Follow- 
ing that, the representative point then follows the 
moving (because of the varying forcing) equilib- 
rium, until it disappears at point T. After that, 
the representative point is attracted by the zonal 
equilibrium and moves downward. 

The two transitions are thus essentially differ- 
ent in their physical nature: during the lower 
transition, the representative point slowly moves 
toward zonal equilibria essentially following the 
evolution in time of the attracting wave regime. 
The upper transition takes place from unstable 
zonal regimes, and this happens rapidly. To 
understand this last feature, a local stability 
analysis of the attracting regimes, alternating 
during the period of the forcing oscillation, is 
to be considered. Referring again to the case of 
Fig. 4, it is observed that, when it exists (T-W in 
the figure), the wave-like equilibrium is locally 
stable, with one real and two complex conjugate 
eigenvalues. The real parts of such eigenvalues 
are small and exactly of the order of the dissi- 
pation time. 

For the zonal equilibria, the local stability 
analysis shows that in its stability range (Z-T in 
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Table 1. Eigenvalues (days-') of the linear stability problem for the zonal equilibrium; Re(l) < 0 indicates 
stable modes 

1, 1 2  1, 

Re Im Re Im Re Im 

- 1.OO0 
- 0.960 
-0.920 
- 0.880 
-0.840 
-0.800 
- 0.760 
- 0.720 
- 0.680 
- 0.640 
-0.600 
-0.560 
- 0.520 
- 0.480 
- 0.440 
- 0.400 
-0.360 
-0.320 
-0.280 

0.235 
0.217 
0.199 
0.180 
0.160 
0.138 
0.116 
0.090 
0.061 
0.024 

- 0.050 
-0.050 
-0.050 
- 0.050 
- 0.050 
- 0.050 
- 0.050 
-0.050 
-0.050 

- 1.338 
- 1.347 
- 1.356 
- 1.366 
- 1.375 
- 1.384 
- 1.393 
- 1.402 
-1.411 
- 1.420 
- 1.396 
- 1.353 
- 1.333 
- 1.321 
- 1.313 
- 1.307 
- 1.304 
- 1.302 
- 1.303 

-0.335 
-0.317 
-0.299 
- 0.280 
-0.260 
-0.238 
-0.216 
-0.190 
-0.161 
-0.124 
-0.050 
-0.050 
- 0.050 
- 0.050 
- 0.050 
- 0.050 
-0.050 
-0.050 
- 0.050 

- 1.338 
- 1.347 
- 1.356 
- 1.366 
- 1.375 
- 1.384 
- 1.393 
- 1.402 
-1.411 
- 1.420 
- 1.463 
- 1.524 
- 1.562 
- 1.593 
- 1.620 
-1.643 
- 1.665 
- 1.685 
- 1.703 

-0.050 
-0.050 
-0.050 
- 0.050 
- 0.050 
- 0.050 
- 0.050 
-0.050 
-0.050 
-0.050 
- 0.050 
- 0.050 
- 0.050 
-0.050 
-0.050 
-0.050 
-0.050 
- 0.050 
- 0.050 

O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
0.OOO 
O.OO0 
O.OO0 
O.OO0 
O.OO0 
O.OO0 

Fig. I), the two complex conjugate eigenvalues 
are again characterized by negative real parts 
exactly of the order of the dissipation time. After 
the critical value of forcing is crossed, one of 
the eigenvalues obviously exhibits a positive real 
part that rapidly grows with the forcing ampli- 
tude. 

We can then try to explain why, once point T is 
reached, the representative point continues its 
motion towards higher values of essentially zonal 
regimes. By numerical evaluation of the eigen- 
values, it is seen (Tables 1, 2) that the wave-like 
regime is in fact locally attractive, but the very 
small values of the negative real part of its 
eigenvalues suggest a very weak attractive effect 
in phase space. It is thus the instability of the 
zonal regime rather than the attractiveness of the 
wave regime that is responsible for the rapid 
upper transition of Fig. 4. In fact, after the Hopf 
bifurcation, i.e., for zonal regimes corresponding 
to zonal flows above point T of Fig. 1, such an 
unstable fixed point is characterized by increas- 
ing (with the forcing) positive real parts of its 
eigenvalues. The representative point of the 
system then remains near to the unstable equilib- 
rium, as it feels a very weak attraction effect 

through the stable wave equilibrium, until it is 
shot away by the increasing instability of the 
zonal regime itself. In Tables 1, 2, the eigenvalues 
of the zonal and wave-like regimes are listed for 
different values of the zonal forcing, respectively. 
We are thus in a position to clearly understand 
the essential physical difference between the two 
transitions: referring again to Fig. 4, it is seen 
that the lower transition takes place with the 
typical time of the forcing variation. The upper 
transition, from the zonal to the wave-like 
regime, in contrast is characterized by the typical 
time of instability of the unstable zonal flow 
regime. Thus, the basic mechanism responsible 
for the statistical features observed in the numeri- 
cal simulations reported in Section 4 is the 
permanence of the representative point of the 
system near the zonal equilibrium, even in a 
period of the forcing cycle when the zonal flow is 
not a stable equilibrium and the other wave-like 
equilibrium is very weak. This effect is main- 
tained when more than two wave-like com- 
ponents are considered, and then seems to be a 
rather general effect for an atmosphere such as 
that considered in our model characterized by an 
oscillating zonal forcing. 

