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ABSTRACT 
The lowest-order spectral model for barotropic, non-divergent flow on the sphere is studied both 
in the forced and unforced case. It is found that the unforced, inviscid oscillations are typically 
non-periodic, the periodicity of the spectra notwithstanding. Such non-periodicity is character- 
istic of the spectral representation on the sphere, in the sense that typical solutions of the 
cquivaknt plane model are exactly periodic. By an analytic treatment, it is also found that for 
some triad conligurations, the limit set of the corresponding non-conservative model with 
axisymmetric forcing may contain a limit cycle together with the stable, zonal-flow state, whik 
only one attractor (limit cycle or zonal flow) is implied by the q u i v a k n t  plane model. Numerical 
solutions are reported which confirm the above analysis. 

1. Introduction 

Severely truncated forms of the spectral, baro- 
tropic vorticity equation have been proposed by 
Lorenz (1960) in order to elucidate the climato- 
logically relevant aspects of atmospheric flows at 
the planetary scale. In the inviscid case, the simplest 
truncated model allowing for non-linear energy ex- 
change among spectral components is obtained by 
discarding all interactions except those involving 
two coupled waves and an arbitrary number of 
zonal-flow components. In spherical geometry, this 
model has been studied extensively by Platzman 
(1962) who showed that the time evolution of the 
variables describing the flow configuration can be 
expressed, in principle, in terms of elliptic functions. 
Galin (1974) has determined the stability conditions 
of the equilibrium configuration of the simple triadic 
system, while Dutton (1976a) has shown that most 
initial conditions produce periodic oscillations of 
the triad‘s spectrum, in the sense that aperiodic 
time-behaviour can only be exhibited by motions 
starting from points of a four-dimensional surface 
of the fivedimensional phase space of the triad. 
However, numerical computations reported by 
Baer (1970) suggested that the phases might be 
non-periodic, the periodicity of the spectrum not- 
withstanding. Non-periodic time evolution of the 

triad motions was also exhibited by numerical 
solutions reported by Galin and Kurbatkin (1979, 
but Dutton (1976a) remarked that these comput- 
ations must be affected by numerical errors, as 
they violate the periodicity condition for the phase 
difference. 

In this paper we reconsider the problem of the 
periodicity of the free oscillations of a rotating 
atmosphere, as described by Platzman’s model, 
which all previous works have left open to question. 
Through a detailed mathematical analysis, we shall 
shown that such oscillations are typically non- 
periodic, although the spectra oscillate periodically. 

Moreover, following more recent developments 
concerning the study of the long-range time 
evolution of atmospheric flows when forcing and 
dissipation are taken into account (Lorenz, 1963; 
Dutton, 1976b; Vickroy and Dutton, 1979; 
Mitchell and Dutton, 1981). we have analysed 
some properties of the limit set of the non- 
conservative, triadic model when forcing is applied 
to the zonal component. It is found that for most 
triad configurations, when the zonal equilibrium 
becomes unstable, the triadic flow tends to a state 
of stable, periodic oscillation. This result is the 
counterpart in spherical geometry of an analogous 
result obtained by Mitchell and Dutton (1981) for 
flows in the @-plane, except for a possible, non- 
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symmetric position of the couple of bifurcation 
points with respect to zero. However, for some 
triad configurations of large zonal wavelength but 
relatively small meridional wavelength, we find that 
a stable zonal flow configuration may coexist with 
a couple of states of periodic oscillation, one of 
which is unstable. As shown by a preliminary set of 
numerical computations, the unstable state exerts 
a significant effect on the pattern of the basins of 
attraction of the two stable configurations, and on 
the time-scales of approach to such asymptotic 
regimes. 

