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ABSTRACT 

Parametric models and statistical predictability of mean annual air temperature, both at 
individual stations (MAAT) and zonally averaged (MZAT), are evaluated. The time series have 
lengths from 125 to 315 years for MAAT and 86 years (1891-1976) for MZAT. The optimal 
parametric models of MAAT are shown to be closely approximated by a first-order Markov 
sequence with a small characteristic time scale, so that their statistical predictability is minimal. 
Variations in MZAT should be described with more complicated models; the limits of statistical 
predictability amount to between 4 and 5 years. The temperature spectra are estimated, and the 
relatively high statistical predictability is shown to result from the concentration of spectral 
energy at low frequencies. 

1. Introduction 

The study of the statistical properties of the 
observed climate is nowadays regarded as a major 
problem in physical climatology (GARP, 1975, 
1977). In this respect, year-to-year variations of 
geophysical processes with time scales from several 
years to several decades (“climatic variability”, 
according to Gruza and Rankova, 1980) are of 
substantial theoretical and practical importance, 
because these processes determine e.g., the natural 
climatic variations during the span of human life, or 
the service time of technological projects. Experi- 
mental studies of processes with such time scales 
are also necessary in order to develop adequate 
physical climate models. 

In this paper, an attempt is made to assess 
statistical properties of mean annual air temper- 
ature (MAAT) over the northern hemisphere using 
both observations at individual stations and time 
series of zonally averaged temperature. Statistical 
predictability is characterized here by the quality of 
least-squares linear predictions of temperature by 
its present and past values. 

It should be noted that studies of statistical 
predictability of climatic processes with time scales 
from several years to several decades are by no 
means numerous (Privalsky, 1976, 1977a, b). 

Spectra of large-scale processes have been analysed 
by several groups (see e.g., Monin and Vulis, 197 1 ; 
Poljak, 1975, 1979) using traditional non-para- 
metric spectral estimates. Parametric methods have 
been used by Petersen and Larsen (1978) to 
analyse and forecast long-term climate variations. 

2. The data and methods 

Variations of MAAT at individual stations (in 
Europe and Saint-Louis, USA) are represented in 
20 time series whose length varies from 125 to  3 15 
years (Table 1). The data are taken from several 
sources (mostly from World Weather Records) and 
seem to be sufficiently reliable. A detailed descrip- 
tion of most of these time series is given in Poljak 
(1975) where it is shown in particular, that none of 
them contain a statistically significant linear trend. 

Variations of mean zonal air temperature 
(MZAT) are represented here in 16 time series of 
mean annual air temperature during 1891-1976 
( n  = 86). The values of surface air temperature 
were taken from monthly synoptic charts, inter- 
polated to grid-points of a grid with 5 O  latitudinal 
by loo longitudinal steps and then averaged inside 
their respective latitudinal zones (Gruza and 
Rankova, 1980). The resulting MZAT time series 
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were checked for homogeneity with respect to their 
mean values; comparison with other similar data 
revealed no significant systematic errors or dis- 
continuities (Vinnikov et al., 1980). However, the 
number of stations which have been used to obtain 
these data has increased from several hundred 
during the first half of the time interval to about a 
thousand at the present time. This means that the 
results obtained on the basis of these time series 
should be considered with caution, especially for 
the polar and equatorial regions (90, 85, and 
15" N). Still, this data set as a whole is thought to 
be sufficiently reliable for an analysis of the 
statistical properties of MZAT. A more detailed 
description of the data handling procedure and 
their quality is given in Poljak (1979), Gruza and 
Rankova (1980) and Vinnikov et al. (1980). All air 
temperature time series were checked for station- 
arity. An example is given in Fig. 1. The analysis 
includes the selection of an optimal parametric 
model ARMA (p, q)  within the family of mixed 
autoregressive-moving average models of order 
( p , q ) ,  the estimation of the spectral density s,,Jf) 
corresponding to the chosen model and the 
variance D,,Jr) of the least-squares linear pre- 
diction errors at lead times 5. 

The necessity of the parametric approach is 
dictated in this case by the short lengths of the time 
series as well as by the convenience of the solution 
of the prediction problem. 

