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ABSTRACI 
The instability of the atmosphere places an upper bound on the predictability of instantaneous 
weather patterns. The skill with which current operational forecasting procedures are observed to 
perform determines a lower bound. Estimates of both bounds are obtained by comparing the 
ECMWF operational forecast for each day of a 100-day sequence at one range with the 
operational forecast for the same day at another range, and with the analysis for that day. The 
estimated bounds are reasonably close together. 

Predictions at least ten days ahead as skilful as predictions now made seven days ahead 
appear to be possible. Additional improvements at extended range may be realized if the one-day 
forecast is capable of being improved significantly. 

1. Introduction 

Although many years ago Richardson (1922) 
formulated a rather sophisticated procedure for 
numerical weather prediction, the first moderately 
successful 24-hour numerical forecast, which had 
to await the advent of the computer, was based on 
nothing more complicated than the barotropic 
vorticity equation (Charney et al., 1950). During 
the three decades which have subsequently elapsed, 
as computers have become more and more power- 
ful, and the equations to which they have been 
applied have been made more and more realistic, 
numerical weather forecasting has progressed from 
an experimental to an operational procedure, and 
the range of operational forecasts has been leng- 
thened several fold. At the European Centre for 
Medium Range Weather Forecasts (ECMWF), 
numerical forecasts from one to ten days in 
advance are now prepared every day for opera- 
tional use. It is the ECMWF analyses and forecasts 
which will form the basis of the present study. 
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During these same decades it has become 
reasonably well established that prediction of 
instantaneous weather patterns at sufficiently long 
range is impossible. This state of affairs arises 
because of the instability of the atmosphere with 
respect to perturbations of small amplitude; i.e., 
two or more slightly different states, each evolving 
according to the same physical laws, may in due 
time develop into appreciably different states. Since 
meterological observations can never determine the 
state of the entire atmosphere exactly, we cannot 
tell which of a multitude of nearly identical states is 
the true present state, and we therefore lack a basis 
for predicting which of a multitude of considerably 
different states will occur at some reasonably 
distant future time. 

The lack of complete periodicity in the at- 
mosphere's behavior is sufficient evidence for 
instability (Lorenz, 1963), but it does not reveal the 
range at which the uncertainty in prediction must 
become large. Most estimates of this range have 
been based on numerical integrations of systems of 
equations of varying degrees of complexity, starting 
from two or more rather similar initial states. It has 
become common practice to measure the error 
which would be made by assuming one of these 
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states to be correct, when in fact another is correct, 
by the root-mean-square difference between the two 
fields of wind, temperature, or some other element, 
and to express the rate of amplification of small 
errors in terms of a doubling time. 

The first systematic study of error growth was 
performed with a “low-order” model (Lorenz, 
1965), in which a state of the atmosphere was 
represented by only 28 numbers, and its evolution 
was governed by 28 ordinary differential 
equations. The growth rate proved to be highly 
dependent upon the synoptic situation, but, on the 
long-term average, small errors in wind or tem- 
perature doubled in about four days. With present- 
day accuracy in observations, this would imply that 
reasonably good one-week forecasts should be 
attainable, while one-month forecasts would be out 
of the question. 

The results of such a simple model could not be 
considered definitive, but the implications were 
important enough to imply that similar studies 
ought to be made with the most realistic models 
possible. The available models then were those of 
Smagorinsky (1963), Mintz (1964), and Leith 
(1965); predictability studies which they subse- 
quently performed with these models were de- 
scribed by Charney et al. (1966), who concluded 
that a reasonable estimate of the doubling time was 
five days. 

As more refined models were developed and 
applied to the predictability problem, estimates of 
the doubling time tended to become smaller. A 
landmark study was that of Smagorinsky (1969), 
who used a nine-level primitive-equation model 
containing moist processes and other features 
which earlier models had omitted. His numerical 
integrations indicated a three-day doubling time for 
the smallest errors. As was the case with other 
models, the growth rate subsided as the magnitude 
of the errors increased; obviously the systematic 
growth must cease when the separate solutions lose 
all resemblance to one another, since, from that 
time onward, they are effectively solutions chosen 
at random. 