2. Conservative flows: fundamental 
equations and periodicity condidon 

In spherical geometry, the truncated, spectral 
vorticity field of a two-dimensional flow, including 
a couple of waves and any number of zonal com- 
ponents can be written 

c= m+ 1 Lea + C,Yr, + C,Y!, + C.C., (1) 

where p', denote Legendre functions, and Y: de- 
note spherical harmonics; the zonal components, 
Q and are real functions of time, while the 
wave components, C, and 4, are complex functions 
of time; C.C. signifies the complex conjugate of the 
(complex) wave field. The conservative, baro- 
tropic, vorticity equation for the truncated field of 
eq. (1) leads to the following set of ordinary differ- 
ential equations (Platzman, 1962): 

0 

where 

d-c", 
KO 

I=-, 

and the "structure" parameters c,, w,, I,, are 
defined as 

c, = 
I 

n, (n, + 1) ' 

0, = w(1- 2c3, 

w=4f ic .  

Clearly, the index K is equal to B or y in eqs. (2) and 
(3). By the selection rules, the interaction coeffici- 
ents KO are non-zero for 

a€ {n, = nb + j:j = 1,3, . . .. 2n,,-1 1, 
while the advection coefficients tRRo are non-zero 
for 

a€ {2n, - j : j  = I, 3,. . ., 2n,-l1 

so that, if we assume n,, < n,. the dimension N of 
the phase space for the truncated field in eq. (1) is 
4 + n,, although there are only n,, + 4 non-trivial 
differential equations. Q, which is proportional to 
the total angular momentum, is constant, and w is 
the corresponding angular velocity of solid rotation 
(Platzman, 1962). It has been shown by Platzman 
(1962) that z(f) satisfies the second-order differ- 
ential equation 

f =  qo + qlz + q# + q,z) (4) 

with initial conditions z(0) = 0, i(0) = M(O), 
where 

and 
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ON FORCED AND UNFORCED TRIADIC MODELS OF ATMOSPHERIC FLOW 13 

Eq. (4) can be integrated analytically in terms of 
elliptic functions, and it can be shown that z is 
periodic for all initial conditions, except for an 
(N - lkdimensional surface of the phase space, 
where points initiate aperiodic z-motions (Dutton, 
1976a). From the equations 

Pp = Pp(0) + ~ U , Z  + b,tz, 

P, = P,(O) + 2U,z + 6,f" 

it follows that if z is periodic, then the spectrum is 
also a periodic function of time. But, the periodicity 
of the spectrum notwithstanding, the total wave 
field CpY!,, + CY!,, may be non-periodic, unless 
the phases also turn out to be periodic (mod. 2n). 
Now, by the definitions given in eqs. (2) and (6) we 
find 

M i 
L 

tgA#=-= 
L(0) - gz - fhz" 

where A+ = +p - +, is the phase difference. Accor- 
dingly, denoting by T the period of r, 

A+]: = 2g, 

wherej E (0,I.t I is the number of zeros of t (z)  in 
the range of the r-oscillation. Thus, A+ is periodic 
(mod. 2n). and the periodicity condition for the 
wave-field (given the periodicity of z) is equivalent 
to the periodicity (mod. 2n) for the sum of the 
phases, @ = #,, + #,, that is 

*I: = 2m, (9) 
where r is any rational number'. The differential 
equation for 4 can be deduced from eqs. (la b) 
and reads 

- UpPp(0) + Z(b,P,(O) - bpPp(0))I. (10) 

From eq. (lo), the periodicity condition (eq. (9)) 
can be written 

T 
2m = (g4 + g,)T + (hp + h")[ z df' 

+ z(b,P,(O) - bpPp(O))ldt', ( I  1) 

When r = m/n is rational. repetition of the motion 
occurs aher n periods of z-oscillations. 

where r is any rational number and T is the period 
of z. It is clear that, as the right-hand side of eq. 
( I 1) is a continuous function of the initial conditions 
(except for the surface of aperiodic motions), for 
generic values of the structure parameters, eq. (1 I) 
can only be satisfied by points that belong to a 
sequence of (N - I)-dimensional surfaas of the 
phase space. In the Appendix it is in fact shown 
that the vanishing of the advection parameters 0,. 

I,,,, is a necessary (and sufllcient) condition for the 
fulfilment of eq. (11) in the whole phase space, 
apart from the surface of aperiodic motions. 