Statistical predictability of air temperature is 
characterized here by two criteria. The first one is 
the relative prediction error (RPE) at unit (i.e., 1 
year) lead time, 

dp.q(1) = Dp.q(1)/4 (1) 

where a: = DP.Jc0) is the variance of temperature 
variations for a given time series. The second 
criterion-the limit of statistical predictability 

(LISP) rp,q corresponding to the model chosen for 
a given series-is defined here as the lead time 
r at which the relative error dP,q( r )  = D,,,(s)/u: 
reaches the 80% level. Note that the correlation 
coefficient p( r )  between the actual temperature 
T, + and its predicted value Ft(r )  at lead time r is 
p(r) = [ 1 - dp,q(r)l"2, which means that when the 
limit of predictability rpp.q is reached, the coefficient 

Parameters of mixed autoregressive-moving 
average models ARMA( p ,  q)  and autoregressive 
models AR(p) were estimated for each time series 
of MZAT by using the approximate maximum 
likelihood method with subsequent diagnostic 
checking (Box and Jenkins, 1976); a simpler 
method of Burg (see Smylie et al., 1973) has also 
been used for autoregressive models. This tech- 
nique has been mostly applied to estimate models 
of MAAT at individual stations. 

An initial estimate of the optimal order ( p , q )  for 
each time series is found on the basis of the Akaike 
criterion (Akaike, 1976) 

P(rp ,q )  0.45. 

AlC(p, q)  = n I d ( n  - P  - q)  Dp,&l)l + 2 ( ~  + 4) 
(2)  

and-for autoregressive models only-the Parzen 
criterion (Parzen, 1977) 

. D  

(3) 
i- I 

The best model is the one for which the value of the 
criterion is smallest. 

Note also that the spectral estimate s,,.,,(f) that 
corresponds to the autoregressive model AR(p) of 
optimal order p is a maximum entropy estimate 
with n / p  degrees of freedom (Ulrich and Bishop, 
1975). 

The problem of making the best choice from the 

1891 1900 1910 1920 1930 1~ 1950 1960 1970 

t years 

Fig. 1 .  Variation of mean zonal air temperature at 55" N. 
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family of mixed ARMA(p,q) models requires some 
comment. First, for the time series of MAAT at 
individual stations, the choice can be limited by 
autoregressive models only. This happens because 
these time series, being virtually unpredictable from 
their present and past values, are rather similar to 
white noise (though their spectra may change 
substantially with frequency) and therefore, when 
an autoregressive model is being changed to an 
appropriate ARMA(p.q) approximation, no 
appreciable change in the temperature predict- 
ability is observed. The time series of MZAT as a 
rule differ markedly from the white noise model, 
and estimates of their spectra may contain stat- 
istically significant maxima. 

Both criteria, AIC(p,O) and CAT(p) always led 
to the same order of autoregressive models, but, as 
for mixed ARMA(p,q) models, it seems that the 
choice of the order ( p , q )  can hardly be made, using 
only the Akaike criterion AIC(p,q). In 7 instances, 
the value of AIC(p,q) has been minimal for a mixed 
model, but 5 of these proved to be unacceptable 
either because the estimates of their parameters 
were correlated too closely (correlation coefi- 

cients up to 0.95) or because the roots of the 
characteristic equation corresponding to the model 
were dangerously close to the unit circle. It seems 
that the final selection of the best model cannot be 
made without the diagnostic checking of models as 
recommended by Box and Jenkins (1976). At least, 
this seems to be true when the length of the time 
series is small, as it is in this case. 

3. Results 

Variations of MAAT at different stations in 
Europe and in Saint Louis, U.S.A, possess very low 
statistical predictability. In most cases, RPE 
exceeds the 90% level even at the unit lead time so 
that the limit of statistical predictability, as it is 
defined here, amounts to less than 1 year (see Table 
1). A typical spectrum of MAAT follows a “red 
noise” model with the energy decreasing rather 
slowly with increasing frequency. At some stations 
(Leningrad, Kazan, Stuttgart, Jena) the spectra 
contain 1 or even 2 (Archangel) peaks but, as a 
rule, the peaks are statistically insignificant (Fig. 2). 

