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ABSTRACT 

It is shown that, including the null solution (the Hadley state), there can be six different 
equilibria in a quasi-geostrophic forced dissipative P-plane channel model of a triadic 
baroclinic wave system. The dependence of the structural, energetics, and stability properties 
of each equilibrium solution upon the forcing and dissipation parameters have been 
delineated. Furthermore, the fairly subtle relations among these equilibria have been uniquely 
identified on the basis of the local bifurcation theory. 

Analytic solutions for the viscous single-wave equilibria are obtained. They are unique in 
contrast to those under an inviscid condition. The latter additionally depend upon the initial 
state. The diagnosis of the physical character of the single-wave equilibria reveals that such a 
wave is dynamically neutral with respect to the modified zonal flow. It has identical structural 
properties as those of a neutral wave according to the linear instability theory. 

Two distinctly different classes of multiple-wave equilibria are found numerically. One class 
is essentially a modified form of the single-wave equilibria. The other class uniquely stems 
from the presence of wave-wave interaction. A stable single-wave equilibrium and a stable 
multiple-wave equilibrium are found to coexist in a small part of the parameter domain. The 
instability of the multiple wave equilibria would result in triad-limit-cycles in this model as 
previously reported by Mak. 

1. Introduction 

It was shown in a recent study (Mak, 1985, 
hereafter referred to as M85) that the equilibrium 
solution* in a forced dissipative quasigeostrophic 
triadic baroclinic wave system can consist of 
either a single wave or multiple waves. They were 
referred to as the S, and the M states in that 
paper. They were found to exist in certain parts 
of the parameter plane defined by the baroclinic 
forcing and the dissipation parameters (see Fig. 9 
in M85). A number of related fundamental ques- 
tions were left unanswered. A sample of those 
questions are: “Do such equilibria only exist in 
those parameter regions within the range under 

* Definition: A system is said to be in an equilibrium 
state if the energy associated with each and every 
spectral component of the solution does not change in 
time. This definition is physically meaningful akin to 
that used in statistical mechanics and is less restrictive 
than the notion of a purely steady state. 

consideration? Are there additional equilibria? 
How many equilibria are there at each parameter 
point? What are the relations among all the 
equilibria? How are the equilibria related to the 
triad-limit-cycle? Above all, what is the physical 
nature of each type of equilibria in the sense of 
why its structure is as it is?” Answers to these 
questions would give us considerable insight 
about the origin and nature of the finite ampli- 
tude Rossby waves that might arise from 
baroclinic instability alone. The purpose of this 
study is to address those issues in the context of 
the model used in M85. 

The role of topography is deliberately not 
considered in this study. The dynamics of 
equilibria in a geophysical model with top- 
ography has been the subject of many investi- 
gations in recent years (e.g., Charney and 
DeVore, 1979; Pedlosky, 1981 ; Rambaldi and 
Mo, 1984; Kallen, 1981; Legras and Ghil, 1985; 
Tung and Rosenthal, 1985; Yoden, 1985). In 
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contrast, the dynamics of equilibria in a model 
without topography has received much less atten- 
tion. Wiin-Nielsen (1979) and Vickroy and 
Dutton (1979) used a barotropic single-wave sys- 
tem to investigate that problem. Those studies 
revealed that multiple equilibria are possible in 
the context of such an idealised model. A sample 
of other related references can be found in M85. 
It is worth mentioning that there are some very 
recent high resolution numerical models to study 
baroclinic instability a t  large supercriticality 
(e.g., Chou and Loesch, 1986; Kline and 
Pedlosky, 1986). 

The initial-value approach was used in M85 to 
determine the asymptotic states at which a small 
ensemble of baroclinic waves approaches at  large 
time. A more effective method for determining 
the number of equilibria and investigating their 
dynamics is to directly solve the corresponding 
set of nonlinear algebraic equations as was done 
by Lorenz (1963) and others. It is important to 
note that the equilibria in this model are not 
strictly steady states. Therefore, one cannot begin 
the analysis by simply setting the time derivatives 
of the governing spectral equations to zero. This 
is due to the fact that our beta-plane model has 
an intrinsic zonal symmetry. The waves in an 
equilibrium state must then be propagating in the 
zonal direction. Such phase speeds in turn must 
be functionally related to the amplitudes and the 
relative phase angles of the waves yet to be 
determined. Those analytic relationships are first 
deduced in a preliminary analysis in Section 2. 
That amounts to deducing in advance the dimen- 
sion of the subspace associated with each kind of 
equilibria. 

We will attempt to delineate the nature of the 
equilibria obtained for this model by applying the 
bifurcation theory. That is a theory concerned 
with the study of the changes in the qualitative 
character of the solutions, particularly the equi- 
librium solutions, of nonlinear systems as a par- 
ameter varies. Bifurcation points are often 
identified (e.g., in Vautard and Legras. 1986) on 
the basis of the change in the number of unstable 
eigenvalues obtained in a linear instability analy- 
sis of an equilibrium state as a parameter varies. 
To fully ascertain the character of a bifurcation 
point, we also need to establish the particular 
branches of equilibria which are associated with 
it. This motivates us to closely examine the 

structural properties of all the equilibria obtained 
in this analysis. The results enable us to identify 
those points on the parameter plane where a 
topologically distinct equilibrium state emerges 
as a parameter varies across them. In this way, 
we will be able to unambiguously identify the 
relations among all the equilibria. The results also 
explicitly substantiate the general notion that a 
symmetry-breaking does occur in the solution at  a 
bifurcation point. 

Section 3 reports the analytic solutions of the 
equilibria for the steady-single-wave states. Its 
origin and physical nature are clarified on the 
basis of its unique structural characteristics. 
Section 4 reports the numerical solutions for the 
equilibria of the steady-multiple-wave states. The 
stability properties of all the equilibria and the 
related energetics diagnoses are carried out in 
Section 5. The relations among all the equilibria 
from the bifurcation point of view are ascer- 
tained in Section 6. Some concluding remarks are 
given in Section 7. 

2. Basic considerations of the analysis 

Following M85, we consider a two-layer quasi- 
geostrophic B-plane channel model. The forcing 
is introduced in the form of a meridional tem- 
perature gradient, and a corresponding baroclinic 
shear. The dissipation is incorporated through a 
top and a bottom Ekman layer with an equal 
damping rate. We take the point of view that a 
difference in the viscous coefficients in the top 
and bottom Ekman layers is to be regarded as a 
complication, to be analysed after the attractors 
of the system with equal viscous coefficients have 
been thoroughly understood. The asymmetric 
action of differential damping is expected to 
retard one layer by a greater extent than the 
other. This should then have a greater direct 
impact on the evolution of the baroclinic 
component. A destabilizing effect on the system 
might be induced in addition to the normal 
stabilizing influence of the dissipation (Reinhold, 
1986). As to what the precise consequence of 
asymmetric dampings on the equilibration 
process in this model might be, only a thorough 
counterpart computational analysis could reveal 
this. 

The dynamics of the system is dictated by 
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5 dimensionless parameters: U ,  r,  F ,  p. and y 
(definitions given in M85) .  The two key 
parameters are U and r which measure the 
strength of the baroclinic forcing and frictional 
damping respectively. The other parameters are 
F the Froude number, p the meridional variation 
of the Coriolis parameter, and y the wavenumber 
of the lowest zonal harmonic. 