It can be concluded that the inviscid, unforced 
flows of a barotropic rotating atmosphere, as 
described by the truncated set of eqs. ( 1 a, b, c) are, 
typically, non-periodic, although the spectra 
oscillate periodically. 

3. Conservative flows: an analytic 
exampk 

As an example illustrating the effect of absolute 
rotation on the periodicity of the free oscillations 
in spherical geometry, we shall consider the case of 
triadic truncation with np even, ANO) = 4% L(0) = 
0, ICp(0)l = I{,(O)l. By the selection rules, the 
advection coefficients I, are zero and eq. (4) can 
be easily solved analytically. We find 

z =I+ sn (vrlm), 

where sn is the elliptic sine function, 

z: = 

gz + (b,, + 6 , ) ~  - {Ig2 + (bb - bJwl* + 46,,b,~~)' 

(14) 

and w = Pp(0). The equation for the phase differ- 
ence, 

- 2 V v  
9 

A+ = tg-' (- L) , 
implies that A) is an increasing function of time, 
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14 R. LUPIN1 AND C. PELLACANI 

which is periodic (mod. 2n), as d+((T) = d((0) + 
2n. 

The differential equations for the phases 

I 
+v=gp-g -b6L2/w’ 

can be integrated analytically in terms of elliptic 
integrals of the third kind (Abramovitz and Stegun, 
1972). For the case bp - b, < 0 (that is np > no > 
n,) we find 

where 

2:’ 
bP.v 

mp*v = - 
W 

and A, is the Heuman’s Lambda function. By 
the definitions of u, m, I ,  (eqs. (12). (13) and (1411, 
it is easily verified that m, mP.,, P* gP., are 
monotone functions of the parameter E = Iw/ 
Iwl? which is a measure of the ratio of the angular 
momentum of solid rotation to the angular momen- 
tum of the wave-field. As K and A, are monotone 
functions of their arguments, it follows that the 
necessary (and sufficient) condition for periodicity 
of the flow, that is = 2m. where r is any 
rational number, can only be satisfied by a count- 
able set of values of E, as long as w = 0. The 
asymptotic limits of eqs. (16a. b) as E tends to zero, 
in the case bp + b, > 0 (the case bp + b, < 0 leads 
to the same results apart from an interchange of the 
indices ply), are given by 

+PI; =f ( d r  (2Oa) 

+,I; = -2n +f (E) ,  (20b) 

where f ( E )  is of order E as E tends to zero. Eqs. (20) 
show that the periodic, standing oscillations per- 
formed by the triad in the non-rotating case (& = 0) 
(Lorenz, 1960 Galin, 1974) are “destabilized” by 

the introduction of a small field of absolute rotation 
(0 < E Q 1). in the sense that one of the waves 
acquires a finite zonal phase speed while the other 
one remains nearly standing; moreover the entire 
flow pattern becomes almost-periodic for most 
initial conditions. 

4. Non-consewathe triadic model: equPi- 

The inviscid model discussed in the previous 
chapters describes the time evolution of unforced 
planetary components of flow whose dissipation 
time scales are much larger than their intrinsic 
periods. In the present section, we shall study the 
asymptotic properties of the motions of the simple 
triadic model when an axisymmetric field of vorti- 
city generation is taken into account, together with 
dissipation of the energy. Introducing the same 
formal representation of the forcing and dissipation 
terms as discussed by Mitchell and Dutton (198 I), 
the basic set of equations can be written 

bria and periodic trajectories 

where u,,, u and u, are (positive) dissipation co- 
efficients, fm f,% is the (real) field of vorticity 
generation, g, = &IKrn# fm./Vm* - 1% and t. = 
fm./w are the amplitudes of the non-interactive 
zonal components that have already reached their 
steady-state, forced regime. Non-linear interactions 
only occur within the triad (a,/?, y). 

