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ABSTRACT 
The Fokker-Planck equation corresponding to a zero-dimensional climatic model showing 
bistable behavior is analyzed. A climatic potential function is introduced, whose variational 
properties determine the most probable states of the stationary probability distribution. A study 
of the time-dependent properties leads to the identification of the characteristic time scales 
of evolution. 

1. Introduction 

The variability of the climatic system, associated 
both with the almost-intransitive character of 
atmospheric and oceanic processes as well as with 
the variability of solar output, has recently been 
pointed out by several authors (Hasselmann, 1976; 
Lemke, 1977; Robock, 1978; Nicolis and Nicolis, 
1979). It has been realized that in order to account 
properly for this phenomenon it is necessary to  set 
up a stochastic study of climate, incorporating the 
effect of statistical fluctuations around the deter- 
ministic evolution. Within this framework, 
Hasselmann (1976) and Fraedrich (1978) analyzed 
some aspects of the linear response of the system 
associated with small excursions around the 
present-day climate and in particular they 
evaluated the Fourier transform of the auto- 
correlation function (power spectrum) of the 
pertinent state variables. 

Now, in addition to the short-term variability 
associated with the day-to-day changes of the 
“weather” component of climate, the possibility of 
long-term changes associated with climatic 
transitions is nowadays fully realized (e.g. North, 
1975). If a linear response theory is clearly 
sufficient to investigate the variability of the first 
kind, it is equally clear that for long-term climatic 
transitions a nonlinear response analysis of 

fluctuations is needed. Indeed, in a potentially 
unstable system even relatively small random 
fluctuations will sooner or later drive the system 
to a new regime. In a deterministic description 
the same system would not evolve, unless a finite 
disturbance exceeding some threshold value is 
applied to the reference state. 

The purpose of the present paper is to develop 
such a nonlinear response analysis of climatic 
fluctuations. Preliminary results concerning the 
asymptotic behavior of a simple climate model 
under the effect of multiplicative fluctuations such 
as those associated with the variability of the solar 
output have been reported elsewhere (Nicolis and 
Nicolis, 1979). Here we perform a comprehensive 
study of both the static and time-dependent 
behavior and focus our attention on the simpler 
case of additive fluctuations. The methods we use 
are inspired from recent studies of bifurcation and 
transition phenomena in physical and chemical 
systems far from thermodynamic equilibrium, 
where the influence of fluctuations was indeed 
shown to be decisive (Nicolis and Prigogine, 1977; 
Haken, 1977; Nicolis and Turner, 1979). 

The paper is organized as follows. In Section 2 
we outline a general formulation of nonlinear 
response to fluctuations which is independent of the 
details of the climatic model, and derive an exact 
steady-state solution of the Fokker-Planck 
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equation for the probability distribution of the 
fluctuations valid for arbitrarily large fluctuations. 
In Section 3 the properties of this solution are 
illustrated on a simple zero-dimensional model 
involving two stable climatic states separated by an 
unstable one. This analysis leads us to introduce 
the notion of climatic potential, which plays here 
a role analogous to that of free energy density 
in thermodynamics. Section 4 is devoted to the 
time-dependent properties of the fluctuations. As 
the Fokker-Planck equation cannot be solved 
exactly, most of the analysis is based here on 
numerical simulations, following some special 
methods developed in the context of plasma 
physics (Chang and Cooper, 1970). On the other 
hand for the late stages of evolution one can apply 
a phenomenological theory due to Kramers, in 
which the dynamics of the fluctuations is viewed as 
a problem of diffusion over a potential barrier (see 
e.g. Wax, 1954). This allows us to identify the 
characteristic time scales of evolution. Some 
conclusions and future perspectives are sum- 
marized in the final Section 5 .  

2. General formulation 

Let X denote a climatic variable obeying an 
autonomous equation of evolution. A typical 
example is the surface temperature T averaged 
over space coordinates. In the absence of fluctua- 
tions X is supposed to obey to the following 
“zero-dimensional” equation: 

d.f - = f(X, I )  
dt 

Here f is a nonlinear function describing the 
physics of the system, and I stands for a set of 
characteristic, prescribed parameters such as 
albedo, emissivity and so forth. Of special interest 
for our work are cases in which the steady-state 
solutions 

f(& 4 = 0 (2.2) 
are multiple, and in which their stability properties 
change as the parameters I take different values. 