The flow field can be depicted in terms of two 
variables $ and 0 which respectively stand for the 
barotropic and baroclinic components of the 
streamfunction representing the departure from 
the imposed baroclinic flow. The governing 
potential vorticity equations in terms of $ and 6 
are 

v* $, + J(+,  py + vz $1 + J ( e  - uy, v2 e) 

v* e, + J(+,  vz e) + J(e ,  py + v2 $1 
= - rVZ $, 

+ J( - Uy, V* $1 - 2 F [ 4  + .I($, 0 - Uy)] 

= - rVz 0. (2 .1)  

A spectral version of this model consisting of only 
one wave-triad and one zonal component is 
analysed in this study. The basis functions used 
for the spectral representation of the solution are 

sm, = 4 n-I eimyr sin ny, 

co,, = J$ n-I cosy, (2 .2)  

with ( m , n ) = ( + l , l ) ,  ( + 1 , 2 )  and ( + 2 , 1 ) .  The 
eigenvalue associated with the basis functions is 
1," = (ym)2 + nz. It is pertinent to first note that 
the two necessary conditions for the instability of 
an infinitesimal wave with wavenumber (m, n )  
are (Pedlosky, 1970) 

1, 2F,  (2 .3)  

(2 .4)  

Furthermore, the marginally neutral wave has a 
frequency equal to 

The energetics of a neutral wave is described by 

The ratio of the amplitude of the barotropic 
component to that of the baroclinic component of 
the (m, n) wave is Rmn. It is uniquely given by the 
corresponding eigenfunction. We will consider 
the same values for the Froude number (F = 2.8) 
and the beta parameter ( p =  10) as in M85.  We 
set y equal to 1 in this study for the purpose of 
investigating the synoptic scale waves. It follows 
that the three waves retained in our spectral 
truncation are the only 3 possible unstable waves. 

The set of spectral equations was given in (AS) 
of M85 which are symbolically indicated below 
for ease of reference 

%,= F,(X) ,  j =  1 , .  . ., 7, (2 .6)  

where X stands for the seven unknown spectral 
coefficients (X, , . . ., X,), which are greater than 
those in M85 by a constant factor of n/&. The 
zonal component is XI. The barotropic 
components of the three waves are X2. A',, and 
X, and the corresponding baroclinic components 
are X,, X,, and X,. The seven known functions 
F, have quadratic nonlinearity arising from the 
different advective processes. One unknown, XI, 
is real and the remaining 6 unknowns are 
complex variables. (2 .6)  therefore effectively con- 
sists of 13 equations for 13 real variables. 

We will seek to algebraically solve (2 .6)  for the 
equilibria. Obviously, there is the null solution, 
X, = 0 for any combination of r and U .  It corre- 
sponds to the so-called "Hadley solution" in 
Lorenz (1963).  This is the only strictly steady 
solution in view of the intrinsic zonal symmetry 
of the model. In addition, there are solutions 
consisting of waves with time-invariant ampli- 
tudes and phases steadily propagating in the 
zonal direction. To facilitate a discussion on the 
intrinsic mathematical character of that class of 
solutions here, let us momentarily consider the 
solution for the wave components in a polar form 
as 

Q,, = Prm/(F + ( 2 . 5 4  X, = A, e x p ( d q ( Q , t  + Q,)), 

and a relative phase angle f o r j = 2 , .  . ., 7 ,  (2.7) 

where A,, Q, and Q, are real constants with A, 
being the amplitudes, Q, the frequencies and Q, (2'5b) 
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the phase angles of the components of the waves. 
In addition, we have a zonal component X, . Note 
that these quantities altogether constitute 19 
unknowns. They cannot all be independent since 
there are only 13 degrees of freedom in the 
model. The zonal homogeneity of the problem 
implies no dependence of the equilibrium sol- 
ution on the absolute value of the phase angles. 
Therefore, Q, and Q, may be assigned a zero 
value without loss of generality provided that Q3 
and Qs are interpreted as the relative angles 
between the two components of each of the 
(m,n )=  ( 1 , l )  and (1,2) waves. We may do so 
because the wave-zonal flow interaction only 
depends on the relative angle between the 
barotropic and baroclinic component of each 
wave. The wave-wave interaction on the other 
hand depends also upon the relative phase among 
the three waves involved. We may express the 
additional relative phase angle as the relative 
phase angle among either the barotropic or the 
baroclinic components. It follows that we cannot 
further set either Q6 or Q7 to zero. Q6 now is a 
measure of the relative angle among the three 
barotropic components and (Q7 - Q 6 )  is a 
measure of the relative angle between the two 
components of the (2, l )  wave. In other words, 
there must be four independent relative phase 
angles in an M-state. Being a measure of the 
intensity of the spectral components, X, and A, 
( j  = 2, . . . , 7) should be independent variables in 
general. The quantities considered up to this 
point add up to 1 1  degrees of freedom. It follows 
that only two of the six frequencies R, can be 
independent. Indeed, upon substituting (2.7) into 
(2.6), one would readily find that an M state 
solution is necessarily characterized by 

a,+, - - R,, j = 2, 4, 6, (2.8a.l 

and the sum of the two independent frequencies 
of the waves must be equal to the third fre- 
quency, e.g., 

Rz + R, = R,. (2.8b) 

These relations simply mean that the barotropic 
and baroclinic components of each wave must 
propagate a t  the same speed and that the wave- 
triad must be a resonant triad if the flow is to be 
an M-state. The relations (2.8) are indeed satis- 
fied by the numerical solutions of M85. It is 
important to note that the two designated 

independent frequencies, say R, and R,, are not 
coordinates of the phase space. Hence, a set of 
the M states constitute a subspace of only 11  
dimensions. The evolution of the flow towards a 
stable M-state may then be visualized as a 
trajectory in the 13-dimensional phase space 
progressively approaching towards an I I-dimen- 
sional attractor. 

It is algebraically simpler to seek the equilibria 
solutions in a Cartesian instead of a polar form. 
The reasoning above suggests that we may set the 
imaginary part of X, and X, to be zero without 
loss of generality and at the same time may 
introduce two unknown independent frequencies, 
say R2 and R, for the solution. Hence, we may 
write an equilibrium solution in the form of 

X, = Y, ,  (Xz ,X3)=(Y2,  Y3+iZ,)exp(iR,t) 

(X4, Xs 1 = ( Y,, Ys + iZ5) exp (Q, 1) 

( X 6 7  X,) = (Ye  + iz69 Y7 + iz7) 

x exp(i(R, + Q,) f), (2.9) 

where i =  m. The space of the equilibria is 
then defined by the constant values of 11  real 
variables (Y, ( j = l ,  7), Z, ( j = 3 ,  5, 6, 7)). To 
obtain the governing equations for them, we first 
equate the real and imaginary parts on both sides 
of (2.6) individually. Two of those 13 equations 
are expressions relating the frequencies R2 and 
R4 to the other 11  unknowns themselves. The 
resulting equations, with the substitution of the 
auxiliary relations, may be symbolically referred 
to as 

(,=O=G,({) f o r k = 1 ,  . . . ,  11.  (2.10) 

The unknowns are denoted in a vectorial form as 
< = ( Y l ,  . . ., Y7, Z3 ,  Z , ,  z6, Z 7 )  and G, are 
nonlinear algebraic equations. 

A special case of an M-state is a steady single- 
wave state (an s,,,, state) in which two of the 
waves have zero amplitude. It would be meaning- 
less in this case to assign any value for the phase 
angle or frequencies for those two waves. It 
follows that while condition (2.8a) must be still 
satisfied by the remaining wave, (2.8b) becomes 
irrelevant. Since there is only one surviving wave 
in this special case, we may set Z ,  to zero as well. 
Each set of S,, states only occupies a 4-dimen- 
sional subspace. Specifically, an S , ,  state is 
characterized by the values of the variables 
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( Y l ,  Y2, Y 3 ,  Z3h a S12 state by ( Y l ,  Y4, Y 5 ,  Z5) 
and an SZl state by ( Y l ,  Y,,  Y , ,  Z,). 

It should be emphasized that an S,, state has 
one frequency and therefore strictly speaking 
represents a limit cycle, albeit an especially 
simple kind since the amplitude of the wave does 
not change in time. On the other hand, an 
M-state has 2 independent frequencies. It there- 
fore may be geometrically thought of as a 2-torus 
with 11 dimensions (Lanford, 1981). 