Table 1. Parameters of stochastic models of air  temperature a t  individual stations 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
I5 
16 
17 
18 
19 

20 

Leningrad 
Kazan 
Archangel 
Strasbourg 
Prague 
De Bilt 
Saint-Bernard 
Berlin 
Trieste 
Hohenpeissenberg 
Basel 
Jena 
Wien 
Zwannenburg 
Stuttgart 
Karlsruhe 
Paris 
Budapest 
Central England 
(52’30”-53’N, 
1°45’W-2015’W) 
Saint Louis 

1805-1975 171 
1828-1975 148 
1834-1975 142 
1806-1905 150 
1775-1955 181 
1755-1955 201 
1818-1955 138 
1756-1955 200 
1803-1955 153 
1781-1955 175 
1755-1957 203 
1821-1955 135 
1775-1955 181 
1735-1940 206 
1792-1955 164 
1799-1955 157 
1757-1953 197 
1780-1960 181 
1659-1973 315 

1836-1960 125 

4.0 1.26 5 
3.3 1 .00 4 
0.6 1.27 5 

10.0 0.73 1 
9.3 0.88 2 
9.1 0.7 1 0 

-1.6 0.66 2 
9.2 0.84 2 

14.2 0.6 1 0 
6.2 0.78 2 
9.0 0.71 3 
8.5 0.82 6 
9.3 0.82 0 
9.0 0.73 0 

10.0 0.83 4 
9.3 0.76 3 

10.9 0.73 2 
10.9 0.77 1 
9.1 0.60 4 

13.3 0.83 3 

92 
92 
95 
99 
96 

100 
96 
98 

100 
98 
93 
95 

100 
100 
86 
88 
91 
99 
88 

92 

95 
96 
99 
99 
96 
99 
98 
99 

100 
99 
97 

100 
100 
100 
93 
94 
96 
99 
94 

94 

Tellus 35A (1983), 1 



54 V. E. PRIVALSKY 
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Fig. 2. Spectra of mean annual air temperature at 
individual stations (maximum entropy estimates): 1- 
Strasbourg; 2-Basel: 3-Stuttgart: 4-Berlin; 5- 
Archangel. The arrow shows the 90% confidence 
interval for the spectral estimate of MAAT at Archangel. 

The exceptions are given by the spectral estimates 
of MAAT at Jena and Archangel (curve 5 at Fig. 
2) which reveal maxima at f =  0.17 cpy and 

f = 0.39 cpy respectively, statistically significant at 
confidence level 0.9. 

Statistical properties of mean zonal air temper- 
ature (Table 2) are notably different from those of 
air temperature at individual stations. At latitudes 
between 25"N and 80°N, the best parametric 

models for the temperature time series have orders 
from 2 to 6, with zeroth order of the moving 
average operator for all latitudes except for 80" N 
and 75"N. At higher latitudes, the order is 
increased to 7, while at lower latitudes it drops to 1, 
but no regularity is seen in the change of the models 
order with latitude. 

Spectral estimates of MZAT (Fig. 3) sometimes 
contain 1 or 2 peaks inside the frequency band 
between 0.2 and 0.4 cpy, but as a rule, the peaks 
are statistically insignificant. The peaks are especi- 
ally strong in the temperature spectra in the polar 
region where the time series are probably least 
reliable. The most characteristic feature of the 
spectra is the concentration of energy inside the 
low-frequency range, up to approximately 0.1 cpy. 
The percentage of energy u,,,<,(O. 1) contributed by 
the frequency range from 0.0 to 0.1 cpy, that is 

(4) 

amounts, as a rule, to more than half of the overall 
energy (see Table 2 and Fig. 4). Near the equator 
and at temperate latitudes, the energy contributed 
by the low-frequency range drops to 40% and less. 