It might have appeared at this point that the 
range of acceptable weather forecasts could be 
extended by three days simply by reducing the 
observational errors to half their present size-a 
rather costly but not impossible task. However, the 
models which have indicated a doubling time of 
several days do not explicitly contain smaller-scale 

features ranging in size from squall lines and 
thunderstorms to dust whirls, whose amplitides 
should double in hours or minutes or less. The 
effects of these features upon the larger scales 
appear in the models, in parameterized form, but 
the uncertainties in these features d o  not. It is 
hardly to be expected that the details of the 
smaller-scale features will ever be revealed on a 
global basis by a regular observing network. A 
study by Lorenz (1969a) indicated that even if the 
larger scales could be observed perfectly, the 
inevitable uncertainties in the smaller scales would 
after a day or so induce errors in the larger scales, 
comparable to the larger-scale initial errors which 
presently result from inadequate observations. The 
induced errors would then grow as if they had been 
present initially. 

It therefore seems likely that the possible 
accuracy of forecasts at some short range, say one 
day, is strictly bounded by the existence of 
smaller-scale features, although presumably we are 
still a long way from the day when no further 
improvements can be made. The quoted doubling 
times of three days or so may therefore be logically 
interpreted as the doubling time after the first day, 
but before the errors have become too great. 

If the accuracy of one-day forecasts is really 
bounded, a doubling time effectively places an 
upper bound upon the extent to which prediction a 
few days or weeks in advance is possible. Many 
predictability studies have, in fact, implicitly been 
concerned only with upper bounds. Lower bounds, 
although often neglected, are perhaps of equal 
interest. It is possible to establish a lower bound to 
predictability by determining how well a particular 
forecasting procedure regularly performs. 

The purpose of this study is to use the output of 
the ECMWF operational model to obtain esti- 
mates of upper and lower bounds to atmospheric 
predictability, at ranges between a day and about 
two weeks. We shall not be concerned with climatic 
or other long-range predictability, which should 
exist if certain features of the atmosphere can still 
be predicted when most of the atmosphere cannot. 
Neither shall we deal explicitly with predictability 
at ranges shorter than a day. 

Since the ECMWF model is not perfect, and 
since we d o  not possess the ultimate observational 
system, our estimated upper and lower bounds may 
be expected to differ considerably. Future studies 
should aim at establishing a smaller upper bound 
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and a larger lower bound. When the established 
bounds have essentially converged upon each 
other, another chapter in the study of atmospheric 
predictability will have been completed. 

2. Thedata 

Forecasts from one up to ten days in advance 
are prepared daily at ECMWF. The operational 
model used for these forecasts is a 15-level global 
primitive-equation model with moisture and 
orography. Fields of various meterological ele- 
ments at various levels are contained in the 
output, but in our study we have used only the 
analyzed and predicted 500-mb height fields. We 
shall refer to these as the analyses and prognoses; 
we may also refer to an analysis as a zero-day 
prognosis. 

The model is a grid-point model, but, before the 
500-mb data are archived, they are transformed 
into global spherical-harmonic sequences, tri- 
angularly truncated at wave number 40. Each 
height field z (I ,  #), where I is longitude and $ 
is latitude, is therefore represented by a set of 41 x 
42 = 1722 spherical-harmonic coefficients A,, or 
B,,, according to the formula 

40 40 

z(A, 0)  = z z (A ," cos mI + B,, sin mI) 
m=O n = m  

x c (sin I ) ,  (1) 

where Pr is the associated Legendre function of 
degree n and order m, suitably normalized. 

For our data set we have chosen the 100-day 
period from 1 December 1980 to 10 March 1981, 
and we have used the0,1,. . ., 10-day prognoses for 
the above dates. Our complete data set therefore 
consists of 100 x 11 x 1722 = 1,894,200 numbers. 
Prior to our computations these were placed on a 
single tape in the form of 1100 records each 
conthing two indicator numbers and 1722 data 
values. 

We may normalize the spherical harmonics so 
that the average square of P t  is unity, while, for 
m > 0, the average squares of cos ml and 

sin mA are each unity. The coefficients Bo, are 
not defined by the field of I, and may be set equal to 
zero. The data are then especially convenient for 
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statistical studies in which global mean squares are 
to be evaluated, since it follows from (1) that 

40 40 

S-'JS #)dS = 1 1 (A;,, + BkJ,  (2) 
m=O n = m  

where 5' is the area of the earth, dS is an element of 
area, and the integration extends over the earth's 
surface. An analogous result holds if the height field 
z(l,#) in (2) is replaced by the difference between 
two height fields. 