3. The 4-D equilibria (the S,, states) 

3. I .  Analytic solution 
This section reports an analytic method for 

determining the S,,,, states. It is exemplified by an 
application to the case of the S ,  state described 
below. The values of the (1,2) and (2,l) waves 
are set to zero in this case. The governing 
equations of the remaining 5 variables in (2.9) 
can be readily obtained from (2.6) as 

O = & l l  yl -2812 YZz3 (3.1) 

(3.2) 

flzY2=P21 y 2 + P 2 2 y 3 + P 2 4 y 3 y I  (3.3) 

-f12 z3 = &32 y 3  - b32 z3 (3.4) 

(3.5) 

= & 2 1  y2 - P 2 2  z3 - b24 yl z3 

R2 y 3 = P 3 1  y 2 + P 3 2  Y 3 + E 3 2 z 3 + 8 3 5  y2 y l ,  

where 

q I  =-r101/(2F+101), E~~ = - r ,  

&32 = -r111/(2F+111),  B I 2  =2FA/(2F+I0,,) ,  

P 2 l  = YP/4 I ?  P 2 2  = - UY9 

P24=A(-111 +101)/111~ 

8 3 1  = ~y(2F-~11)/(2F+111), 

8 3 2  = B Y / W  + 1 1  I ) >  

P35=A(-111 + l o 1  + ~ F ) / ( ~ F + ~ I I ) ,  

A = 8y'l2/3n2. 

We first obtain the following relations from the 
equations above expressing each of 5 in terms of 
z3. 

YI = 2b12 P Z Z ( Z ~ ) ~ / ( & I  I 621 - 2P12 P24(Z3I2) (3.6) 

y2 = & I  I P 2 2  Z 3 / ( E 1  I &21 - 2 P 1 2  P24(Z3)2) (3.7) 

y 3  = ( P 3 2  - P 2  1 Z3/(E2 1 + &32). (3.8) 

Substituting (3.8) into (3.4) would give 

n 2  = ( & 3 2 P 2 1  +P32E21)/(E21 +&32). (3.9) 

(3.8) immediately yields the result for the relative 
phase angle as 

Q3 = tan-I(Z,/Y,) 

= t a n - Y ( ~ ~ ~  +&32)l(P32 -bZI)).  (3.10) 

(3.9) and (3.10) can be explicitly rewritten in 
terms of the model parameters as 

fl2 = PY/(F + 1 1 1  ) 9  

Q3 = tan-'(rA I(F + 1, I )/(PYFN. 

(3.11) 

(3.12) 

Since all parameters appearing on the RHS of 
(3.1 1) have positive values, we conclude that the 
frequency f12 must have positive values 
indicating that the wave is westward propagating 
as a Rossby wave must be. The RHS of (3.1 1) 
and (3.12) are identical to the corresponding 
properties of the neutral wave in a linear instabil- 
ity analysis (2.5a) and (2.5b). This is not a mere 
coincidence. Its implication will be elaborated 
upon in Subsection 3.4. 

We next make use of (3.6), (3.7), (3.8) and (3.9) 
to rewrite (3.5) in terms of Z, alone. The resulting 
equation is a quartic equation for Z3 as 

(Z3)4 + ~ s ( Z ~ ) ~  + h = 0, 

where 

(3.13) 

c=(P32 -b21)/(&21 -&32). (3.14~) 

The solution for (Z3)2 is then 

(Z3)2 = -s * J l F X j .  (3.15) 

(3.15) together with (3.6), (3.7) and (3.8), 
constitute a complete analytic solution. Similar 
results for the other two S,, states have been 
obtained. 
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3.2. Existence and uniqueness of the viscous 

By the definition of the P ’ s ,  we may rewrite 
solution 

The RHS is negative definite. Since ,, .5zI ,  ~ 3 2 ,  

P 2 * ,  PZA are all negative, and PI2 is positive, it 
follows from (3.14a) in conjunction with (3.16) 
that s is positive definite. This fact in turn 
implies that a nontrivial S,,,, state could not exist 
unless h is negative in view of (3.15). This 
necessary and sufficient condition, according to 
(3.14b), in turn amounts to be 

( P 3 2  - P 2 l )  

(3.17) 

When written explicitly, (3.17) is equivalent to 

The RHS of (3.18) is precisely identical to the 
baroclinic shear required for supporting a 
neutrally stable ( 1 , l )  wave in a linear instability 
analysis, (2.3). Therefore, there cannot be a finite 
amplitude steady single-wave state unless the 
imposed baroclinic shear U exceeds the marginal 
value for linear instability of that wave to begin 
with. Baroclinic instability then belongs to the 
category known as “supercritical instability”. 
The emergence of an S,,,, state gives rise to a 
symmetry-breaking of the system with respect to 
the Hadley state (the null solution). Since an S,,,, 
state has a finite frequency, we may conclude 
that U =  Uc is a Hopf bifurcation point. This 
interpretation is consistent with the fact that a 
linear instability analysis of the Hadley state 
yields a pair of complex eigenvalues. 

When the condition (3.18) is satisfied, we have 
W = (Z,)* > 0 and thus Z 3  = f n. According 
to (3.7) and (3.8), both Y2 and Y3 have the same 
sign as Z 3 .  It follows that either sign of Z 3  would 
imply the same relative angle between the 
barotropic and baroclinic components of the 
wave. The amplitude of the wave and the value 

of the zonal component are also independent of 
the sign of Z 3 .  Therefore, using either sign for 
Z , ,  we would still obtain a physically identical 
solution of from (3.6), (3.7) and (3.8). The 
steady single-wave state is then unique, implying 
that a single-wave system would evolve towards it 
from any initial state. This is true as long as the 
model has a finite dissipation. 

3.3. Structure ofthe 4-0 equilibria 
All parameters appearing on the RHS of (3.12) 

have positive values. It follows that Q3 must have 
a value between 0 and 90 degrees. A positive 
value of Q3 means a vertical westward tilt of the 
wave’s structure in the physical space for the case 
of U > O .  The larger this angle is, the more 
efficient it would be as far as extracting energy 
from the imposed shear is concerned. It is also 
noted that the vertical tilt of the wave Q3 
increases with the friction but is independent of 
the imposed baroclinic shear. Hence, the 
efficiency of this wave is only dependent on the 
friction parameter. The counterpart results for 
the S12 and S21 states (Q,  and Q 7 )  are 
qualitatively similar. The dependence on the 
wavenumber (m, n) is such that the values for Q,, 
Q, and Q, are in increasing order, e.g., 
Q3 = 3.92, Q, = 15.57, and Q, = 7.93 for r = 0.2, 
F=2 .8 ,P=IO,and  y = l .  

Some of the analytic results for the amplitudes 
of the waves for each of the S ,  states will be 
shown and discussed in Section 6 in conjunction 
with other results. It suffices to mention here that 
the amplitude is weakly dependent on the friction 
parameter r. This is particularly so for the ( 1 , l )  
and (2,l) waves. The amplitudes of the S,, states 
increase monotonically with the baroclinic 
forcing. The amplitudes of the (1,l) wave are 
larger than those of the (1,2) wave which are in 
turn larger than those of the (2 , l )  wave. Further- 
more, the barotropic component of the wave has 
a considerably larger amplitude than the baro- 
clinic component. Y ,  is found to have a negative 
value. 