The one-step (i.e.? 1 year) least-squares linear 
prediction rms error is largest (about 0.7"C) at 

Table 2. Parameters of stochastic models of mean zonal air temperature 

30 
85 
80 
75 
70 
65 
60 
55 
50 
45 
40 
35 
30 
25 
20 
15 

- 19.4 
-18.3 
-15.7 

-9.2 
- 12.4 

-5.0 
-0.6 

2.8 
5.8 

10.1 
15.0 
18.9 
22.0 
24.2 
26.0 
27.1 

15-90 12.5 
20-80 11.4 

50-65 1.3 
35-80 5.0 

15-50 19.5 

0.92 7.0 66 80 
0.89 7,O 64 78 
0.85 1.1 60 68 
0.73 1.1 56 63 
0.61 3,O 60 70 
0.52 6.0 69 83 
0.41 5.0 80 92 
0.35 4,O 90 99 
0.30 5,O 89 99 
0.26 6,O 81 89 
0.22 3.0 66 73 
0.21 3,O 58 65 
0.19 4,O 60 67 
0.18 3,O 70 72 
0.21 1.0 81 81 
0.25 1,0 85 85 
0.21 4.0 53 58 
0.31 4,O 53 61 
0.28 4,O 54 66 
0.34 5,O 78 93 
0.16 1.0 67 67 

4 1 62 
4 1 63 
4 1 71 
5 2 74 
4 1 70 
6 1 65 
1 < I  50 

< I  < I  30 
< I  ( 1  34 

1 < I  53 
3 1 66 
4 2 71 
4 1 69 
1 1 53 
I 1 44 

< I  < I  40 
5 2 75 
5 2 75 
6 2 76 
2 I 52 
1 1 57 

45 
47 
55 
59 
54 
42 
34 
25 
25 
37 
52 
59 
56 
52 
44 
40 
64 
62 
58 
32 
57 
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Fig. 4.  Parameters of stochastic models of mean zonal 
air temperature: 1,2-relative prediction errors d,,J 1) 
and d,,o( 1) corresponding to models ARMA(p,q) and 
AR(1); 3-relative contribution U ~ , ~ ( I )  of low fre- 
quencies to the spectrum of MZAT; 4-limits of 
statistical predictability rp,q. 

high latitudes and decreases to about 0.2 “C south 
of 50”N.  At temperate latitudes, the rms predic- 
tion error amounts to three or four tenths of one 
degree centigrade. The relative one-step prediction 
error dPJ 1) totals about 60 or 70% and comes to 
80 or even 90% at temperate and low latitudes, 
where the values of u,,,(O. 1) are comparatively 
small (see Fig. 4). The limits of statistical pre- 
dictability, in the above sense, reach up to 5 or 6 
years at 30°-40° N and at latitudes higher than 
60° N and drop to 1 year or less at temperate and 
low latitudes (Fig. 4). 

4. Discussion 

The variations of MAAT at individual stations 
are practically unpredictable from their past be- 
haviour while their typical spectrum decreases 
rather slowly with frequency and, as a rule, 
contains no statistically significant maxima. The 
position of the maxima on the frequency axis varies 
from station to station inside a wide frequency 
range, with no peaks at f = 0 . 0 9  cpy (“solar 
cycle”); moreover, only one spectral estimate (at 
Jena) contains a peak at f = 0.17 cpy (close to 
“double solar cycle”). Thus, there is no evidence of 
any “solar influence” in the temperature varia- 
tions. 

An optimal model for the MAAT series is 
distinct, as a rule, from a first-order Markov 
sequence AR(I), but if the optimal model is 
changed to its respective approximation with a 

