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ABSTRACT 
The Bernoulli and hydrostatic relations are used to derive an exact diagnostic equation 
relating wind speed to the integral of vertical displacement aloft. The form of this equation 
does not support the “kinetic energy” concept of flow stagnation proposed by Sheppard 
(1956). Linear theory estimates of the displacement integral are used to predict the occurrence 
of stagnation points as a function of hill shape and ambient shear. For a long ridge 
perpendicular to a weakly sheared flow, stagnation begins aloft, thus allowing wave breaking 
and transition to a severe state. For a ridge aligned with the flow, waves dispersively weaken 
aloft and stagnation occurs first on the surface. This allows density surfaces to intersect the 
ground and the low-level flow to split around the hill. 

1. Introduction 

As one considers the airflow past higher and 
higher mountains, the mechanical disturbance to 
the ambient flow increases until the air is brought 
to rest at certain points in the flow field. When 
such a stagnation point occurs aloft, the stream- 
lines become steeply sloping and wave breaking 
soon follows. When a stagnation point occurs on 
the solid lower boundary, an isentropic surface 
can intersect the boundary at a finite angle and 
streamline splitting can occur. Thus the predic- 
tion of qualitative flow type requires a prediction 
of stagnation. 

The well known analysis and “kinetic energy” 
argument of Sheppard (1956) indicates that the 
lowest layer of a stably stratified fluid cannot lift 
over a hill without stagnating if the hill height 
h > U / N ,  regardless of the hill shape. Extending 
Sheppard’s analysis for hydrostatic flow we find 
(1) the local height dependent term used by 
Sheppard cancels out, and (2) the critical hill 
height is quite dependent on hill shape. In a 
recent paper (Smith, 1988, hereafter S88) linear 
theory was used to estimate the onset of 
stagnation in unsheared flow over an axisym- 

metric hill. In this special case, linear theory 
predicts that stagnation will occur simultaneously 
aloft and at the lower boundary when the non- 
dimensional mountain height h = hN/U z 1.3. In 
the present work, we extend these calculations to 
include other hill shapes and shearing ambient 
flow. 

2. Determination of wind speed from the dis- 
placement field 

Consider the steady flow of a stratified non- 
rotating Boussinesq fluid over a hill where 
the density far upstream is given by p =  
po(l - ( N z / g ) z )  and the speed is Uo(z). We 
suppose that there exists some pattern of density 
surface vertical displacement above the hill 
q(x ,  y ,  z )  which decays aloft (i.e., limz+ q = 0) 
and conforms to the hill (i.e., q(x, y , z = h )  
= h(x,  y ) ) .  This latter assumption will be incon- 
sistent if a stagnation point exists on the 
surface z = h, allowing other density surfaces to 
intersect it. 

Following Sheppard by assuming hydrostatic 
balance far from the hill, Bernoulli’s equation 
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along a streamline can be written 

(1) 
2 

Po 
U' = - ( - p *  - $po N 2  q 2 )  + U i ,  

Where p* is the difference between the pressure 
at a point ( x , y , z )  and the pressure at the 
same elevation far away (a, 00,z). Instead of 
making an assumption about p* directly, as did 
Sheppard, we invoke the hydrostatic relation to 
determine certain properties of p* .  

m m 

P * ( X ,  Y , Z )  = g  j p'dz = PoN2 5, VdZ, (2 )  
2 

where p' is the density anomaly. Since we wish 
the lower limit of the integral (2 )  to lie on a 
particular density surface it is convenient to write 
q(x,  y , z )  in density coordinates: q(x,  y,zo) where 
zo is the height of a particular density surface 
upstream, i.e., p = p(zo). 

Using dz = dz, + dq, (2 )  becomes 

P*(x, Y,ZO) = PO N2(I, ,  - h2), (3) 
where 

a, 

I,,(x,Y,zo)= j q(x,y,zb)dzb. (4) 
1" 

Combining (1) and (3) 

u2 = - 2 N 2  I,, + U,'. ( 5 )  

The cancelling of the q2 terms between (1) and 
(3) implies that speed variations predicted by (5) 
are associated only with non-local hydrostatic 
pressure variations and not with local parcel 
lifting. Stagnation (i.e., u = 0) begins when 
I,, = U,'/2N2. 