The equations for the mean square vonicity and 
energy, respectively, can be written 
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ON FORCED AND UNFORCED TRIADIC MODELS OF ATMOSPHERIC FLOW I5 

Eq. (22a) implies that all triad trajectories are 
uniformly bounded, while eq. (23) implies that for 
n,, # (n,,, nJ, the wave-energy decays exponentially 
to zero, and purely zonal flow is an asymptotically 
stable state of equilibrium. This is in agreement 
with a general result reported in the above-cited 
paper by Mitchell and Dutton, which we shall 
quote as MD in the following. We shall then con- 
sider the case of intermediate forcing, that is ”,, < 
n,, < n,. Looking for exponential behaviour of the 
couple of waves, that is letting 

we find 
A =  i(iL + g)- 6 & #- ( A I L  + Ag)’ 

+ 4(cP - c,,)(c,, - c , ) K ~  + AyZ 

+ 2iAy(AIL - Ag)11’2, (24) 
where the overbar signifies average. and A the 
dimerence of the quantities to which they apply. By 
eq. (24). the local instability condition for forced 
zonal flow (FZF henceforth) is given by 
26 < I Re (square root term ofeq. (24” (25) 

A considerable simplification of the mathemat- 
ical treatment is obtained by assuming v,, = v, = 6. 
By this assumption, in fact, eq. (25) reduces to 

4 3  + ( A I L  + 4)’ - 4(~ ,  - c,) 
x (CB - ca)KfC2, < 0, (26) 

where we have to take 6 = f,/v,. Now, let 4:) and 
4:’ be the roots of the polynomial of eq. (26) and 
assume < c,” (in the real case). Clearly, the 
following three cases may occur: 

(a) S = A P  + 4(cP - c,,)(c, - c,,)K: < 0; the 
roots are real, C:).czb < 0 and the instability 
range for FZF is the exterior of the interval (c:), 
C:)). In particular, the roots are given by 

-AgAl f 21(Agz + 4;Z)(ca - CJ \ 

(b) S > 0 and 3 < i$ = Agz(ca - cJ(c,, - c,,) 
K Y S ;  the roots are real, Q,”.c!) > 0 and the 
instability range for FZF is the interior of the 
interval (C:! {a)). We distinguish the subcase 
(bl), when Q!) > 0, and the subcase (b3, when 
(f) < 0. 

(c) S > 0 and 6 2 6@* the roots are complex and 
the instability range for FZF is void. 

From eq. (24) we can also deduce that the basic 
system (21) allows for solutions in the form of 
forced, periodic oscillations (FPO). In fact, if C,, is 
one of the (real) marginal values c!*z? then A is 
imaginary and the following is a solution of eqs. 
(21): 
(C,. C,) = (Cp(0). C,(O)) exp (iut), (28a) 

G = ic, + g. (284 
Eq. (28d) implies that, denoting by FPO,,, the 

periodic solutions corresponding to C:**). respec- 
tively, FPO, (FPO,) is a meaningful solution if 

f,/v, > C,” (< c,‘)), for case (a); for case (b) both 
FPO are meaningful when fJv,, > c,“ (in subcase 
(b,)) or fJv,, < cb) (in subcase (ba), but only 
FPO, (FP03 is meaningful when Qa) < fJv,, < 
(2). For case (c) there is no FPO, and FZF is 
unconditionally stable. We note that in eqs. (28). 
the phase of one of the two waves is arbitrary, so 
that the FPOs cover a two-dimensional circular 
torus of the S-dimensional phase space of the triad. 
We can conclude this section by saying that, besides 
purely zonal flow, the limit set of the basic system 
(2 I ) contains one or two tori composed of periodic 
orbits, depending on the value of the bifurcation 
parameter fJv,, and of the dissipation coefficient 6. 
4. I. Stability of periodic oscillations 

In order to study the stability of the FPO’s, we 
have to determine the asymptotic behaviour of 
triad motions starting in a neighburhood of such 
periodic trajectories. Fortunately, this problem can 
be reduced to one of stability for critical points, 
which is much easier to solve. In terms of the 
variables A and E, defined by A + iE = &c = 
161 ICI exp (id(),  the system of eqs. (21) can be 
written 

L = 2Ka(cp - c,)B - v,,& +fa* 

(2% 
A = -(AIL + Ag)B - 26A. 

