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ABSTRACT 
An amplification of random perturbations by the interaction of non-linearities internal to the 
climatic system with external, orbital forcing is found. This stochastic resonance is investigated 
in a highly simplified, zero-dimensional climate model. It is conceivable that this new type of 
resonance might play a role in explaining the lo5 year peak in the power spectra of paleoclimatic 
records. 

1. Introduction 

The dominant feature of quaternary climate 
records is the lo5 year peak in their power 
spectrum (Hays et al., 1976), which corresponds 
roughly to the alternation between glacial and 
interglacial stages. During the last few years many 
attempts have been made to clarify whether this 
peak is due mainly to external causes, such as 
variations of the insolation, or to internal mech- 
anisms, such as oceanic and atmospheric feed- 
backs or volcanic eruptions. 

Energy balance models (EBMs) are a useful 
tool in approaching the problem. These are the 
simplest possible models of the climatic system 
capable of incorporating some of the physical 
mechanisms believed to play a role in the time 
scales of interest. Those versions of EBMs studied 
heretofore exhibited some remarkable climatic 
properties such as multiple state equilibria. They 
failed, however, to explain the lo5 year peak. We 
present in Fig. 1 a typical power spectrum of 
paleoclimatic variations for the last 700 000 years. 
A strong peak is present at a periodicity of lo5 
years, while smaller peaks can be noted at periods 
of 4 x lo4 and 2 x lo4 years. 

As suggested by Milankovich (1930), such 
frequencies could be related to variations in the 

earth’s orbital parameters. It appeared plausible 
therefore that causes of climatic variations should 
be associated with this external astronomical 
forcing. Studies using energy-balance models were 
able to reproduce the smaller 4 x lo4 and 2 x lo4 
peaks when including such a forcing. However, no 
response is present which would correspond to the 
lo5 year cycle. Hasselman (1976) pointed out the 
general possibility of short-time scale phenomena, 
modelled as stochastic perturbations, affecting 
long-term climate variations. Sutera (198 1) (here- 
after called S) has shown specifically that including 
such stochastic perturbations into an energy- 
balance model without deterministic external forc- 
ing, could lead to random transitions between the 
equilibria of the model. These transitions, it was 
shown, could have an average characteristic time of 
the order of lo5 years. The interpretation of two 
stable model equilibria as a glacial and interglacial 
climate was suggested. Similar ideas have been 
suggested by Nicolis and Nicolis (I98 I). This left 
open the question about the transitions between the 
two being actually periodic, with period lo5 years, 
as indicated by paleoclimatic records. 

The purpose of this article is to investigate the 
interaction between the effect of a small external 
periodic forcing (about 0.1% of the solar constant) 
with a period of lo5 years and the long-term effect 
of the random noise. The major conclusion is that 
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Fig. 1. Power spectrum of a time series of observation of 
the oxygen isotope content of fossil plankton in a 
deep-sea core from the equatorial Pacific which indicates 
fluctuations in global ice volume over the last 700000 
years. (From U.S. Committee for GARP, 1975, 
Academy Report, “Understanding climatic change”, 
1975, p. 144). The marked peaks have been tentatively 
associated with secular variations in the earth’s orbit 
about the sun, namely changes in the eccentricity of the 
orbit (e), in the obliquity of its axis ( E )  and the precession 
of the longitude of the perihelion (n). 

our model, thus modified, does reproduce satis- 
factorily the sought-for periodicity. In Sections 2 
and 3 we discuss the model used and in Section 4 
we present our major results. Conclusions follow in 
Section 5. 

2. A stochastically perturbed, zero- 
dimensional BudykwSellers model 

In this section we shall present the model used 
here to study the effect of changes in the annually 
averaged solar radiation on the global earth 
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temperature T. Our starting point is the usual, 
deterministic energy-balance model 

Here C is the thermal capacity of the earth, R,, is 
the incoming solar radiation and R,,, the outgoing 
radiation. The parameterizations for RIn and Rout 
are: 

where E ( T )  is the long-wave surface radiation, a(T) 
the globally averaged albedo and Q is a long period 
average of incoming solar radiation. The 
dimensionless parameter p will allow us to intro- 
duce an explicit variation in the solar input. 