We may question the accuracy of the analyses, 
since there are large regions of sparse data, 
particularly in the Southern Hemisphere. In such 
regions the analyses are not only questionable, but 
the initialization procedure is likely to bias them 
toward the previous prognoses. Estimates of the 
model's performance must be viewed with these 
considerations in mind. The prognoses, on the other 
hand, do not need to constitute accurate forecasts; 
it is sufficient that they tell us accurately what the 
model has predicted. 

3. The first experiment 

Our initial experiment represents an attempt to 
update the results of earlier predictability studies, 
using the ECMWF operational model, which seems 
to be as up-to-date as any model available. As in 
the earlier studies, we compare two or more 
solutions of the same system of equations having 
somewhat similar initial conditions, and observe the 
growth rate of the dflerence between the solutions. 
It turns out that most of the computing has already 
been done for us, in the course of preparing the 
ECMWF operational forecasts. 

Specifically, the analysis for a given day, 
regardless of its accuracy, and the one-day prog- 
nosis for the same day represent two states which 
do not differ too greatly. Oneday forecasts made 
from these two states are simply the one-day and 
two-day prognoses for the following day. Thus, by 
comparing the average difference between one-day 
and two-day prognoses for the same day with the 
average difference between analyses and one-day 
prognoses, we can obtain an estimate of the 
average one-day amplification of moderately small 
errors. 

To obtain the average two-day amplification we 
need only compare two-day and three-day prog- 
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noses for the same day, and, in fact, we can 
continue this procedure up to nine-day amplifica- 
tions. Likewise, to obtain amplifications of some- 
what larger initial errors we may, for example, 
compare the average difference between one-day 
and three-day prognoses with the average dif- 
ference between analyses and two-day prognoses, 
or more generally, the difference betweenj-day and 
k-day prognoses with the difference between 
analyses and (k -j)-day prognoses. 

We have made such comparisons with our data 
set, If z,,,(l., 4) is the j-day forecast for the value of 
z ( l , # )  on the ith day of the sample, and E,k is the 
root-mean-square difference between j-day and 
k-day prognoses for the same day, averaged over 
the globe and over all N (=loo) days of the sample, 

N 

Ejk = N-' S-' 1 I s  [ z i j ( l ,  #) - Z , ~ ( L ,  @Iz dS. (3) 
i = l S  

Recalling eq. (2) we see that 

N 40 40 

E j k  = N-' 1 1 i J  - ik)' -t (Bmn, i j  
i = l  m=O n = m  

- Bmn, ik)'] (4) 

where and Bmn," are the coefficients in the 
spherical-harmonic sequence for 

Fig. 1 shows the results. Root-mean-square 
differences EjH in meters, for j < k, are plotted 
against k; values of ( j ,  k)  are shown beside some of 
the points. The heavy curve connects values of E,, 
and its upward slope as k increases represents the 
rate of increase of the model's forecast error with 
increasing range. This is the rate a t  which solutions 
of two different systems of equations-the true 
atmospheric equations and those of the model- 
diverge as time progresses. The thin curves, on the 
other hand, connect values of Ejk having like values 
of k - j ,  and their upward slope as k increases 
represents the rate at which two solutions of the 
same system of equations-those of the model- 
diverge. This is the rate which is generally sought in 
predictability experiments. 

We observe that the smallest value of EjH 
namely 25 m, requires about 3.5 days to double. 
Larger errors amplify less rapidly, and show signs 
of leveling off. Apparently the growth rate is 
determined by the magnitude; i.e., to a fairly close 
degree, the thin curves differ from one another only 
by a horizontal displacement. 

IOC 

m 

5c 

( 

R . M  .S. Differences 
Global 

, ' I  

5 d o  

I 
0 

Fig. 1.  Global root-mean-square 500-mb height dif- 
ferences Ejw in meters, betweenj-day and h-day forecasts 
made by the ECMWF operational model for the same 
day, for j < k, plotted against k. Values of (j,k) are 
shown beside some of the points. Heavy curve connects 
values of EOw Thin curves connect values of for 
constant k -. j .  

If the analyses and prognoses possessed the 
same time means, and the same variances about 
these means, the heavy and the thin curves ought to 
level off at the same value, which would equal the 
root-mean-square difference between randomly 
chosen analyses or prognoses. Actually the prog- 
noses and analyses have different means, the 
discrepancy increasing with the range of the 
forecast, and consequently the thin curves level off 
below the heavy curve, at roughly 110 m. 