B = ( A I L  + Ag)A - 26B - I(c, - c,)If,l2 

+ (c,, - ca)lCp121Kac,. 
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16 R. LUPIN1 AND C. PELLACANI 

The assumption vp = v,, = G allows for direct inte- 
gration of eq. (23).  which gives 

W = W(0)  exp (-261). 

where W = (cp - ca)1Cp12 - (ca - c,)I(,I2. It follows 
that, asymptotically, W = 0 and the triad motion 
satisfies (approximately) the following third-order 
system of equations 

4 = 2Ka(cp - c,)B - v,,L +fa+ 

A = - ( A I L  + Ag)B - 2GA. (30 )  

B = ( A I L  + Ag)A - 2GB 
- 2KaI(ca - c,,)(c~ - c ~ ) I ” ~  L(A2 + B’)’’2. 

The mean square vorticity equation can be written 

+ f a 6  
or 

It is clear that the amplitude stationary motions 
described by eqs. (28 )  become critical points of 
the approximate system (30).  which can be written 
as 

where 6 is at the marginal stability boundary of 
the equilibrium zonal flow. Thus, the stability 
analysis of the FPOs reduces to the stability 
analysis of the critical points of eqs. (32 )  for the 
reduced system (30).  After some algebraic manipu- 
lation, we find that the linear variational system 
(Cronin, 1980) of system (30 )  relative to the 
equilibria of eq. (32 )  is stable if 

- L)(S(,, + A1 Ag) < 0. (33)  

For triads of class (a) (S < 0) it is immediately 

I .1  

......... *z* L ........................ 
t 

.. 
;; 0 

I b l  

.-.. ................... co, .* 
Fig. I. (a) Bifurcation diagram for triads of class (a). (b) 
Bifurcation diagram for triads of class (b). FPO = f o r d  
periodic oscillation; FZF = forced zonal flow. Dotted 
lines denote unstable equilibria; continuous lines denote 
stable equilibria. 

seen, via eq. (27).  that eq. (33 )  always holds; for 
such triads, as the bifurcation parameter f$va 
crosses one of the bifurcation points C:e2) from 
the interior of the interval (4:). C!)) a new stable 
periodic solution appears, while the zonal flow 
becomes unstable (supercritical Hopf bifurcation). 
The corresponding bifurcation diagram is depicted 
in Fig. la. 

For triads of class (b) we find that eq. (33)  holds 
for FPO, (FPO,) when fn/vn > (2) (< Cz)), butit 
is not satisfied by FPO, (FPO,) whenfaha > C,” 
(< (t)); thus, in subcase (b,), the original system 
(21 )  undergoes two Hopf bifurcations, a super- 
critical one at (!,“. and a subcritical one at C,”. 
The corresponding bifurcation diagram is depicted 
in Fig. lb, which also represents class (bJ after 
interchange of the indices I and 2, and refiection 
with respect to the origin. 

We notice that triads with rt, even belong to 
class (a), the advection parameters being all zero 
in this case. The vanishing of advection in truncated 
models for flows in plane geometry implies that 
only case (a) occurs in such a geometry, as long as 
we maintain the tonality of forcing. Our case (a) 
corresponds in fact to triads which are called of 
type I in MD. 

Numerical simulations confirming the above 
analysis are reported in the next section. We 
conclude this section with a few considerations 
which will be helpful for the interpretation of the 
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ON FORCED AND UNFORCED TRIADIC MODELS OF ATMOSPHERIC FLOW 17 

qualitative properties of the trajectories to be 
reported later. 