In general we can write eq. (1) in the form 

d 
dt 
- T = F(T)  

where 

F ( T )  = ( R e  - R,,,,t)/C. 

The solutions of the equation 

F( T )  = 0 

represent steady states of eq. (1). These solutions 
define the “climates” of our model. Such a model 
“climate” is physically observable in paleoclimatic 
records if it is a stable steady state of eq. (1). To 
investigate the stability properties of climates we 
introduce a function @, hereafter called the pseudo- 
potential, by 

It is clear that 

a@ 
aT 

F ( T )  = - -. 

Therefore the maxima and minima of @ corres- 
pond to climates as previously defined. It is easy 
to show that the minima of @ are unstable 
solutions. A climate will be called observable if it is 
a stable steady-state solution of eq. (l) ,  i.e., a 
minimum of @. 
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We summarize the observational evidence in the 
following two statements. 

(a) Climatic changes appear confined to a tem- 
perature range of a few degrees, say 10 K. 

(b) Apart from the dramatic changes that happen 
on time scales of 104-10’ years, temperatures 
seem to oscillate around fixed values. 

In an energy-balance model, these considerations 
suggest the hypothesis of two stable climates 
separated by an unstable one in a range of 
temperature of about 10 K. Supportive evidence for 
our hypothesis is provided by the results of the 
one-dimensional energy-balance model of Bhat- 
tacharya and Ghil (1978) (see also Ghil and 
Battacharya, 1979). They obtained the stable- 
unstable-stable steady-state configuration over a 
10 K temperature range, using a crude para- 
meterization of the albedo which included certain 
conjectured cloud effects. 

For illustrative purposes, we consider a sim- 
plified, zero-dimensional model based directly on 
the remarks above (see Section 3 for details). 

d T  e(T) 
- 

dr C 

(4) 

Here TI < T, < T, are the three hypothesized 
climates, and p is given by 

p(t)  = 1 + 0.0005 cos ~l 

where 

w = 2n/105 years 

The right-hand side of eq. (4) is now a function 
P = P(c  t )  to which corresponds a pseudo- 
potential b, = 6(c t) .  The change in p corresponds 
approximately to the annual mean variation in 
insolation due to changes in ellipticity of the earth’s 
orbit. 

As it stands, does the model reproduce the 
observed 10 K changes? The answer is no because 
the numerical results show changes of at most 1 K 
around either stable climate. The same answer is 
also given by more detailed, one-dimensional 
seasonally varying models (North and Coakley, 
1979; Pollard et al., 1980; Schneider and 

Thompson, 1979; Suarez and Held, 1979). 
Therefore, we have to look for different physical 
mechanisms in order to explain the amplitude of the 
10J-year cycle. 

It has been suggested repeatedly that the 
IO’-year cycle can arise from an internal mechan- 
ism due to atmospheric and oceanic circulations 
( e g  Ghil, 1980). For our purpose, the result 
outlined in S is particularly relevant. In that paper, 
the following stochastic differential equation was 
considered: 

d T  
-- - F ( T )  + aq(t). 
dt ( 5 )  

Here q( t )  is a normalized Wiener process, com- 
monly called white noise (see S for details) with 
mean zero and variance one. The noise simulates 
the global effect of relatively short-term fluc- 
tuations in the atmospheric and oceanic cir- 
culations on the long-term temperature behaviour. 
It was assumed that F(T), like F(T, t )  in eq. (4), 
has two stable states, TI and T,, with a tem- 
perature difference between them of about 10 K as 
shown in Fig. 2a. The important effect of the noise 
is that, starting from one of the two steady states, 
the solution of eq. (4) will jump after a long but 
Jinite time to the other steady state. The jumping 
time itself is a random variable. 