first-order autoregressive model AR( l), the temper- 
ature predictability remains practically unchanged 
(see the last column in Table 1) .  This means that 
the spectral peaks, if any, are not important in the 
energy budget of temperature variations. All this 
agrees with the results of earlier experimental 
studies (Monin and Vulis, 1971; Monin, 1972; 
Poljak, 1975, 1979; Privalsky, 1976, 1977a, b) and 
with a stochastic climate model (Hasselmann, 
1976). However, mean zonal air temperature 
behaves in a quite different manner. Here, as a rule, 
the RPE with a one-step lead time amounts to less 
than 80% and the limits of statistical predictability 
come to several years, while the spectral energy is 
concentrated at low frequencies and several spectra 
contain statistically significant peaks. From the 
spectral point of view, this relatively high stat- 
istical predictability may result from either the 
predominant low-frequency contribution or from 
the presence of spectral peaks, or both. In order to 
describe the r6le of each of these factors quantita- 
tively, the statistical analysis of the results given in 
Table 2 seems appropriate as a first step. As seen 
from Fig. 4, the one-step RPE is closely related to 
the low-frequency contribution uPJO. 1). Indeed, 
the correlation coefficient between these two 
variables, estimated for the 16 pairs of dPJ 1) and 
upJ0.l), that is, for all 16 zones, amounts to 
-0.97. In other words, the amount of spectral 
energy contained in the low-frequency range is 
responsible for 95 YO of the one-step RPE variation. 
The linear regression equation between d,,J 1) and 
u,,,(O. 1) is 

(5) 

Thus, the spectral peaks, if any, do not affect the 
RPE d,,J 1). This result also seems to hold true for 
the limits of predictability r,,q, though the low- 
frequency contribution u,,,(O. 1) is responsible for 
only 75% of the LISP variations. Indeed, the 
spectral peaks are obviously not important when 
the LISP value is small (e.g., at 55ON). As for 
those latitudes where the LISP rp,y are relatively 
large, the r6le of the spectral peaks can be assessed 
by comparing the optimal AR(p) model whose 
spectrum contains peaks, with an appropriate 
ARMA(p,q) model having a monotonous 
spectrum. Thus, variations of MZAT at 85” N can 
be “forcibly” approximated by a mixed model 
ARMA( I ,  1 )  with autoregressive and moving 
average parameters 0.9 1 and 0.6 1,  respectively. 

dpsq( 1) = 1 17 - 0.80 U ~ , , ( O .  1) 
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(This can be carried as a first approximation 
because the values of AIC(7,O) and AIC( I ,  1) for 
this time series differ insignificantly.) The spectrum 
~ ~ , ~ ( f )  is monotonous (it closely resembles the 
spectra sl , l(f)  at 75’N and 70°N. Fig. 3) but 
statistical predictability of MZAT by this AR- 
MA( I ,  1) model turns out to be practically the 
same for both models. Indeed, the RPE d,.”( 1) = 
64%, d l , l ( l ) =  67% while the LISP r,,”= 3.8 
years and rI,I = 3.4 years. (A simpler ARMA(I,I) 
model for this time series is unacceptable because 
the estimates of its parameters are closely corre- 
lated and the correlation function of its residuals 
differs from zero more significantly than that of the 
AR(7) model.) Clearly, this approach to the 
estimation of low-frequency components and the 
spectral maxima contribution to the limits of 
statistical predictability is rather conditional, but at 
least it helps in explaining the results contained in 
Table 2. It should be noted that the criterion rp,q, as 
it is given here, is a somewhat subjective measure 
of predictability, since it depends on the RPE level 
which is set equal to 0.8. On the other hand, the 
behaviour of rp,q with latitude remains qualitatively 
the same when this level is increased to 0.9. 

Note also that the high statistical predictability 
of MZAT is indeed relative. Actually, the absolute 
rms prediction error is large (not less than 0.75 uT) 
even at a 1-year lead time, so that the 90% 
confidence interval for the predicted temperature 
equals or exceeds the standard deviation of 
temperature u,, even at latitudes where the relative 
error dPJ 1) is minimal. In most cases, the optimal 
model for the MZAT time series differs signi- 
ficantly from the first-order Markov sequence 
AR(1). If a first-order Markov model is adopted 
(that is, if it is assumed in advance that p = I ,  
q = 0. and the parameters of the model are 
estimated), the resulting model will disagree with 
the optimal one. Thus, as is seen from Table 2, the 
RPE dl,o( 1) that corresponds to this “forced” 
Markov approximation, will exceed the errors 
dPJ1) almost everywhere, while the LISP rI.” is 
proved to be smaller than the limit rPqq. From this 
point of view, the Markov approximation can 
hardly be regarded as satisfactory. If, on the other 
hand, one still wishes to describe fluctuations in 
MZAT with a first-order Markov sequence, the 
desired approximation can be achieved in several 
ways. Specifically, one may impose the require- 
ment of equal predictability limits rl,o = rp,q or 
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equal RPE dl,,,( 1) =- dJ 1) for the optimal model 
ARMA ( p , q )  and its first-order Markov approxi- 
mation AR( 1). This will obviously oversimplify the 
optimal model (in particular, all spectral peaks will 
be lost). As seen from Table 2, this approach is 
feasible at several low and temperate latitudes, but 
in most cases the optimal and Markov models will 
be distinct in this sense too. 