If we consider the set {(C, 161, A(): 0 < A$ < 
2x1 as the phase space of the reduced system (30), 
it is clear from eq. (31) that the equilibrium states 
belong to the elliptic cylinder, say C, of equations 
G = 0,O < A( < 2% where G is the function on the 
left-hand side of eq. (31). The triad trajectories 
enter the region bounded by the elliptic cylinder, 
say C,, which is a tangent on the exterior to Co; 
subsequently, they proceed towards the origin from 
points inside C, and recede from the origin, from 
points outside C,, while crossing the surfaces of the 
equation 

c,,- cv C: 
cp- c, 2 

Y =  IqJ* + --- - cte. 

Typical projections on the (C,,, IGI) plane are 
sketched in Fig. 2a, for the case v,, 5 i, and in Fig. 
2b for the case v,, > i. It is clear that the way a 
trajectory approaches one of the equilibrium 
points on C, depends on the transversality of the 
family of surfaces V = cte. with respect to the 
surface G = 0. We expect very low approach 
velocities for trajectories crossing a neighburhood 
of the point where C, touches C, as confirmed by 
numerical solutions to be reported below. 

4.2. Examples of triad trajectories 
As an example of a triad configuration belonging 

to class (a), we have chosen n,, = 3, nb = 2, nv = 4, 
I = 2. The angular velocity of solid rotation, w, has 
been taken to be I, and the dissipation coefficients 
v,, = G = 0.05, which corresponds to a dissipation 
time scale of about 20 days. 

The computed values of the structure parameters 
are Z2*, = -0.189, Z,,, = -0.268 and K, = 6.546. 
All passive zonal components have been assumed 
to be zero, so that g, = -he; the computed values 
of the stability margins of FZF are C!) = -0.78 
and Cz) = 0.62. For f,,/v,, < -0.78, the corre- 
sponding FZF is unstable and FPO, is stable. The 
value of I &I corresponding to FFQ, is 0.28. 

The projections on the (C, 161) plane of two 
trajectories starting at C, = 0.01, 161 = 0.025, for 
two values of the bifurcation parameter ( f . /v , ,  = 
-0.43 and fJv, = -1.48) are reported in Fig. 3. 
Also shown in the same figure is the projection of 
the cylinder C, for the second value of f,lv,,. 
Apparently, the first trajectory tends, aperiodically, 
to FZF, while the latter spirals towards FPO,, 
following the qualitative behaviour predicted in 
Section 3. Other computations not reported here 
suggest that for triads of class (a), the stable equili- 
brium state (FZF or FPO, depending on the value 
of f,,/v,,) is globally attracting. 

4.1 

. .  

Fig. 2. Sketch of the family of ellipses Y = cte (---), of the ellipses C, (--) of the ellipses C, (-) and of the 
projection of sample trajectories on the (L, 161) plane (*a*), for two different geometrical configurations ((a), (b)). 
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18 R. LUPIN1 AND C. PELLACANI 

Fig. 3. Rojcction of the computed trajeaories for the 
triad n, = 3, np = 2, n, = 4. I = 2. Parameter values are 

- 1.48 ( 0  0). (0) denotes stable equilibria T i e  unit 
is 10dayr 

V, = 5 = 0.05, w = I ,  ~ J v ,  = -0.43 (* *) and fJv, = 

. I  

. .  
I 2 i I;$ 

Fig. 4. Projection of sample trajectories (0.0) for the 
triad nu = 5, n - 4, n, = 8, I = 1. Parameter values are 
w = I, ve = 0.05, v = 0.03,f$vU = 0.484. (0) denotes 
unstable equilibrium. (---) denotes C,. T i e  unit is 10 
days. 