As discussed in the Introduction, in order to 
analyze the mechanism of the spontaneous 
transition between these states it is necessary to 
consider the effect of fluctuations. In this paper we 
limit ourselves to additive fluctuations, associated 

with random imbalances between the various 
transport and radiative mechanisms involved in the 
rate function f(X, A). We denote their effect by a 
random force F(t)  which is assumed to be x- 
independent and define a white noise (Wax, 1954): 
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(2.3) 

Here ( ) denotes the expectation operator over the 
ensemble of possible realizations. 

Equation (2.1) is now to be replaced by the 
stochastic differential equation 

dx 

dt 
- = f ( x ,  I )  + F( t )  (2.4) 

Equations (2.3)-(2.4) are equivalent to the 
following Fokker-Planck equation (e.g. Arnold, 
1973) with nonlinear friction coefficient and 
constant diffusion coefficient: 

(2.5) 

P(x,  t )  is the probability density for having the 
value x of the state variable at time t. 

It should be realized that eqs. (2.3) defining the 
properties of the random force F are in principle 
rather restrictive. Nevertheless, we expect them to 
describe satisfactorily the situation for roughly the 
same reason as in brownian motion and other 
problems in statistical mechanics: Namely, because 
of their local character, the fluctuations of various 
fluxes are expected to loose rapidly the memory 
of the state of the system which prevailed when 
they occurred and, partly as a result of this, to 
occur independently of each other. Further 
arguments in essentially the same direction have 
been developed by Hasselmann (1 976). 

For arbitrary nonlinear functions f ( x ,  A), the 
full analysis of eq. (2.5) constitutes an unsolved 
problem. Let us therefore first focus on the steady- 
state solution, aP,lat = 0. Integrating once the 
right hand side with respect to x we get: 

(2.6) 

In all physically reasonable situations we expect 
that when x reaches the boundaries of the process 
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(e.g. 0 and co if x is the temperature), P, will 
tend very rapidly to zero, i.e. both P, = 0 and 
aP,/ax = 0 at the boundaries. We set therefore the 
probabilityflux J,(x)  to zero at the steady state: 

JP, , (x )  = 0 for all x (2.7) 

Equation (2.7) is known as a generalized detailed 
balance condition (Haken, 1977) and leads to an 
exact solution for P,  in the form: 

P , ( x )  = 2-' exp -- U ( x )  [:, 1 
where we defined the potential U ( x ) :  

The proportionality constant 2-I is determined 
from the normalization of P,  

J, dx P , ( x )  = 1 

D being the domain of variation of x ; thus 

(2.10) 

From eqs. (2.8)-(2.10) a number of general 
properties of P , ( x )  can already be deduced. First, 
the extrema of P, are those of the potential U ( x )  
or, in terms of eq. (2.9): 

In other words, P, has an extremum for those 
values of x for which the deterministic balance 
equation admits stationary solutions. This is a 
consequence of the additive character of the 
fluctuations and of the constancy of the "diffusion 
coefficient" fq2. Second, P,  has a maximum around 
a stable steady-state solution of eq. (2.1), and a 
minimum around an unstable one. To see this, we 
observe that from eq. (2.9): 

(2.1 1) 

On the other hand, from eq. (2.1), (df/dx)*, 
determines the linear stability of X, .  Combining 
with eq. (2.11) we conclude that: 1 < 0: P, minimum, X, unstable 
du2 f, 

> 0: P,  maximum, X, stable (2.12) 
dX2 f ,  

In the next section we illustrate the significance 
of these results on a simple zero-dimensional 
energy balance model. 

3. A simple model: Climatic potential and 
coexistence curve 

Suppose that X denotes the average surface 
temperature. The rate function f in eq. (2.1) is 
then the difference between the solar influx 
Q(1 - a(X)) [Q being the solar constant divided 
by 4, taken to be Q = 340 W m-2, and a the 
albedo] and the infrared cooling rate, EUX', 
[ E  being the emissivity and u the Stefan constant]. 
Equation (2.1) becomes: 

dx  1 

dt C 
- IQ(1 - a(X)) - EuX'I (3.1) 

where C is the thermal inertia coefficient. Here- 
after we normalize the time scale so that the value 
of C is equal to unity. 