3.4 .  Physical character of the S ,  states 
A physical account of the solution of an S,,,, 

state rests upon a satisfactory explanation as to 
why its structure is what it is. Specifically, why is 
the relative angle of the wave in a S,, state 
exactly equal to that of a neutral infinitesimal 
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perturbation (m,n) wave? Why does the reduc- 
tion of the baroclinic shear due to the wave-zonal 
flow interaction have a certain particular value? 
A pertinent fact to note is that the phase angle of 
an unstable perturbation for a given U >  Uc is 
greater than that for a neutral perturbation, e.g., 
90">4>4, , .  The value of 4," may be inter- 
preted as the minimum relative angle the (m,n) 
wave has to have in order to maintain itself 
against the frictional dissipation. The feedback of 
the wave-zonal flow interaction during the evol- 
ution towards an S,, state tends to reduce the 
relative phase angle until it reaches its smallest 
possible value. Even when 4 is reduced to 4,,,,,, 
the wave still extracts more energy from the 
imposed baroclinic shear than a linearly neutral 
wave does because U > Uc. This is required for 
maintaining the zonal component Y, against 
dissipation. Y, is a measure of a modification 
of the zonal baroclinic shear of which the 
meridional average is given by 

2 
nz 

d =  u+-Y,. (3.19) 

The energetics of an S,, state are described by, 
according to eqs. (13), (14) and (15) of M85 
written in a general form, 

4FymU,,, sin Q,, = 2rA,,, (3.20) 

(3.21) y: 
1 ~ , . 1 2  ' 

4Fym( U - U,,,) R,, sin Q,,, = r l ,  I ~ 

where 
8 y ' I 2  n2 

(4n2 - l ) n 2  Ueqv = u+ Y , ?  (3.22) 

Qmn = 4 m n  

given by (2.5b), with R,, being the ratio of the 
amplitude of the barotropic component lt,bmn1 to 
that of the baroclinic component \8,,,"1 of the 
wave. Comparing (3.20) with (~SC),  we see that 
Ueqv plays the same role as U, does. Hence, Ucqv is 
referred to as an equivalent baroclinic shear 
which is not numerically equal to d. We attempt 
to interpret the wave in a S,, state as a 
dynamically neutral wave. This attempt is motiv- 
ated by Reinhold's (1986) recent success in 
showing a structural determinism in the evolution 
of a single wave. His finding is rather remarkable 
since it was deduced in the context of linear 

dynamics of the wave. Nevertheless, our proof of 
existence and uniqueness of the nonlinear S,,,, 
state is fully compatible with Reinhold's con- 
clusion. To unequivocably prove our point, 
we have also carried out a normal mode 
linear instability analysis with our model 
for a prescribed baroclinic shear equal 
to U +  (Y,/n)siny. The procedure is straight- 
forward. It can be readily shown that in order for 
this flow to be dynamically neutral, Y, must have 
a value such that the following criterion is 
satisfied. 

where U, is given by (2.4), 

8y n2(Amn - A, I ) 
y ,  1 

U"' = u+ 
n2(4n2 - I ) A m n  

(3.24) 

8y12n2(2F-1,,+A,,)  
n2(4n? - 1)(2F - A,,,) U(*' = u+ Y , .  (3.25) 

(3.23) is a quadratic equation for Y,. After some 
algebra, one can show that the permissible root of 
Y, is exactly the same as the analytic solution of 
Y ,  obtained before. The correct solution of YI 
therefore can be determined via two completely 
different routes. One is the direct method used in 
Subsection 3.1. The other is based on Reinhold's 
idea of structural determinism. Indeed, the rela- 
tive phase angle of the neutral wave is the same 
as our previous analytic results. The absolute 
values of the amplitudes of such a perturbation 
neutral wave can be determined on the basis of 
the energy balance requirements (3.20) and 
(3.21). The solution is therefore completely 
unique as found before. 

One relatively minor difference between 
Reinhold's estimate for U,,, and our UeqV should 
be noted. Reinhold's (1986) expression for the 
(1, l )  wave is equal to our expression U"' above. 
Since Y, is negative, we have U,,, = U ( ' )  > Ueq, 
> U(*).  Reinhold's result then actually corre- 
sponds to the upper bound of the range in which 
Ucqv lies. We feel that Ueqv is a more physically 
interpretable quantity than U,,, since it is defined 
on the basis of the energy balance requirement 
for the finite amplitude wave. 

3.5 .  Non-uniqueness of the inaiscid solution 
The inviscid case ( r = O )  warrants a separate 

consideration. If the solution in this case were in 
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the form of (2.9). the corresponding Z 3  would 
have to be zero according to (3.12). If so, eqs. 
(3.1). (3.2) and (3.4) would be automatically satis- 
fied. Then there would only be two governing 
equations left, (3.3) and ( 3 . 9 ,  for the remaining 
four unknowns ( Y , ,  Y 2 ,  Y 3 ,  R2).  It follows that 
such solution could not be unique in the inviscid 
case. This mathematical consequence might at 
first appear to be puzzling. But all it is trying to 
tell us is that the actual solution in the inviscid 
case need not be in the form of (2.9) in general. 
The physical basis of that is not hard to see. 
Under the inviscid condition, there is no net loss 
of energy from the system. Then there must not 
be any net conversion of energy from the zonal 
flow to the wave either. Of course, one possibility 
is to have Z 3  = 0, but if so some of the other 
variables may have arbitrary values as we have 
seen above. The requirement of no net energy 
conversion is a weak constraint and can be also 
met in a solution that has a periodic reversible 
exchange of energy between the wave and the 
zonal flow. Hence setting the solution in the form 
of (2.9) a priori would be unnecessarily restric- 
tive. What actually happens in this special case is 
that the equilibrated state is a steady one only if 
the initial state itself happens to be a neutrally 
stable one with a phase angle R3 = 0. But the 
wave in such an equilibrated state could have any 
amplitude that we care to choose for the initial 
state. It is in this sense that the solution is 
indeterminate. In general, we should expect that 
Z ,  itself may vary periodically with time, 
signifying a reversible exchange of energy 
between the wave and the zonal flow. The correct 
solution is then a simple vacillation instead of a 
steady state. A sample solution of that has been 
given in Fig. 2 of M85. The interpretations above 
concerning the inviscid solutions are also in 
agreement with those of Reinhold (1986). 

4. The 11-D equilibria (the M states) 

These attractors are the solutions of (2.10), 
obtained with the use of a modified Newton’s 
method (the “hybrid-method”, Powell, 1970). 
Our numerical computations have uncovered the 
existence of two distinct families of M states 
which are referred to as the MA and MB states. 
Each of these M states is found to exist only 

in a part of the parameter region that we have 
carefully scanned through (0 < r < 0.5 and 
2.0 < U < 5.0). The regions for the existence of 
the MA and MB states are nevertheless quite 
extensive, with a substantial overlap between 
them. Extensive numerical experimentations did 
not yield additional multiple wave states. 

The MB state is a newly discovered class of 
equilibrium solutions, which exists only for small 
to moderate friction, 0 < r < 0.4. Fig. 1 shows the 
results of the amplitude components of its three 
equilibrated waves. They mainly increase with 
the forcing intensity and have weak dependence 
on the friction. Fig. 2 shows the results of the four 
independent relative phase angles and those of 
the two independent frequencies, R3 and R,. The 
phase angles (see Section 2 for their definitions) 
vary mainly with the friction parameter and only 
weakly vary with the forcing parameter. It should 
be noted that the relative angle of the (2, 1) wave, 
Q7-Q6, is an exception. It has a negative value 
for large U ( U >  3.0), implying that this wave 
gives up some energy to the imposed zonal flow. 
In contrast to the frequency of an S,,,, state as 
given in (3.1 I ) ,  its two frequencies do vary with 
both friction and forcing. Both frequencies in- 
crease strongly with the forcing. The dependence 
on friction is somewhat weaker. The only quanti- 
ty not shown here is the value of the zonal 
component which is negative everywhere and has 
a similar dependence on the parameters as A 2  
shown in Fig. la .  

The MA states exist only for small to moderate 
values of the baroclinic forcing, 2.3 < U < 3.7. 
The counterpart results for the MA states are not 
shown for brevity. The numerical values of the 
MA state variables for large friction are equal to 
those for the M-state in M85. The detail results 
for a representative friction, r = 0. I ,  will be 
shown and discussed in Section 6. 