The doubling time quoted in most predictability 
studies is the doubling time for errors of very small 
amplitude. To estimate this time from Fig. 1 we 
should have to extrapolate the thin curves back- 
ward until they approached zero-a rather dif- 
ficult task. The task becomes easy, however, if we 
introduce one assumption, In an earlier study of 
predictability (Lorenz, 1969b), based entirely upon 
analyses, we found that reasonable, although not 
readily verifiable, results could be obtained by 
assuming that the nonlinear terms in the equation 
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governing the growth of EJb for constant k - j ,  
were quadratic. That is, we assumed that 

dEIdt = aE - bE2, ( 5 )  
where t is time. We shall make the same assump- 
tion now. 

The constant a measures the growth rate of small 
errors. The quadratic term must be negative if a is 
positive, since it is the only thing that can halt the 
growth. If E is normalized so that the value which 
it approaches as t + 03 is unity, b = a. The 
solution of ( 5 )  is then 

E / (  1 - E )  = exp [a(t - to)], (6) 
where to is the time at which E = f, or, 
equivalently, 

E = f + f tanh Ifa(t - to)] .  (7) 

The thin curves in Fig. 1 do seem to resemble 
segments of hyperbolic tangent curves. According 
to (6), the time required for El(1 - E )  to double is 
independent of t ,  so that the doubling time for small 
errors is also the time required for E to increase 
from 4 to f ,  or f to ). From Fig. 1, we find that about 
five days are required for EJb with k - j = 1, to 
increase from 4 to of its limiting value, whence our 
preliminary estimate of the doubling time for small 
errors is 2.5 days. This is entirely consistent with 
the results of earlier studies. 

The rate at which separate solutions of the model 
diverge is supposed to approximate the rate at 
which separate solutions of the true atmospheric 
equations diverge. If it does, and if, at some time 
during the forecast, the model could suddenly be 
replaced by the true equations, the remainder of the 
heavy curve would follow one of the thin curves. 
The excess slope of the heavy curve over that of an 
intersecting thin curve may therefore be regarded 
as a measure of the maximum amount by which the 
model may still be improved. Even without further 
improvement in one-day prediction, the perform- 
ance of the perfect model should then be given by 
the lowest thin curve in Fig. 1 and its extrapolation 
to  the right, and skilful forecasts more than two 
weeks ahead should ultimately be expected. 

This is the optimistic view. The pessimistic view 
is that, as the model is continually made more 
realistic, the estimate of the doubling time which it 
yields will continue to decrease. In that event, as the 
top curve in Fig. 1 drops, the bottom curve will 
move upward, possibly approaching it at a level 

closer to the present top curve than the present 
bottom curve. Further improvements in extended 
range forecasting will then not be spectacular. 

In any event, the two curves can never com- 
pletely coincide. The small-scale weather features 
which assure us that by one day there will be a 
considerable error also assure us that beyond one 
day a model cannot perform perfectly. 

In Fig. 2, we present the relevant material of Fig. 
1 in an alternative form. For each of the 45 one-day 
segments of the thin curves in Fig. 1, we have 
plotted, as large dots, the increase in root-mean- 
square error y = El+ , .k+ - EJk against the average 
root-mean-square error x = Elk + y / 2 .  Thus we 
have plotted a finite difference estimate of dE/dt 
against E. Likewise, for each of the nine one-day 
segments of the heavy curve we have plotted, as 
crosses, y’ = Ef + ,,o - EJo against x’ = Efo + y’/2. 

We see first of all that there is no tendency at all 
for the crosses to fall among the cluster of dots; in 
fact, they would come closer to doing so if the 
values of y’ were divided by two. We conclude, as 
before, that considerable further improvement in 
forecasting is possible. 

If E were really governed by (3, the dots would 
lie on a parabola. We feel that, although the vertical 
spread of the dots is obvious, they come remark- 
ably close to doing so, in view of the limited size of 
the data set. 