The noise by itself cannot explain the IO’-year 
cycle. Indeed, the temperature spectrum of T in a 
model governed by (5), with the pseudo-potential @ 
of Fig. 2a, is just exponentially decaying (Fig. 2b). 
The theoretical reason for this is that the variance 
of the jumping time is approximately equal to the 
mean jumping time (for details see Gihrnan and 
Skorohod, 1972). 

Let us now summarize the situation. With p 
alone varying periodically by 0.1% over l o5  years 
in the model ( 1 ,  2), only a very low amplitude 
periodic response in the temperature behaviour 
obtains. On the other hand, with a noise acting in 
climate model (5),  but with fixed p, large amplitude 
long-term temperature variations obtain, but no 
dominant periodicity is apparent. We shall now 
investigate both effects simultaneously, that is, we 
shall investigate the effect of the noise acting 
together with a periodic change of the solar 
constant. 
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cp 
p(1 - a(T))Q = 4 T ) .  

@ Let us define the function f(T) by 

0) 
Q( 1 - a( T)) . f ( T )  = 

Clearly the “climates” of (1,2) are the solutions of I 

Fig. 2. (a) The pseudo-potential behaviour as assumed 
by Sutera (1981). The existence of two stable steady- 
state solutions of eq. (1 )  separated by about 10 K is 
reproduced using the model of Ghil and Bhattacharya 
(1979). (b) The power spectrum of the temperature T 
solution of eq. ( 5 )  with @ ( T )  given in (a). Note that there 
is no evidence of periodicity. 

3. The model equation 

We present here the details of the model used in 
this article. From eq. (1) and the parameterization 
(2) of R,, and R,,,, the steady states, or climates of 
our energy-balance model satisfy the equation 
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f ( T ) =  1. 

Around a climate, therefore, 
f( T) in the following way 

f ( T ) =  1 + 6(T). 

The steady solutions of eq. ( 1  
equation 

6( T )  = 0. 

we can always write 

) therefore satisfy the 

Let us now introduce our main assumption, i.e., 
that the solutions are two stable steady states T, ,  
T,, and one unstable state T,  between them. 
Therefore, we can write 6(T) in a first approxi- 
mation as 

The dimensionless parameter p will be computed 
below. Using the equations above we have 

(1 - W ) ) Q  

(6) 
- 4 T) - 

1 + /I( 1 - T/T,)( 1 - T/T,)( 1 - T/T,)’  

We can now rewrite our model using eq. (6) 

P(1) - 11 .  [ 1 + p(1- T / T , ) ( l -  T/T,)(l - T/T,) 

(7) 

Note that p = p ( t )  is now time dependent. 
Hereafter we shall assume 

p ( t )  = 1 + 0.0005 cos wt 

where 

w = 2n/105 years. 

The dimensionless parameter p can now be 
computed as a function of the decay time r near the 
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0 

actual pi-esent interglacial climate T,. In other 
words, dF/dTI T = T 3  = I / r  is given as a function of p 
for p ( f )  = 1, from (7): 

A 

4 L  

Using a value of r and C as given by GCM models, 
we can compute p from (8). In fact, we have done 
just that, using, however, the value of r obtaining 
from the Ghil (1976) model. 

4 

IL 

4. Results 

To understand clearly the effect of insolation 
variations on a stochastically driven model, we 
have to Igok at the behaviour of the pseudo- 
potential Q(R f ) ,  defined in section 3, as p ( f )  is 
varying periodically with an amplitude of 0.1 %. In 
Fig. 3 we -show schematically the periodic 
behaviour of Q(R f )  for our model. Let us note that 
this behaviour is common to all energy-balance 
models that admit two observable climates 
separated by an amplitude of about 10 K. As we 
can see, the positions of the stable states them- 
selves (abscissa) change only by a few tenths of a 
degree. The pseudo-potential difference between a 
stable state and the unstable state (ordinate) 
changes by a factor two over a period. The latter 
observation is the central point for our 
investigation. 