The fundamental difference between a MA 
and a MB state is manifested in the variations of 
the energetics with U .  The results for r = 0.1 are 
shown in Fig. 3. They are computed with the 
formulas given in M85. Fig. 3a shows that the 
generation and dissipation rates of the energy 
associated with the barotropic components (G, 
and D, terms) are larger for the MB state than for 
the MA-state. The conversion terms C(A, 2) and 
C(B,Z) are not too different in the two cases. 
Unlike the case of the MA-state, the generation 
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0.5 
A 3  

Fig. I. Variation of the nondimensional amplitudes of the waves in the MB-state with the damping ( r )  and the 
forcing (U) parameters. A 2 ,  A,, and A6 for the barotropic components, A 3 ,  A,, and A, for the baroclinic 
components. 

term for the baroclinic energy is distinctly larger 
than the dissipation term for the MB-state (Fig. 
3b), so that there could be a significant excess of 
energy for a systematic conversion from the 
baroclinic to the barotropic energy through the 
process of wave-wave interaction. This is also 
clearly evident in Fig. 3d where we see that the 
C(A, B) term is much larger for the MB state than 
for the MA-state. 

5. Stability of the equilibria 

Unlike Lorenz (1972), Jones (1979), and many 
others who analysed the instability of a free 
Rossby wave in the absence of forcing and 
damping, we analyse the stability of a wavy basic 
state which is itself a nonlinear solution of a 

forced-dissipative system. The linear stability of 
the S ,  states and the M-states need be analysed 
separately because the number of degrees of 
freedom of the perturbations in these cases are 
different. 

5.1.  Stability of the 4 - 0  equilibria (the S,,,, states) 
The stability analysis of an S,,,, state with 

respect to infinitesimal perturbation may be 
again exemplified by that of a S , ,  state. The 
known S , ,  state can be referred to by the form 
given in (2.9) with Y,  = Ys = Y,  = Y7 = Zs = Z ,  
= Z7 = 0. The perturbation may be regarded as 
sufficiently small so that the part of the pertur- 
bation containing the variables of the attractor 
has the same dimension as that of the attractor 
itself, namely four. Hence, we should be dealing 
with a perturbation with only 12 degrees of 
freedom. The perturbation variables are denoted 
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Fig. 2. Variation of the different relative phase angles (Q3,  Q , ,  Q7-Q6, and Q6)  in degrees and of the two 
independent nondimensional frequencies (O,,O,) of the waves in the MB state with r and U .  

by the corresponding letters of lower case y,  and z, 
( j =  1, . . ., 7 with z ,  = z 2 = O )  which are 
unknown functions of t .  The total variables aie 
defined as 

XI = Y ,  + y ,  

( X , , X , )  = (Y2 + y z ,  Y ,  + iZ3 + y 3  + iz,) exp(iwt) 

(X4,X5) = (y4 + iz4,y5 + i z s )  exp(-wt) 

( X 6 , x 7 ) = ( y 6  +iz, ,y7 +iz7)? 

with 

The expression for w is the linearized form of the 
frequency associated with the equilibrium under 
consideration. It is easy to show that the set of 12 

linearized equations are made up of two 
decoupled subsets, 

p =  HP, (5.2) 

q = Eq, (5.3) 
where p is the vector ( y , ,  y, ,  y , ,  z 3 )  and q is the 
vector (y4, . . ., y 7 ,  z4, . . ., z , ) .  H is a 4 x 4 
matrix and E is an 8 x 8 matrix. We seek normal 
mode solution of both (5.2) and (5.3) in the form 
of exp(ar). Since these two matrix equations are 
decoupled, we would obtain two distinct sets of 
eigenvalues a. 

It is found that the eigenvalues obtained from 
(5.2) at all parametric conditions have a negative 
real part implying a stability of the S1 state with 
respect to its own perturbation. This is to be 
expected because of the structural determinism of 
an S,, state. In contrast, the eigenvalues obtained 
from (5.3) may have a positive real part, implying 
instability with respect to a perturbation of the 
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Fig. 3. A comparison of the energetics for the MA-states and for the MB-states as a function of LI at r = 0.1 
Notations: A ,  the wave baroclinic energy; E ,  the wave barotropic energy; 2, the zonal energy; GA(<), D,(<), 
respectively, the generation and dissipation rates of A-type energy for the 5 state; C,(A,  z ) ,  the conversion rate from 
A to z for the 5 state; etc 

other two waves. Fig. 4a shows the real part of 
the latest eigenvalue obtained from solving (5.3) 
as a function of the two key parameters, r and U .  
The shaded area delineates the stable S , ,  states 
under the conditions of large dissipation and 
forcing. There are two pairs of unstable 
eigenvalues in the stippled area. The area in 
between has one pair of unstable eigenvalues. 
This information concerning the change in the 
number of eigenvalues will be needed in inter- 
preting the relation among the equilibria in 
Section 6. For reasons to be clearer soon, the 
different segments of the boundary curves are 
labelled with Roman numerals. 

The counterpart results of the linear instability 
analysis for the S,z and S2, states are shown in 
Fig. 4b and 4c. It is seen that the stable S ,  states 
only exist in a small parametric region charac- 
terized by small friction and supercriticality. On 
the other hand, the stable S2, states only exist in 
a narrow strip of parametric conditions charac- 
terized by even smaller values of supercriticality. 
Friction is however not as unfavorable to the Sz, 

states as to the S , ?  states. The findings 
concerning the regions of stable S,,,, states are in 
quantitative agreement with the results reported 
in M85 (see Fig. 9 of M85). The magnitude of u 
gives us an indication of how rapidly the system, 
as viewed in terms of its trajectory in the phase 
space, would “escape” from each of these 4-D 
attractors under different parametric conditions 
when i t  happens to be in one of their 
neighborhoods. 

5.2. Stability ot the 11-D equilibria (the M states) 
The perturbation may be assumed to have the 

same dimension as that of the attractor without 
loss of generality. The total value of the vector 
variable is 

where 5’  is a perturbation which is governed by 
the following linearized form of (2.6) with respect 
to 4 

I I  

“ = I  
= 1 (PG,(f)/?&J<i for k = 1, . . ., 11. (5.5) 
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2 0  2.5 3.0 3 5 4.0 4 5 5.0 
U 

Fig. 4. Variations of the largest real part of the 
eigenvalue for the S,,,, states with r and U :  (a) S , ,  
states, (b) S ,  states, and (c) S 2 ,  states. The shaded area 
has no unstable eigenvalue, the stippled area has four 
unstable eigenvalues, and the area in between has two 
unstable eigenvalues. The curve segments labelled with 
Roman numerals are curves along which bifurcations 
have been identified (see text for details). 

Seeking the normal mode solution to be propor- 
tional to exp(or), we would be again led to 
solving a simple matrix equation for the 
eigenvalue u. The largest real part of the 
eigenvalues for the MA- and MB-states are 
shown in Fig. 5.  The regions of the stable MA- 
and MB-states are shaded. The stable MA-states 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 0 4 1  ;, 0.1- 

3.5 4.0 4 5 5.0 
U 

Fig. 5. Variations of the largest real part of the 
eigenvalue for (a) the MA-states and (b) the MB-states 
with r and U.  The shaded area has no unstable 
eigenvalues. The curve segments labelled with Roman 
numerals are curves along which bifurcations have been 
identified (see text for details). 

exist only for rather large values of r and moder- 
ate values of U .  It would not be possible to 
identify the existence of unstable MA-states for 
small r by initial-value calculations. These values 
of the growth rate is rather modest compared to 
the large values in Figs. 4b and 4c. The M-states 
reported in M85 clearly correspond to the family 
of MA-states. Fig. 5b shows the existence of 
stable MB-states over 2 somewhat narrow ranges 
of conditions as indicated by the shaded areas. 
The stable MB-states were not detected in M85 
because the initial conditions used in the time 
integrations were too far away from this 
attractor. Without prior knowledge of the struc- 
ture of this equilibrium state, it would be highly 
unlikely for one to obtain it by that method. 