There is probably no unequivocal definition of 
the parabola y = ax - bx* which best fits the dots. 
We have chosen to minimize a weighted mean 

F I 

lo t 

G l o b a l  

0 so 100 m 

Fig. 2. Increases in global root-mean-square 5Wmb 
height differences, E,+ - E,* plotted against average 
height differences (El+ + EJ2,  in meters, for each 
oneday segment of each thin curve in Fig. 1 (large dots), 
and increases Eo,&+, - E ,  plotted against average 
differences (E, , , , ,  + E0,)/2. for each one-day segment 
of heavy curve in Fig. 1 (crosses). Parabolaof “best fit” to 
large dots is shown; see text. 
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square of y - (ax - bx2); our weighting function is 
the product of two factors. The first factor, 
l/(ax - bx2), is included because we feel that the 
ratio of the heights of the dots and the parabola is 
important even when both heights are small. The 
second factor, a - bx, is included to give greater 
weight to individual dots in the left portion of the 
figure, where the density of dots is smaller. The net 
effect is a weighting function l/x. The resulting 
parabola, shown in Fig. 2, corresponds to a limiting 
error of 109.9 m and a doubting time of 2.40 days. 
We might add that the parabola is not very 
sensitive to the weighting function; without it the 
limiting error and the doubling time would be 
110.2 m and 2.42 days. 

4. Further experiments 

In the coming years, as new operational models 
with additional refinements replace the present 
ones, and as these new models are applied to new 
data samples, it should be possible to construct new 
diagrams similar to Fig. 1, with the slopes of the 
heavy and thin curves more nearly equal, or to Fig. 
2, with the crosses closer to the parabola. In the 
meantime, we can even now make some changes in 
the ECMWF model which will improve its perfor- 
mance, and which will enable us to construct the 
desired diagrams without further numerical inte- 
gration. We can do this by replacing the prediction 
X for a predictand Y, where X stands for any 
spherical-harmonic coefficient A,, or B,, in a 
prognosis, and Y stands for the same coefficient in 
an analysis, by the linear function 

X‘ = A  + BX (8) 
of X, where A and B are to be chosen so that X’ 
possesses the same temporal mean and standard 
deviation as Y. A considerable sample of data is 
needed to obtain good estimates of A and B, and in 
the present study we have used the same sample 
used subsequently to evaluate the root-mean-square 
errors. 

It is easily seen that if we should set B = 1, 
choosing A to make only the mean of X’ equal to 
that of Y, the model would perform better in the 
root-mean-square sense. On the other hand, when 
we make the variance and hence the standard 
deviation of X’ equal to those of Y, we may 

actually increase the mean square of Y .- X’; this is 
especially likely to be so if X has a smaller variance 
than Y, and if X and Yare not highly correlated. 

We do not believe that in this event we would 
make a poorer forecast by making X‘ have the 
proper variance. We betieve instead that the 
possibility of an increased mean square points to a 
serious shortcoming of the mean-square error, or 
root-mean-square error, as a general measure of the 
goodness of a forecasting procedure. 

One property of numerical-weather-prediction 
models which is considered desirable and possibly 
essential is that the prognostic maps which they 
produce should look like real weather maps. In 
order for these maps to possess migratory synoptic 
features of the proper intensity, the variables must 
possess the proper variances. One could eliminate 
the migratory systems by choosing, as a pre- 
diction, the climatological normal weather map 
plus some very weak superposed random pattern. 
At a range of six days, such a prediction would be 
superior to the ECMWF model, in the root-mean 
square sense, but it is doubtful that any serious 
numerical modeler would accept it as a replace- 
ment for the ECMWF model. 

We suggest that a more satisfactory measure of 
the goodness of a forecasting procedure is afforded 
by the root-mean-square error after the predictions 
have been modified by replacing the predicted value 
of each element by the linear function of itself 
which possesses the correct temporal mean and 
variance. Evaluated in this manner, the ECMWF 
model, at ranges up to ten days, is definitely 
superior to “climatology” plus infinitesimal super- 
posed noise. (Climatology without superposed 
noise possesses a zero variance, and attempts to 
choose A and B to correct the variance would result 
in attempts to divide by zero.) A persistence 
forecast, incidentally, is superior to climatology 
plus noise and inferior to the ECMWF model. 

Having suggested this measure of goodness, we 
must point out that correcting the variance of each 
spherical-harmonic coefficient is not equivalent to 
correcting the variance at each grid point. We 
suspect that either procedure would produce a 
prognostic map resembling a real weather map. 
Correcting the variance of each coefficient and the 
covariance of each pair of coefficients is equivalent 
to correcting the variances and covariances of 
grid-point values. With a much larger data sample 
it should be feasible to do this after first replacing 
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the set of coefficients, or grid-point values, by a set 
of uncorrelated linear combinations. 