Tellus 41A (1989), 3 



TRANSIENT-INDUCED STATISTICS IN THE ATMOSPHERE 205 

Table 2.  Eigenvalues (days-')  of the linear stabilityproblem for the wavy equilibrium; Re(l) < 0 indicates 
stable modes 

A, A 2  A3 

f. Re Im Re Im Re Im 

-0.0314 
-0.0323 
- 0.0333 
- 0.0342 
- 0.035 1 
- 0.0361 
-0.0370 
- 0.0379 
- 0.0389 
-0.0398 
- 0.0407 
-0.0417 
-0.0426 
- 0.0435 
-0.0445 
- 0.0454 
-0.0463 
-0.0473 
- 0.0482 
-0.0491 
-0.0501 
-0.0510 
-0.0519 
-0.0529 
- 0.0538 
-0.0547 

~~ 

-0.025 
- 0.025 
-0.025 
-0.025 
- 0.025 
-0.025 
- 0.025 
-0.025 
-0.025 
- 0.025 
-0.025 
- 0.025 
-0.025 
-0.025 
-0.025 
-0.025 
- 0.025 
- 0.025 
-0.025 
- 0.025 
-0.025 
-0.025 
- 0.025 
-0.025 
-0.025 
- 0.025 

~ 

0.019 
0.059 
0.081 

-0.098 
-0.112 

0.125 
-0.137 
-0.148 
-0.158 

0.167 
-0.176 

0.185 
-0.193 

0.201 
0.208 

-0.216 
0.223 
0.229 

-0.236 
-0.242 
- 0.249 
-0.255 
-0.261 
- 0.266 

0.272 
0.278 

- 0.025 
-0.025 
- 0.025 
- 0.025 
- 0.025 
- 0.025 
-0.025 
-0.025 
-0.025 
-0.025 
- 0.025 
-0.025 
-0.025 
- 0.025 
-0.025 
- 0.025 
-0.025 
-0.025 
- 0.025 
-0.025 
-0.025 
- 0.025 
-0.025 
- 0.025 
- 0.025 
-0.025 

-0.019 
-0.059 
- 0.08 1 

0.098 
0.112 

-0.125 
0.137 
0.148 
0.158 

-0.167 
0.176 

-0.185 
0.193 

-0.201 
-0.208 

0.216 
-0.223 
-0.229 

0.236 
0.242 
0.249 
0.255 
0.261 
0.266 

-0.272 
-0.278 

-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 
-0.100 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

4. Numerical simulations 

In order to simulate a realistic variation of the 
forcing parameter, with several time scales, 
numerical experiments were performed with a 
forcing function in the form: 

representing a superposition of different oscil- 
lations with periods TJ2n. All the simulations 
were performed with a fourth-order Runge-Kutta 
numerical scheme with a time-step of 0.1 days. 
We considered T,, equal 10, 15, 20, 30, 40, 50, 
100, 150, 200 and 250 days respectively, with 
random initial phases. We ran several experi- 
ments. The model was integrated for a long 
interval (20,000 days) and the distribution of the 
amplitude of the zonal flow and the amplitude of 
the wave components l(sl were computed. 

In a first experiment, we considered a single 
oscillating component with a period of 188 days. 
The forcing function is given by 

At) = -0.0314(1 +0.7 sin(t/30)), (4.2) 

where we choose fo = -0.0314 because this is a 
critical value for which the Hopf bifurcation 
takes place. The statistics produced by this 
experiment are shown in Figs. 2, 3. The effect of 
the transition dynamics on the distribution of [{,I 
is evident: the maximum between 0.4 and 0.5 
cannot be explained in terms of the existence of a 
zonal attractor in this interval, during the cycle of 
the forcing function. In Fig. 4, a sketch of the 
trajectory in phase space of the test experiment is 
given : statistical analysis and direct observations 
of the model evolutions show that the maximum 
in the distribution of l{,l in Fig. 3 is due to the 
section (A, B) of the trajectory, which corre- 
sponds to the transition from the wave-like 
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P 

r 

0.5 

5, 
Fig. 2. Normalized probability distribution P of the 
zonal component amplitude for a zonal forcing given 
by: f ( r )  = -0.0314(1 + 0.7 sin(r/30)). The simulation 
time 

P 

is 20,000 days. 