The information about the number of non- 
trivial equilibrated states in the various parts of 
the parameter space is summarized in Fig. 6. It 
shows that there can be as many as 5 different 
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20 30 4 0  50 

m 
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Fig. 6.  Variations of the multiplicity (number) of the 
equilibria with r and U.  The boundary curves for all the 
stable and unstable equilibria are also indicated for ease 
of reference. 

equilibrated states at a given point on the ( r ,  U )  
parameter plane, but there can be as few as one 
state. The latter is found in a narrow strip on the 
( r ,  U )  plane next to the marginal instability curve 
for the Sz, wave. Since the three marginal insta- 
bility curves for the three waves under con- 
sideration are close to one another, the number of 
equilibria varies sensitively with U in the neigh- 
borhood of small supercriticality. The compu- 
tations reveal that the regions of the stable S,,,, 
states do not overlap, and each of them also does 
not overlap with the region of the stable MA- 
states. The region of the stable S , ,  state however 
does slightly overlap with the region for the stable 
MB-state (0.25 < r < 0.35, 4.7 < U < 5.0). This is 
an example of an unstable baroclinic flow that 
has truly stable multiple equilibria. 

5.3. Energetics diagnosis of the instability 
The energy of the baroclinic components, that 

of the barotropic components and that of the 
zonal component of the equilibrated state are 
denoted by A ,  B and Z respectively as in M85 
with identical definitions. By analogy, we will 
refer to the corresponding parts of the energy of 
the perturbation by the same letters in lower case, 
namely a, b and z .  It is a straightforward matter 
to derive from (5.5) the governing equations for 
u, 6, and i. The resulting equations are written in 
symbolic form as follows. 

These systematic notations should help make the 
physical meaning of each of the terms above self- 
evident. For example, a positive value of C(B,a)  
means a conversion rate from the barotropic 
energy of the equilibrated multiple-wave state to 
the baroclinic energy of the perturbation. The 
explicit formulas for all the energetics terms are 
given in the Appendix for reference. 

Each term on the RHS of (5.6), (5.7) and (5.8) 
has been evaluated with a normalized eigen- 
function such that the total energy (a + 6 + z )  of 
the perturbation is equal to unity. It suffices to 
examine the sum of the terms in each square 
bracket in those equations as a single quantity. 
The meaning of these combined quantities is 
obvious. For example, a positive value of 
[ - D o  + G,] means a net rate of increase in the 
baroclinic energy of the perturbation due to a 
generation by the imposed zonally symmetric 
baroclinic state in excess of the dissipation of a. 
For convenience a positive value of this quantity 
will be referred to below simply as the energy of a 
obtained from the imposed baroclinic state. 

The energetics of the perturbations for the S,,,, 
states may be regarded as a special case under 
consideration. Since each S,, state can only be 
unstable with respect to perturbations in the 
complementary subspace (i.e., those governed by 
(5.3)), we only need examine the energetics for 
such perturbations. The results reveal that the 
perturbation mainly extracts energy from the 
imposed baroclinic state rather than from the S,,,, 
state. The C(a,b) term typically has a very small 
value. The stable perturbation mainly loses 
energy to the equilibrated wavy state. The details 
of these results are not shown for brevity. 

Fig. 7a summarizes the energetics of the least 
stable eigenfunction for the MA state with 
r =0.45 and U =  2.8. The values reveal that 
although the wavy basic state gives a net supply 
of energy to the perturbation, the imposed 
baroclinic state extracts energy at  a greater rate 
from the perturbation. Furthermore, the values of 
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a 

b 

Fig. 7. Sample energetics of the normal mode perturba- 
tion with respect to the MA-states: (a) a stable case, 
r =  0.45, V =  2.8, and (b) an unstable case, r =0.3, 
V = 2.5. The actual nondimensional values have been 
multiplied by a factor of lo4. 

the conversions among the a, b and z of this 
stable perturbation are found to be so small that 
they are of no consequence to the overall 
energetics. Fig. 7b shows the counterpart results 
of the most unstable eigenfunction for an MA- 
state with r = 0.3 and U =  2.8. Here the equilib- 
rated wavy state is the energy source for the 
perturbation supplying more energy than the loss 
to the imposed baroclinic state. 

The energetics of the normal mode pertur- 
bation for the MB states are somewhat more 
complicated. The complexity arises from the fact 
that different branches of the normal mode per- 

.................. .................................. 

ur - a o : ~ ~ = ~  

-0 10 - + 

0 
1 

0 30 L-1- 
2 6  2 8  3 0  3 2  3 4  16 3 8  4 0  4 2  4 4  4 6  4 8  5 0  

Fig 8 Variation of the real part of the eigenvalues 
with respect to the ME-stdtes with V for r = 0 I The 6 
branches of the eigenvalues are designated by the 
encircled numbers 

turbations become unstable in different ranges of 
values of U and r. The variations of the real part 
of the eigenvalues are plotted as a function of U 
for r = 0 . 1  in Fig. 8. We see that the branch 
labelled " I "  is unstable for U < 3.60, whereas the 
branch labelled "2" becomes the unstable one for 
U > 3.72. The eigenfunctions of these two 
branches have different structures. It follows that 
they have different energetics characteristics. 
Fig. 9a is an energetics diagram for the unstable 
perturbation for a MB state for U = 3.3 and 
r = 0.1. The normal mode belongs to the branch 
labelled "1" in Fig. 8. We particularly would like 
to draw the reader's attention to the feature that 
unlike for a MA-state C(a,b)  is now significant. 
Without the positive value of C(a,b), dbldt would 
not be positive because the loss of barotropic 
energy to the imposed baroclinic state and to the 
zonal energy exceeds the supply from the equilib- 
rated wavy state. The C(a,b) conversion is 
maintained primarily by the conversion of 
baroclinic energy from the equilibrated wavy 
state. Hence, this perturbation as a whole intensi- 
fies as a result of a net energy from the equilib- 
rated wavy state. 

Fig. 9b is an energetics diagram for the 
unstable perturbation for the MB state for a 
larger value of U ( U  = 3.8). The unstable normal 
mode belongs to the branch labelled "2" in Fig. 8. 
Here, the imposed baroclinic state assumes the 
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a 

Fig. 9. Sample energetics of the normal mode perturba- 
tion with respect to the MB states: (a) an unstable case, 
r = 0. I ,  U = 3.3, and (b) also an unstable case, r = 0. I ,  
U = 3.8. 

role of an energy source, whereas the equilibrated 
wavy state is an energy sink. The instability 
results from the fact that the former supplies 
more energy than what is lost to the latter. The 
process C(a,h) is important to the growth of the 
baroclinic energy of the perturbation in this case. 
Because of it, da/df could have a positive value. 

6. Equilibria from the viewpoint of 
bifurcation 

We first seek to identify the parameter points 
at which the known branches of equilibria bifur- 

cate. An elementary but pertinent geometrical 
consideration is that if two objects with 
dimensions k ,  and k 2  intersect in a space of 
dimension k 3 ,  the intersection would have a 
dimension of k ,  + k 2  - k 3 .  When the sum of k ,  
and k 2  is smaller than k 3 ,  there is generally no 
intersection. Here we are considering 4-D and 
11-D equilibria in a space of 13-D. An inter- 
section can be identified from its projection on 
each phase space variable. Now let us closely 
examine how the structural properties of all 
equilibria vary with the parameters. 

It suffices to present the variations of the 
equilibria with the baroclinic forcing U at  a fixed 
value of r (say, r = 0.1). Fig. 10 shows the values 
of the zonal component XI of all the equilibria. 
All values are comparably small when U is small 
and therefore no definite deductions can be made 
from them. But Fig. 10 does clearly reveal that 
the MB- and S ,  states bifurcate at U z 2.68 as U 
increases across it. The values of XI associated 
with the MA- and S , ,  states are quite close 
together. The MA- and S1, states bifurcate a t  
U z 3.69 as U decreases across it. These two 
points are labelled on the U-axis as 5 and 6 
respectively. The other 4 points, labelled I to 4, 
are identified on the basis of the values of the 
amplitudes, phase angles and frequencies of the 
wave components shown in Figs. 1 I ,  12, and 13. 