Statistical properties of MZAT averaged over 
several latitudinal zones are given in Table 2. The 
orders of the optimal autoregressive models are 
seen to be rather high for all averaging scales 
except for the lowest latitudinal zones, where the 
best choice is the first-order Markov sequence 
AR(1). In other words, it is the variations of air 
temperature at high and temperate latitudes which 
are of major importance in determining the model 
order. A similar effect is observed for other 
statistical parameters of zonally averaged MZAT 
shown in Table 2 except for the mean value T and 
variance uT. 

The spectrum of mean annual air temperature 
averaged over the northern hemisphere quickly 
decreases with frequency in the low-frequency 
range and contains a peak at f - 0.2 cpy stat- 
istically significant at a low confidence level of 
about 0.6. This spectral peak is not important 
because the major part of the energy belongs to the 
low-frequency range of the spectrum, thus causing 
a relatively high LISP of the temperature vari- 
ations. As seen from Table 2, the relative contri- 
bution of low frequencies increases as the scale of 
spatial averaging is increased. This enhancement of 
low frequencies results from the predominant r61e 
played by “slow” components in the temperature 
spectra in most latitudinal zones and, as has been 
found by carrying out the necessary computations, 
from a relatively high coherence between low- 
frequency components in different zones. Hence, 
when several MZAT time series are averaged, high 
frequencies are damped. Physically, this high 
statistical predictability of year-to-year fluctuations 
in MZAT is probably caused by the smoothing of 
short-term “weather-induced” fluctuations which 
serve as the input to the climatic system (Hassel- 
mann, 1976). A similar situation is observed for 
some other elements of the system, e.g., fluctu- 
ations in the water levels of terminal lakes or the 
salinity of inland seas (Privalsky, 1977b, 1980). By 
and large, the results obtained in this study confirm 
the suggestion (Monin, 1972) that spatial averag- 
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ing may lead to  a better statistical predictability, as 
compared with the predictability of individual 
processes. 

5. Conclusions 

Variations of mean annual air temperature at  
individual stations can be described, to  a good 
approximation, by a first-order Markov sequence 
with a small regression parameter. Consequently, 
their statistical predictability is poor. Spatial 
averaging of air temperature leads to more compli- 
cated models and to a better statistical pre- 
dictability of temperature. In particular, an 
approximation with a first-order Markov sequence 
proves to  be optimal only at  low latitudes while, as 
a rule, the optimal models are more complicated 
and  have predictability limits up to 4 or 5 years. 
This relatively high statistical predictability of 
M Z A T  stems from the prevalence of slow compo- 
nents in the temperature spectra. 

These conclusions agree only partially with the 
results of earlier experimental studies or with the 
stochastic climate model proposed by Hasselmann 

(1976). Still, though the errors of the least-squares 
temperature prediction are rather high, it seems 
reasonable to look for physical models which 
would explain the relatively complicated statistical 
structure and high predictability of zonally 
averaged air temperature. It should be noted here 
that at  latitudes lower than 8 5 O  N ,  the behaviour of 
RPE dJ1) with latitude, as is shown in Fig. 4, 
closely resembles that of the net poleward trans- 
port of heat and potential energy in the atmos- 
phere, as is given in Lorenz (1967). If this 
resemblance is not accidental (the curves have a 
rather simple form) it might mean that the statistical 
predictability of M Z A T  is of a ‘‘local’’ character: it 
is higher a t  those latitudes where the transport of 
heat and energy is minimal and decreases as  the 
values of meridional transport increase. This fact 
seems to deserve a closer study. 
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