3. Linear theory prediction of stagnation 

Lacking a full non-linear solution for q(x,  y, zo) 
or I,,(x,y,zo) for use in (5 )  we use a linear 
theory in density coordinates (S88). For steady 
inviscid non-diffusive hydrostatic non-rotating 
Boussinesq flow, the equation governing the dis- 
placement field q(x,y,z,) in an ambient flow 
U(zo), N = constant, is 

u2 ~ x , z o z o  + 2 ~ ~ z o ~ r x z o  + N2(rl,  + 7,) = 09 (6) 
where zo is the height of a certain density 
surface upstream so that p = p(zo) and upstream 
Uo = Uo(zo) and N 2  = -(g/po)(dp/dzo). The 
lower boundary condition is 

q(x,  Y ,  zo = ZJ = h(x ,  Y ) ,  ( 7 )  

and the radiation condition is used aloft. Using a 
double Fourier transform the solution to (6) and 
(7 )  is: 

q(x,y ,zo)  = j j-: h(k , l ) f (k , I , zo)e i~'"+'Y~dkdl ,  

and the integral (4) is 

I , (x ,y ,zo)  = j-: h(k,I)g(k,I,zo)ei(~*+'Y)dkdl, 

where h(k , l )  is the double Fourier Transform of 
h(x,y) .  When 

(8) 

(9) 

Uo(zo) = Uo = constant, 
f ( k ,  I, zo) = ern+, 
where 

When the approaching flow is shearing 

UO(Z0) = czo + u,, c > 0, 

where 

z, = zo - z,, z, = - U&, 

z, 
a + l  

g(k,  I ,  zo) = - < + I .  

In the limit of the Richardson Number 
R 4 00, eqs. (13), (14), and (15) reduce to eqs. 
(lo), (1 l), and (1 2). The double integral in (9) can 
be rapidly computed using a fast Fourier trans- 
form (FFT) algorithm. Small errors arise from the 
ill-defined exponent in (9) when k = 0 ,  from the 
periodic nature of the FFT, and from the finite 
resolution of the chosen grid. 

Using eqs. (5) and (13), stagnation first occurs 
at a particular altitude (zo) when the non-dimen- 
sional hill height is 
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where i = zo N/U, and Q(io)  = MaxJI,,/h,), 
computed from (9) with (12) or ( 1 9 ,  is indepen- 
dent of h,. 

It could be argued that if a linear theory is used 
to provide ~ ( x ,  y, zo), it would be more consistent 
to use the linearized Bernoulli equation instead of 
(1); that is 

(17) 
where u’ is perturbation horizontal speed. If 
stagnation is defined as u’= - U, and (3) is 
linearized then (16) is recovered but without the 
factor of 2 in the denominator. We choose to use 
the exact result (5) and (16) as it provides a 
common method for diagnosing linear and non- 
linear solutions and allows us to trace errors in u 
unambiguously to errors in the q field. 

4. A family of ellipsoidal hills 

p, u, ut = -p*,  

Consider the family of hill shapes 

with elliptical contours. The value of Q in (16) 
then depends only on the aspect ratio r = aJa, 
and the exponent “n”, as well as the Richardson 
number. 

The choice (18) allows a comparison with the 
analytical formulae for surface pressure near 
elliptical hills given by Phillips (1984). According 
to S88, such solutions in z-coordinates with a 
linearized lower boundary condition can be used 
directly to compute I,, in density coordinates. Our 
FFT calculations of Q from (9) with I,, = 0 agree 
with Phillips’ values for r = 1, co and n = 1.0, 1.5, 
2.0, thus confirming our values of Q on the lower 
boundary. Phillips’ method gives no estimate of 
Q aloft. 

5. Results 
For simple isolated hills, two incipient stag- 

nation regions occur as h = hN/U, is increased: 
one directly over the hill at an altitude of 
2, = zo N/Uo z 4.0 f 0.1 (point A) and one on the 
windward slope (point B). Values of h, = hcri, and 
h, = for which (16) is satisfied at points A 
and B are shown in Fig. 1. Stagnation on the 

--.- ...............__ 
...... ...........-,”---- 

0.1 .2 .5 I 2 5 lo 

r = a y  /a, 
Fig. 1. The non-dimensional critical mountain height for stagnation aloft h, and at the lower boundary h, are 
shown as a function of horizontal aspect ratio ( r  = a,/a,). Curves for different steepness parameter (n) are shown 
although h, is insensitive to its value. Two values from non-linear calculations (marked N) are shown for judging 
the accuracy of linear theory. The dotted curves in the upper right illustrate the effect of forward shear in delaying 
stagnation aloft, as a function of the Richardson number (Ri). 
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surface is moderately sensitive to “n” but 
stagnation aloft is so insensitive that the different 
curves overlie each other to the accuracy at which 
they were determined here (z 5%). Ambient 
wind shear primarily influences stagnation aloft 
so only this variation is shown. 