-2 c \\\ 

-8 t 
L 

1.2 
-10- 3 4 5 6 

2.0 3.0 4.0 5.0 

Fig. 10. A comparison of the zonal spectral coefficient, 
X, , of the S,,, MA-, and MB-states as a function of U 
for r = 0.1. Bifurcation points are indicated by arrows 
with number-labels on the U-axis. Values of U at the 
points 1 to 6 are 2.08, 2.09, 2.18, 2.34, 2.68, and 3.69, 
respectively. 
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Fig I1 A comparison of the nondimensional amplitude of the wave components of the various equilibrium states 
as a function of U for r = 0 1 Bifurcation points are indicated by arrows with number labels on the U-axis 

Fig. l l a  and I l b  show that the S , , ,  MA-, and 
MB-states emerge at U z 2.18, 2.34, and 2.68 
respectively. It clearly verifies that the MA state 
converges to the S ,  I state at U 2 3.69. These 4 
points are labelled as 3, 4, 5, and 6 respectively 
and correspond to those points with the same 
labels in Fig. 10. It is clear from Fig. 1 l e  and 1 If 
that the MA-state bifurcates from the S21 state a t  
U 2 2.34. Thus, the MA-state bifurcates from a 
Szl state at U z 2.34, but it bifurcates to a S, , 
state at U z 3.69. The MA-state is resemblent of a 
Sz , state for smaller values of U in this range, and 
is resemblent of a SI , state for larger values of U. 
We may therefore conclude that a MA-state is not 

fundamentally different from a S,, state. Figs. 
1 Ic to 1 1 f also show that the Sz I state and the S ,  
state emerge at U 2 2.08 and 2.09, respectively. 
These two points are labelled on the U-axis as 1 
and 2 respectively. Figs. I l e  and I If also confirm 
that the MB state bifurcates from the S, state at 
U = 2.68. The structure of the MA- and MB- 
states are distinctly different at all parameter 
values. They are therefore two dynamically 
different states as conjectured earlier on the basis 
of-the energetics consideration. Furthermore, the 
MB state is different from all S,, states a t  large 
values of U.  This confirms that the MB state 
uniquely stems from the nonlinear wave-wave 
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Fig. 12. A comparison of the relative phase angles in degrees associated with the various equilibrium states as  a 
function of U for r = 0.1. Bifurcation points are indicated by arrows with number labels on the U-axis. 

interaction which is naturally stronger for a larger 
forcing. 

The previous deductions made on the basis of 
the results of the spectral amplitudes are in 
agreement with those deductions made on the 
basis of the results of the phase angles and 
frequencies as shown in Figs. 12 and 13. This 
agreement is of course not surprising, since the 
bifurcation of two states a t  a given parameter 
value is necessarily manifested in all structural 
properties of the states. 

We supplement the analysis above by making 
use of the information about the eigenvalues 
obtained in the linear instability analysis of the 
S,,,, stales. What needs to be considered are the 
boundary curves of the domains for the equilibria 
and the curves separating the regions with 
different numbers of unstable eigenvalues in 
Figs. 4 and 5. The segments of boundaries 
labelled with Roman numerals in Fig. 5 
correspond to those in Fig. 4. A summary of all 
bifurcations that can be associated with the 
known equilibria found in this study is given in 
Table 1. It is seen that the relations of the 
equilibria are fairly complex. The conclusions 
concerning the relations between the and the 

Table 1, A summary of the bifurcations among the 
equilibria 

Curve segments 
in Figs. 4 and 5 Bifurcation the baroclinic forcing 
labelled as type increases 

Change of equilibria as 

I 
I1 
I11 
IV 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XI1 
XI11 
XIV 
xv 

H2 
H2 
H3 
H2 
H3 
H3 
H3 
H2 
H2 
H2 
H3 
H3 
H1 
HI  
HI  

S2I + M A  
SzI --t MA* 
S 2 ] *  + MA* 
M A + S I 1  
M A * + S l l *  
S1 ] *  + MB* 
s1 ** + MB* 
S1* + MB* 
S1* + M B  
S*I + Sl2 

S*I + SI 2 

S2I * + SI 2* 
Hadley -+ S, I * 
Hadley + S, 2* 

Hadley + S2 I 

Unstable equilibria are indicated by adding an aster- 
isk. "Hadley" refers to the null state. HI  refers to a 
Hopf bifurcation from the Hadley state. H2 and H3 
denote the Hopf bifurcations associated with a change 
from zero to two unstable eigenvalues, and from two to 
four unstable eigenvalues for a S,,,, state respectively. 
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3.2 I I /-- 

a 

3.0 

2.8 

2.6 

I 

1.0- 

a5 
0.5 - - 

-0 5 L# 1 I 

3.5 1 - 

n7 3.0 1 
I 

2.0 L I I a 
2 0  3 0  4.0 5.0 

U 
Fig. 13. A comparison of the three nondimensional 
frequencies associated with the various equilibrium 
states as a function of U for r = 0.1. Bifurcation points 
are indicated by arrows with number labels on the U- 
axis. 

S ,  states is made on the basis of the finding that 
there is an increase of two unstable eigenvalues 
for the Szl states along the curve segments X, XI, 
and XI1 and a corresponding decrease of two 

unstable eigenvalues for the SI2  states. The con- 
clusions deduced from the structural properties 
are in complete agreement with those made on 
the basis of the eigenvalues. 

Fig. 14 is a concise, although less detailed, 
graphical summary of the relations among all the 
equilibria for r = 0.1. The sense of the changes 
among the equilibria is depicted by the arrows in 
Fig. 14 as U increases. The 3 axes are labelled as 
El I .  El ?,  and E Z 1 .  Each point on the axis Em, 
represents a S,,,, state, quantitatively measured by 
the sum of the amplitude of barotropic and 
baroclinic components of the corresponding wave 
(e.g.. Az + A 3  for the E l l  axis). The stable 
equilibria are depicted with thick line segments 
and the unstable ones with thin line segments. 
One three-dimensional curve labelled EA rep- 
resents the unstable MA states a t  different values 
of U .  The 3 dotted curves are its projections on 
the three planes. Another three-dimensional 
curve labelled E,  represents the MB-states. The 
points labelled by the numbers 1 to 6 and the 

/ 

Fig. 14. A summary of the topological relations among 
the S,,,, MA-, and MB-states for weak friction, I = 0.1. 
See the text for the details of the notations (heavy lines 
are stable equilibria, light lines are unstable equilibria, 
dotted and dashed lines are projections of the E,  and E,  
curves). 
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letter a are bifurcation points. The value of U at 
the point a is 2.22.  

A counterpart diagram can be readily con- 
structed for each value of r .  For moderate values 
of friction (e.g., r = 0.35), the relations among the 
SZl,  MA-, and S I I  states are qualitatively the 
same as those in the case of r = 0.1. The MA-state 
is now stable for some values of U near both sides 
of its domain of existence as can be seen from 
Fig. 5. The curve depicting the MB-states 
emanates from the El l  axis instead of the E12 
axis for this value of r. The MB-state is unstable 
for the whole range of values of U under 
consideration. The counterpart diagram for a 
larger value of r (e.g., r = 0 . 5 )  is even simpler 
since no MB-state exists for such a large value of 
r .  There is a stable equilibrium state for each 
value of U.  The latter takes on the form of a SZl 
state when U is small, then it changes to a MA- 
state a t  intermediate values of W and a S ,  I state 
for large values of U.  The precise values of U 
where those bifurcations occur can be found in 
Figs. 4a, 4c, 5. 