It is possible to show from the theory of 
stochasticidifferential equations that, for instance, 
the jumping time from T, to T I  for the pseudo- 
potential Q ( T )  in Figs. 3a, 3e (at fixed f )  is 
proportional to the square of the jumping time from 
T, to TI for the case of Fig. 3c. In other words, 
always referring to Fig. 3, let us consider a model 
starting from T, at f = 0 (Fig. 3a). Initially the 
probability of a jump is very small (nearly 0); it 
grows with time and at t = 50 000 years (Fig. 3c) 
will be nearly I .  Hence, in most cases, a jump from 
T, to TI will actually occur. Now the probability of 
a reverse jump, from TI back to T,, is nearly zero. 
This probability, however, increases with time, and 
at f = 1OOOOO years (Fig. 3e) it becomes nearly 1, 
leading in most cases to a jump from TI to T,. This 
variation of probabilities in time repeats itself with 
period lo’ years. The probability of a jump, from 
T, to T, or from T, to TI, depends exponenfially on 

the noise level. Hence, its approaching closely both 
0, for the maximum depth of the pseudopotential 
well (at T, in Figs. 3a, 3e and at T, in Fig. 3c), and 

A 
t=O 

B 
t =25 000 yr 

C 
t = 50 000 yr 

D 
t = 75 000 yr 

. m zeo 290 T (K) 
Fig. 3. The behaviour of the pseudo-potential O ( R  I )  as 
a function of time for a model of the Ghil-Bhattacharya 
(1979) type. Note that the maxima and minima of 
@(R t )  are changing only by a few tenths of degree 
during the cycle, while the pseudo-potential difference 
between the stable points and the unstable point is 
changing by a factor of two. 
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1, for the minimum depth (TI in Figs. 3a, 3e and T,  
in Fig. 3c) will occur only for a given range of the 
noise variance d. 

In Fig. 4, we show an individual realization of a 
solution to the model, in which T,  - T ,  = 10 K. 
Fig. 5 shows the corresponding power spectrum. 
The variance used for this particular simulation 
was about 0.15 K*/year. This value is compatible 
with the present estimates of the historically 
observed global temperature fluctuations (see, for 
instance Budyko, 1969). Clearly, the temperature 
behaviour is periodical, shifting from T,  to T I ,  and 
from TI to T,, every los years, with small gaussian 
oscillations around the stable states. This is our 
main result. Similar results were obtained by 
Nicolis (1 980), using the Fokker-Planck equation 
derived from eq. (5 ) .  The same qualitative 
behaviour, with climate jumps from T, to TI and 
back every 10J years, was observed for a variance 
of the noise in the range 0.14-0.22 K2/year. Inside 

YI I00 150 ID0 250 300 
~ e a r r  1.10’1 

Fig. 4 .  Computer simulation bf eq. ( 5 )  for heat-budget 
model with two observable climates at 280 and 290 K .  
The variance of the noise was about 0.15 K2/year. 

Fig. 5 .  The power spectrum of the solution shown in Fig. 
4. 

this range our approach indicates the possibility of 
a new type of resonance, namely sfochasfic 
resonance between a deterministic external forcing 
of a climate model and a stochastic internal 
mechanism. The word resonance is appropriate 
because if the noise is too small there is no 
correlation between the jumping time and the 
periodic change of the insolation. The same is true 
if the noise is too strong. 

5. Conclusions 

Our results point to the possibility of explaining 
large amplitude, long-term alternations of tem- 
perature by means of a co-operation between 
external periodic forcing due to orbital variations 
and an internal stochastic mechanism. The external 
periodic forcing alone is unable to reproduce the 
major peak in the observed quaternary climate 
records. The internal stochastic forcing alone does 
not reproduce it either. The combination of the two 
effects, however, produces what we may call a 
stochastic resonance, which amplifies the small 
external forcing: a small change in the external 
forcing induces a large change in the probability of 
jumping between two observable climates. This 
new mechanism could be useful in our under- 
standing of long-term climatic change. At any rate, 
it seems to warrant further investigation. 
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