5.1.  Unshearedjlow 
At large r,  stagnation first occurs aloft. This is 

expected, as in the hydrostatic 2-D limit (Queney, 
1948) the strongest part of the wave field occurs 
directly above the mountain with no decay aloft. 
Stagnation aloft is believed to cause gravity wave 
breaking and transition to a severe downslope 
wind configuration (Clark and Peltier, 1977). 
Low level stagnation will also occur in the 
presence of wave breaking for conditions in the 
upper right of Fig. I ,  but the linear theory 
prediction of h, should be disregarded in this case 
as it does not take wave breaking into account. 
Using a non-linear hydraulic theory, Smith (1985) 
predicts that low level blocking will begin at h, = 
0.985 z 1.0 in the presence of wave breaking. 
The apparent agreement between this value of h, 
and the linear theory result h, = 1 .O in Fig. 1 is 
fortuitous. 

As r decreases, both values h, and h, increase 
but h, for stagnation aloft increases more rapidly. 
This is so because in 3-D flow the vertically 
propagating waves weaken aloft due to dis- 
persion. For r = I ,  this decay goes as q z z-’I2 
(S88). At a particular r (depending on n) the 
curves in Fig. 1 cross indicating that for smaller r,  
surface stagnation will occur before stagnation 
aloft. This allows density surfaces to intersect the 
ground and the low-level flow will pass around 
the hill. Our assumption q(h)= h is no longer 
valid. 

We speculate that once a surface stagnation 
point forms, vertical displacements become 
limited. An increased hill height may not gener- 
ate stronger gravity waves and wave breaking 
may never occur aloft. The recent laboratory 
results of Castro (1987) support this view. 

The unlimited increase of h, for decreasing r 
(Fig. 1) indicates that a low-level parcel moving 
along the centerline of a narrow flow-aligned 
ridge can rise to a great height without 
stagnating. Lifting is not limited to a maximum 
value of U,/N suggested by Sheppard (1956). 
This is so because the displacement field q ( x ,  y ,  z) 

laterally disperses so rapidly aloft that the inte- 
gral of displacement above the parcel I,, remains 
small. According to (5 ) ,  it is only I,, that matters 
for stagnation, not the parcel displacement 11. 

The availability of high speed computers will 
soon make it possible to solve the full non-linear 
field equations and establish the exact positions 
of the curves in Fig. 1. Two currently available 
values for unsheared flow are: r = 1, n = 2 for 
which h, r 1.8 (P. Smolarkiewicz, private 
communication), and r = co, n = 1 for which 
h , = 0 . 8 5  (Huppert and Miles, 1969). These 
values indicate that our linear theory predictions 
of the critical h may be about 30% too low. 
Because we have used the exact diagnostic 
equation ( S ) ,  we know that this error must be due 
to an overestimate of q and I,, by linear theory. 
We speculate that the crossing of the A and B 
curves will still occur in the exact solutions, 
although the value of r where crossing occurs may 
be modified. 

5.2.  Shearedjow 
The effect of ambient forward shear is two- 

fold. First, shear decreases the effective stability 
of the flow and second, the faster flow aloft 
requires a larger pressure rise for stagnation. The 
latter influence is the dominant one in Fig. I ,  
causing the values of h, to rise rapidly with 
increasing shear (decreasing Richardson Num- 
ber). In mid-latitudes, values of the Richardson 
Number in the troposphere typically range from 
5 to 20 which, according to Fig. 1, makes wave 
breaking unlikely in the troposphere and severe 
wind events rare. 

The effects of reverse shear have not been 
explicitly computed as the concept of a critical 
mountain height is no longer useful. Near the 
wind reversal point z = zref > 0, even the smallest 
of hills will cause local stagnation. Further infor- 
mation on this problem can be found in the work 
Booker and Bretherton (1967), Clark and Peltier 
(1984) and Smith (1985). 
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