Strictly speaking, the modified ECMWF model 
is not a suitable model for evaluating error growth. 
What one should do is to  integrate the equations for 
one day, modify the one-day prognosis according 
to (8), integrate for a second day from the modified 
conditions, modify the prognosis again, etc. The 
advantages and disadvantages of such a procedure 
have been discussed by Leith (1978). In the present 
study, 'in order to obtain answers without per- 
forming additional costly numerical integrations, 
we shall have to assume that the result of 
integrating for j days, and then modifying once 
according to (8), does not differ too greatly from 
the result of making j modifications at one-day 
intervals. 

Fig. 3 is like Fig. 2, for the modified model. The 
parabola of best fit corresponds to  a limiting error 
of 104.1 m and a doubling time of 2.16 days. The 
crosses are noticeably lower than in Fig. 2, 
indicating that the modified model does indeed 
perform better. On the right side of the figure the 
crosses are especially close to the dots, implying 
that any further improvement in the model in the 
seven-to-ten-day range must be something which 
improves it at shorter range. 

At the same time, it appears that the original 
model has over-estimated the doubling time. The 
optimistic view mentioned in the previous section 
is therefore a bit overoptimistic; if a figure similar 
to Fig. 1 were constructed, the upper curve would 
become less steep, but the lower curve would 
become slightly steeper. 

Incidentally, we do not recommend the correc- 
tion procedure as a permanent step in the continual 

I S  

Ij Globa l  

Modified 

improvement of the ECMWF or some other model; 
it is too likely to lead to a dead end. We feel instead 
that it provides an excellent means of demon- 
strating that improvements are possible; pre- 
sumably these can ultimately be realized by 
representing the physical processes more 
realistically, or using superior mathematical tech- 
niques for solving the equations. Improving the 
physics or mathematics may very well yield 
improvements beyond those which the correction 
procedure would reveal to be possible, If a 
correction procedure is to be built into a model, it 
would seem best to remove it completely before 
introducing any physical or mathematical refine- 
ments, possibly reintroducing it afterward. 

In a final attempt to bring the crosses and the 
parabola closer together, we have effectively 
improved the ECMWF model without actually 
altering it at all; we have simply evaluated its 
performance for the Northern Hemisphere (NH) 
alone, again applying the correction (8). Since a 
good prognosis requires a good analysis, the model 
behaves like a better model in regions where the 
data are more plentiful, i.e., extratropical regions of 
the NH, provided that these are not too closely 
coupled with the regions where the data are sparser. 
It seems possible that during forecast intervals of 
ten days or less, the initial errors in one hemi- 
sphere do not contaminate the forecast in the other 
hemisphere too greatly. At the same time, the 
contribution of possible poor prognoses in the 
tropics has been minimized by measuring the error 
in terms of the 500-mb height, whose variance in 
the tropics is rather small. 

It is a simple matter to verify for the NH alone 
without transforming from spherical harmonics to 
latitudes. We replace each Legendre function Pf, 
where n - m is odd, by 

Q r = Z W P Y ,  (9) 
J 

where the summation is over values ofj for which 
j - m is even, and the bar indicates an average over 
the NH, and P;" having been renormalized so 
that their mean squares are unity. Thus QF and 
will be equal in the NH, but will have opposite signs 
in the Southern Hemisphere (SH). When Qf, given 
by (9), is substituted for PT in (l), new coefficients 
of the even functions may be evaluated and used in 

Fig. 3. Same as Fig. 2, but for the modified ECMWF the subsequent computations. Effectively we re- 
model. place the analyses and prognoses by analyses and 

10 ~ . . . .. 

0 100 so 
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prognoses which are unchanged in the NH, but 
which treat the SH as a mirror image of the NH;  
this is allowable since we are verifying for the NH 
only. 

The results appear in Fig. 4, which is similar in 
format to Figs. 2 and 3. The parabola corresponds 
to a limiting error of 112.6 m and a doubling time 
of 1.85 days. We believe that the further lowering 
of the doubling time occurs not because the 
2.16-day value is an over-estimate, but because the 
period of the data is N H  winter, when the N H  
weather systems are most active. We would 
anticipate slower N H  error growth in N H  summer, 
again assuming that the two hemispheres are not 
too strongly coupled. 