7. Concluding remarks 

Apart from the null state of no motion relative 
to the imposed zonal baroclinic flow (the Hadley 
state), we have shown that there can be in general 
five different equilibria in this forced dissipative 
model of a triadic baroclinic wave system. A 
slightly disturbed Hadley state could evolve to 
one of those states if the baroclinic forcing 
exceeds the corresponding marginal value. The 
relations among the equilibria are quite complex, 
but are fully understandable from the bifurcation 
point of view. Those findings are summarized in 
Table 1. 

A viscous steady-single-wave state develops as 
a consequence of a Hopf bifurcation from the 
Hadley solution. A single-wave system is structur- 
ally deterministic since the structure and phase 
speed of an unstable wave under all initial 
conditions must inexorably evolve towards the 
S,,,, state. Such a wave is dynamically neutral 
with respect to the modified zonal flow. An 
inviscid S ,  state is not unique and generally 
takes the form of a simple limit cycle. When an 
S,,,,, state is unstable, the perturbation is necess- 
arily associated with the complementary sub- 

space and extracts energy for its growth from the 
imposed baroclinic shear rather than from the S,,,, 
state. These findings substantially extend our 
knowledge of the baroclinic instability of a single 
Rossby wave into the nonlinear regime. 

We have found two distinctly different forms 
of multiple-wave equilibria. The MA-state is es- 
sentially a modified form of a primary single- 
wave state. In contrast, the MB-state is charac- 
terized by having a strong wave-wave inter- 
action. These interpretations are in full agree- 
ment with the findings that sufficiently strong 
dissipation is not conducive for the MB-states, 
whereas sufficiently strong forcing is not favor- 
able for the MA-states. The triad-limit-cycle 
could be interpreted as a manifestation of the 
instability of the multiple wave equilibria. We 
have also found a small part of the parameter 
domain where either a stable S1 I state or a stable 
MB-state may prevail. The MA- and MB-states 
may be viewed as a consequence of an additional 
symmetry-breaking from the S,,,, states as the 
forcing further increases. 

To deduce all those fundamental properties of 
the nonlinear dynamics summarized above is the 
primary objective of this theoretical investi- 
gation. Completion of such a task is feasible only 
for a model with a modest number of spectral 
components. This brings up the question as to 
whether or not retaining only a wave triad in an 
analysis is meaningful. It goes without saying 
that this strategic choice can only be con- 
ditionally valid. We have deliberately chosen a 
sufficiently small Froude number such that all the 
truncated waves are baroclinically stable under 
any forcing conditions. The formulation as such 
is therefore consistent with the objective of deter- 
mining the bifurcations associated with the insta- 
bility. The adverse effect of truncation is also 
hopefully minimized by doing so. A separate 
study with a high resolution barotropic model has 
yielded a similar sequence of equilibria. That 
analysis will be reported in a separate paper. Our 
optimism about the qualitative validity of this 
relatively low-dimensional model is therefore not 
without substantial reasons. 

Ideally, one would also like to relate the results 
presented here together with those reported in 
M85 to observation. In view of the complexity in 
the detailed features of typical tropospheric dis- 
turbances, it would be unlikely to document clear 
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evidence there. It seems more hopeful for that 
purpose to consider the stratospheric region 
where there is least complication. The main 
reason is that only very few waves are present 
there even in the active period of the year (the 
winter). The dominant wave motions there 
typically consist of zonal wavenumber 1 and/or 2. 
It follows that if and when the nonlinear process 
is important, we might find a relatively clear sig- 
nature of it .  Indeed, Smith (1983) and Smith et al. 
(1984) have reported pronounced events in the 
period from November 1978 to January 1979 in 
the stratosphere, which are highly suggestive of 
strong wave-wave interaction. Those enstrophy 
budget analyses convincingly have documented 
the occurrence of vacillation between waves 1 
and 2, resulting primarily from the nonlinear 
wave-wave interaction within the stratosphere. 
Such an observation vacillation in a simple 
atmospheric setting is the clearest indication that 
the triadic model analysed in M85 and in this 
study can be geophysically relevant. 
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9. Appendix 
Energetic equations of a perturbation about 
an M-state 

Consider a normal mode perturbation about an 
M state. For convenience, we use M; ( j  = I ,  . . ., 
7) and X, ( j =  I ,  . . ., 7) to represent the pertur- 
bation variables and the M-state variables, 
respectively. The subscript j has the same 
meaning as that in (2.6). It should be noted that 
Imw, = ImX,=O, for k = 1 ,  2 and 4. The 
eigenvalue associated with the normal mode is 
denoted by cr = or + io,. First, we define 

( 5 )  = t - l  j,; 5 exp(-k , r )d t ,  (A.1) 

where t = 2740,. We also define, 

u = ((da/dt)) 

b: = ((dh/dt)) 

z = ((dz/df)). (A.2) 

Based on ( 5 . 9 ,  we may easily obtain the 
corresponding energetic equations, the symbolic 
form of which is given by (5.6)-(5.8). The explicit 
forms of all the terms in (5.6)-(5.8) are as follows. 

D, = 2r((A, I Iw, I ?  + 1, 21w5 I Z  + 1 2 1  Iw, I? ) )  
D , =  2r((l,,I~~~l? + A , 2 ) w 4 1 2  +AzIIw61’)) 

D,=r(Aol lwlI~)  

G ,=2Uy( Im{(2F-Al l )w2  * w3 

+ ( 2 F - A 1 2 ) w , *  12’s 

+2(2F--A2,)12~,*M’,}) 

+ 2A2,  w6 * 12’7)) 

G, = ZCJy(Im(l, w? * w3 + A, w, * w s  

C ( Z , a ) = q ( X ,  Im{(2F+1,, - A I I ) w 2  * w3 

+4(2F+AOI -A12)w,*ws 
+ 2 ( 2 F + & ,  - A 2 1 ) w 6 *  w 7 } )  

C(A,u)=&(Im{(2F-A2,)X,* w s *  w6 

- ( 2 F  - 1, ?)  x, * w4 * w7 

+ ( 2 F - 1 , , ) w 2 * X 5 * w 7  

- ( 2 F - 1 ~ I ) w 3 * X s * w 6  

+ ( 2 F  - 1, 2 )  w3 * w, * X 7  

- ( 2 F  - 1, 1 )  M’? * ” 5  * X , } )  

+ 2  ( 2 F + 1 , , ) I m ( w , * X 3 )  ( 
x I3 R e v , ,  * w,) 

! = I  

+(2F+A12)Im(ws * X 5 )  

x C Re(T,, * H;) 

x ) = I  z Re(T,, * .;I) 

7 

, = I  

+ ( 2 F  + A z l )  Im(w, * X , )  
7 .  

C ( B , u ) = c ( l m ( ( 1 , 2 - 1 2 1 ) X z * w s * w 7  

+ (A?, - I , , ) w ,  * X ,  * H,, 
+ (1, I - 1, 2 )  11’3 * wg * X , } )  

C ( Z , h ) = q ( X ,  Im{(AIl - 1 , , ) w 2  * w, 
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Here, C13 and Q, are the 2 independent frequen- 
cies of the M-state, functionally related to the 
equilibrated state variables. 

Except for the terms in the second angular 
bracket of C ( A , a )  and C(B,h), all the terms in 
(A.3) are the linearized counterparts of the ener- 
getic equations used in M85. Their physical 
interpretations are parallel to those in M85. The 
terms in the second angular bracket of C ( A , a )  
arise from the difference of the absolute angles of 
the baroclinic components of the perturbation 
from those of the M-state. Similarly, the terms in 
the second angular bracket of C(B,  b) arises from 
the difference of the absolute angles of the 
barotropic components of the perturbation from 
those of the M-state. Recall that the absolute 
angles of the barotropic components of the ( I ,  1 )  
and (1.2) waves may be absorbed into their 
baroclinic components. Hence, only the absolute 
angle of the barotropic component of the ( 2 , l )  
wave, which in effect measures the relative angle 
among all the barotropic components of the three 
waves, makes a contribution to this conversion 
rate. 
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