P -  - 

Triad configurations of class (b) are more rare 
than those of class (a) and most of them correspond 
to the smallest values of the zonal index (I = 1,2). 
An example is offered by no = 5, np = 4, n, = 8, 
I = 1, provided that i is small enough to make the 
roots of eq. (26) real. Choosing v, = 0.05, i = 
0.03, w = 1, and zero values for all passive zonal 
components, the instability range for FZF is 
(0.242, 0.433); accordingly, if 0.433 < fJv,, the 
limit set contains the stable FZF, the unstable FPO 
and the unstable FPO. A sample of the computed 
trajectories in the case f J u ,  = 0.484 is reported 
in Fig. 4, together with the projection of C, on the 
(6, I[,J) plane. It is evident that the stability pro- 
perties of the three critical points agree with the 
analysis of Section 3; moreover, as predicted there, 
the form of the basins of attraction is largely 
influenced by the presence of the unstable critical 
point, which is in fact attractive for distant states 
and weakly repulsive locally. It is also clear that 
the upper part of the ellipsis C, is nearly parallel 
locally to members of the family Y = cte, so that 
many trajectories are attracted by it; as they 
cannot cross this curve, nor recede from it, these 
trajectories spend a long time in a very small 
neighbourhood of C, before reaching one of the 
two attractors. 

5. Conclusions 

It has been shown that the free oscillations of a 
rotating, barotropic atmosphere, described by the 
lowest-order truncated model in spherical geometry 
which allows for triadic interaction, are typically 
non-periodic, although the spectra oscillate period- 
ically. It is found that such non-periodicity is due to 
advection of the waves in the field of the zonal flow 
components and to absolute rotation; as this effect 
is absent in the analogous model written in plane 
geometry, we can say that flows in spherical gee 
metry show time evolutions with qualitative 
features not shared by plane flows, given the same 
level of truncation. 

Some properties of the limit set of the forced 
dissipative triadic model have been studied in the 
case of axisymmetric forcing. Asymptotic regimes 
in the form of periodic oscillation have been found 
and their stability properties analysed. For most 
triad configurations, the zonal flow is the only state 
of equilibrium for small forcing values, but it 
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ON FORCED AND UNFORCED TRIADIC MODELS OF ATMOSPHERIC FLOW 19 

becomes unstable at suitably large forcing and a 
periodic attractor enters into play. Numerical 
simulations suggest that such asymptotic regimes 
are globally attracting. For this class of triad con- 
figurations, we find in fact the same qualitative 
properties shown by the analogous triadic model in 
plane geometry (MD). 

However, for other triad configurations, 
characterized by low zonal indices and somewhat 
large meridional indices, stable zonal flow may 
coexist with a periodic attractor, in a convenient 
range of forcing values. Numerical simulations 
confirm the above analysis and suggest the exist- 
ence of surfaces of the phase space which can act 
as “weak” attractors for certain open sets of states. 
Generalization of the results obtained in this work, 
both in the inviscid case and in the forced case, to 
higher-order models is in progress. 
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7. Appendix 

Let us denote by A the surface of the phase 
space whose points initiate aperiodic z-motions and 
let P be the complementary set with respect to A 
(see text). The periodicity condition (eq. ( I  1) of the 
text) is identically satisfied at P (an open set) if and 
only if the continuous function on the right-hand 
side of eq. (1 I), say w, is constant at P. We show 
below that, unless all the advection parameters w,, 

Iaa,,, K = /3, yare zero, this function is not bounded 
in P, as it tends to infinity when its argument 
approaches the boundary surface A. In fact, as the 
initial condition tends to A,  the period T of the z- 
oscillation tends to infinity and the motion becomes 
asymptotic to an amplitude stationary oscillation 
(Dutton, 1976a). Accordingly, T-’ S(1: (see text) 
is asymptotic to a constant value, say @, given 
by 

- a,P, - apPp 
Sfb =gp + g, + 

L ’  

where the overbar signifies the value taken at an 
amplitude stationary motion. On the other hand, 
the equations defining the subset of initial con- 
ditions giving rise to an amplitude stationary 
oscillation, which can be derived from eq. (4) of the 
text by letting i(0) = 40)  = 0, are 

up - g,,L - (up,, + a& = 0, (A24 

ni=o. (A2b) 
From eq. (A2a). eq. (A 1) becomes 

It is now clear that. unless g,, = g, = 0, f 0 at 
some point, which implies that S# is not bounded. 
But the equations 

g, = 1 r,yo,- lo, = 0, 
a 

are identically satisfied only when all the coefficients 
IPb, I,,, op. o,, are zero. 
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