Again the crosses have moved closer to the dots. 
They would fit well in the cluster of dots if their 
heights were reduced by only 25 %. 

To further compare the performances of the 
three “models”, relative to the best possible 
performance, we have constructed Fig. 5 by 
superposing the parabolas and the points marked 
by crosses in Figs. 2-4, after first altering the 
horizontal and vertical scales so that the three 
parabolas coincide. Effectively we use the limiting 
error as the unit for measuring the error, and the 
doubling time as the unit of time. We see that each 
model represents an improvement over the previous 
one. 

Accepting the modified ECMWF model, applied 
to the NH, as a state-of-the-art model, we find that 
we have established upper and lower bounds to 
atmospheric predictability which are reasonably 
close together. Assuming that we have correctly 
estimated the doubling time, we find that, even 

Hemispheric 

Modified . .  

Fig. 4. Same as Fig. 2, but for the modified ECMWF 
model, for the Northern Hemisphere only. 

0 0.5 1.0 

Fig. 5. Superposition of points marked by crosses in 
Figs. 2-4, aRer horizontal and vertical scales have been 
altered so that parabolas coincide. Curves labelled 
“global”, “global modified”, and “hemispheric modified” 
connect points from Figs. 2,3 and 4 respectively. 

without further improvement in one-day fore- 
casting, we may eventually make ten-day forecasts 
as good as present seven-day forecasts, and 
13.5-day forecasts as good as present ten-day 
forecasts. Cutting the one-day root-mean-square 
error in half should add another two days to the 
range of predictability; possibly we may cut this 
error in half more than once. 

5. Conclusions 

The instability of the atmosphere with respect to 
small-amplitude perturbations places an upper 
bound upon the atmosphere’s predictability. A 
lower bound is afforded by the established skill of 
forecasting procedures which have already seen 
operational use. The current state of the art places 
the two bounds reasonably close together. 

For example, on the average, in Northern 
Hemisphere winter, the time during which the 
root-mean-square error in predicting the 500-mb 
height field, with the best possible forecasting 
procedure, will remain below one seventh of its 
limiting value is no less than one day; the 
additional time during which this error will remain 
below six sevenths of its limiting value is no less 
than seven days nor more than ten days. Un- 
fortunately our study does not yield an upper 
bound for the time required for the error to reach 
the level which it presently reaches in one day. 
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There are a number of reasons why our rpsults 
cannot be looked upon as the final word. First, we 
have examined only 500-mb height data. It seems 
probable that strongly coupled elements will have 
similar ranges of predictability, so that our con- 
clusions may well also apply to middle-latitude 
tropospheric temperature and wind prediction, but 
they may be quite unrealistic for such elements as 
tropical cloudiness and rainfall. 

Second, the analyses by which the performance 
of the ECMWF model has been evaluated are far 
from perfect. The points on the upper curve in Fig. 
1, and the crosses in Figs. 2-4, are perhaps not 
properly located. Next, the initial errors whose 
growth we have studied are rather specialized. They 
presumably are somewhat like typical prediction 
errors, and we might have preferred typical analysis 
errors. Next, we may have relied too heavily upon 
the assumption that the growth of root-mean- 
square errors satisfies a quadratic equation. There 
are curves other than parabolas which would fit the 
dots in Figs. 2 4  about as well. 

Finally, and perhaps most importantly, our 
conclusions are based upon a rather small data 
sample, consisting of only 100 consecutive days. 
Other winters, not to mention summers, may be 
marked by more, or less, predictable weather. 

Nevertheless, we believe that our conclusions are 
sufficiently well founded to be regarded as indi- 
cators of the most promising avenues for future 
forecasting research. Better-than-guesswork fore- 
casts of instantaneous weather patterns nearly two 
weeks in advance appear to be possible, and efforts 
to establish numerical-prediction models which are 
potentially capable of making such forecasts, and 
observing systems which enable the models to 
realize their potentialities, should continue. Skilful 
forecasts of instantaneous patterns a month or 
more ahead sti l l  appear to be out of the question, 
and attempts to predict at these longer ranges 
should be confined mainly to predictions of 
properties which appear to be predictable, such as 
weekly, monthly, and longer-period averages and 
other statistics. 
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