+ 

Fig. 3. Normalized probability distribution P of the 
wave amplitude for a zonal forcing given by: 
f ( t )  = -0.0314(1 + 0.7 sin(r/30)). The simulation time 
is 20,000 days. 

regime to the zonal regime. The transition is 
extremely slow and the system spends almost 
35% of the forcing period performing it. The 
opposite transition (C, D) in Fig. 4 is quite rapid, 
of the order of 5% of the forcing period. We then 
conclude that the maximum of the distribution of 
Fig. 2 is due to the slow nature of the transition 
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15, I 
Fig. 4. Sketch of the trajectoG of the representa- 
tive point with a zonal forcing given by: 
f ( t )  = -0.0314(1 + 0.7 sin(r/30)). The wavy regime is 
indicated with a cross. While the representative point 
moves along the trajectory from A to C, the 
corresponding zonal equilibrium lies on the = 0 
axis, with values of 4, ranging from -0.3 to -0.7. 

from wave regime to the zonal regime. Fig. 3 
shows how the maxima in the wave component 
amplitude still retains some information on the 
two equilibria present in the corresponding case 
with constant forcing, while this information is 
absent in the statistics of zonal flow. Because of 
its essential asymmetry with respect to the 
minimum, such a distribution must not be con- 
fused with that generated by a single standing 
wave. In the light of the results of this test 
experiment, we analyse the numerical results 
obtained by simulating more complex time- 
varying zonal forcings. In a second experiment, 
we add another component in the forcing: 

f ( t )  = -0.0314(1 + 0.7 sin(t/30) + 0.2 sin(t/8)). 
(4.3) 
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Fig. 5. Normalized probability distribution P of the 
zonal component amplitude for a zonal forcing given 
by: f ( r )  = -0.0314(1 + 0.7 sin(r/30) + 0.2 sin(r/8)). The 
simulation time is 20.000 days. 
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Fig. 7. Sketch of the trajectory of the representa- 
tive point with a zonal forcing given by: 
f ( t )  = -0.0314(1 + 0.7 sin(rl30) + 0.2 sin(r/8)). The 
wavy regime is indicated with a cross. While the 
representative point moves along the trajectory from A 
to C, the corresponding zonal equilibrium lies on the 
l<,J = 0 axis, with values of <, ranging from -0.3 to 
-0.7. 

Fig. 6. Normalized probability distribution P of the 
wave amplitude for a zonal forcing given by: 
f ( r )  = -0.0314(1 + 0.7 sin(r/30) + 0.2 sin(r/8)). The 
simulation time is 20,000 days. 

The statistical distributions again obtained by 
long-time integrations came out very similar to 
the previous case and are not included here. In a 
third experiment, we run the model with different 
values of the amplitudes a, of the periodic 
components. In particular, we consider a maxi- 
mum at T,, = 30 days (aTn = M  = 0.7) and we set 
a./aTm 3o = 0.1 for all the other oscillating 

components, thus simulating a maximum of the 
forcing activity for the period T =  188 days. Figs. 
5 and 6 shows the statistics worked out by such 
simulations and Fig. 7 shows a sketch of the 
trajectory in phase space in this experiment. We 
first observe that no relevant differences are 
found for the two new spectra (maximum at low 
frequencies or at T = 30 days). The fundamental 
features observed in the case of Figs. 2, 3 are 
retained : the zonal flow distributions exhibit a 
single maximum that corresponds to the tran- 
sition from the wave regime to the zonal regime: 
the peak is now more spread. However, this 
seems the only difference between this case and 
the test experiment. By inspection of Fig. 6, it is 
seen that the same two maxima of the test case 

Tellus 41A (1989). 3 



208 C. PELLACANI ET AL. 

are also obtained for very complicated time 
dependences of the forcing function. The two 
maxima are slightly more spread, but the gap 
between the two is still relevant and is 
reproduced independently of the choices of the 
hystogram step. As manifest in LPR, the spread- 
ing of maxima is essentially due to the presence 
of a large number of forcing frequencies, that 
induces a very complicated spectrum on the zonal 
component because of the essential non-linearity 
of our system. The wave-like components, on the 
other hand, do not exhibit a significant non- 
linear spreading of their spectrum (see again 
LPR). 

5. Concluding remarks 

Introducing the concept of multiple equilibria 
in large-scale circulation, Charney and deVore 
(1979) suggested that the atmosphere possesses 
several equilibrium regimes. They also suggested 
that that which is responsible for the transitions 
from one equilibrium to another, might be the 
small-scale synoptic instabilities (Gall et al., 
1979; Sanders ad Gyakum, 1980). 

In this paper, we have tested the possibility 
that, rather than oscillating between multiple 
stationary equilibria obtained by a fixed value of 

the forcing zonal parameter, the large-scale, 
barotropic components of the atmosphere feels 
dynamically significant variations in time of the 
forcing itself, causing the local-in-time domi- 
nance of different attracting regimes. Results 
considered in the previous section show how a 
simple truncated model of a barotropic, dissi- 
pative atmosphere under the action of a time- 
varying zonal forcing, generates statistics whose 
connection with the attractors, present in the 
cases of constant forcings, is more complicated 
than what might be thought in a simple, intuitive 
analysis. In particular, we have shown the effects 
of what we have called “transitions”, i.e., those 
time intervals when the representative point in 
phase space feels the abrupt disappearance of the 
wave-like attractor and starts to move slowly 
toward a zonal configuration. It was shown that 
during this stage, the representative point moves 
in the far basin of attraction of the zonal flow, 
whose characteristics are not captured by local 
stability analysis of the equilibrium. 
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