For temperature values near the present-day 
climate, a ( i )  is usually taken to be a roughly 
linear function of its argument (Cess, 1976; 
Nicolis, 1980). On the other hand, for very low i, a 
must tend to the albedo of ice, alfe whereas for 
high X, a should also saturate to some value, uhot 
descriptive of an ice-free earth. The simplest 
representation taking these features into account is 
the zero-dimensional piecewise linear model 
proposed by Crafoord and Kallen (1978) and 
summarized in Fig. 1.  Analytically, we write: 

1 - ~ ( i )  = 1 - aife = y1, X < TI 
1 - a ( i )  = 1 - a  + PX= yo + pi ,  

1 - a(.?) = 1 - shot = yz, 

T, < X < T, (3.2) 
X > T2 

In actual fact the albedo will always be a smooth 
function of temperature in the vicinity of the 
transition values T, and T,-a property which is 
also a mathematical prerequisite for the derivation 
of a Fokker-Planck equation. Nevertheless because 
of the detailed balance condition, eq. (2.7), the 
steady-state probability P , ( x )  can be evaluated 
using the piecewise differentiable model (3.2). 

Using the explicit dependence of the albedo on T 
as given by eqs. (3.2) in eq. (3.1), we see that for 
appropriate values of the parameters yo, y,, y2 
and the system may admit three steady state 
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Fig. I. Incoming and outgoing radiative energy curves 
as functions of X (global average temperature). Their 
intersections T,, T- and To are the three steady states. 

solutions. One of them, denoted hereafter by T + ,  
corresponds to the present-day climate and is 
asymptotically stable, provided the parameters yo 
and P are chosen in such a way that the planetary 
albedo is 0.30 and the emissivity is E = 0.61. The 
second solution, denoted by T - ,  corresponds to a 
deep-freeze climate and is also asymptotically 
stable. A third solution To lies between T+ and T- 
and is unstable. 

Let us now turn to the stochastic aspects. We 
first limit ourselves to the steady-state, postponing 
until Section 4 the analysis of the time-dependent 
behavior. According to Section 2, the principal 
quantity determining the behavior of fluctuations is 
the potential U(x) .  Such a potential was introduced 
for a spatially one-dimensional climate model by 
Ghil (1976) and further analyzed by North et al. 
(1979). As the deterministic equation has three 
steady-state solutions, the potential will have two 
minima at Tt separated by a maximum at To. 
We call this a bisfable potential. From definition 
(2.9) and from eqs. (3.1) and (3.2) we obtain the 
following explicit expression of U, after setting 
arbitrarily U(0) = 0: 

EU 
- U ( X ) = Q Y , X - - X ~  x < T ,  

5 

y1 TI  + y0(x - T I )  + 
2 

EU 
-- x 5  T , < x < T ,  

5 

1 

+ y 2 ( x - T 2 )  - - x ’  x > T Z  J: (3.3) 

The properties of the stationary distribution 
P,(x)  depend crucially on the normalization factor 
Z, eq. (2.8). For the function V ( x )  defined by 
eqs. (3.3) the integral over x appearing in the 
expression of Z cannot be evaluated exactly for 
an arbitrary value of q. However in the limit of 
small fluctuations, the maxima of exp [-(2/q2) 
V ( x ) ]  become very sharp and as a result the 
integral over x can be evaluated by steepest 
descent methods (see e.g. Matthews and Walker, 
1965). Remembering that these maxima are at the 
deterministic stable states T+ and T - ,  and that 
there is also a minimum at the unstable state To, 
we obtain: 

(3.4) 

A steepest descent calculation amounts to ex- 
panding U ( x )  in the two integrals around T- and 
T+,  respectively, and to retaining only the quadratic 
terms in the expansion. We thus obtain: 

hence 

+ ( 4 ~ u T :  - QP)-I12 exp -- U(T+)  ( )I-’  
x exp -- U ( x )  i: 1 (3.5) 

The behavior of this function is conditioned by the 
deepest of the two minima U(T-)  and V(T+). 
Suppose first that U(T+)  < U(T-) .  Because of the 
inverse of a small factor l/q2 in the exponent, 
the difference between these two quantities will be 
amplified enormously and the term containing 
U(TJ will give a vanishingly small contribution 
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in eq. (3.5). Moreover, P, itself will be nonvanishing 
only in a small vicinity around T+,  and will 
therefore reduce to a Gaussian centered on this 
state: 

P , ( x )  2 ( P q ) - ’   CUT: - QB)”’ 

V(T+)  < U(TJ  (3.6) 
If on the other hand it turned out that V(T-)  < 
U(T+), an expression similar to (3.6) would obtain 
provided one retains the contributions around T- 
as the dominant terms: 

P,(x)  E (7P’q)-1 (4EUT1)”2 

U(T-)  < VV+) (3.7) 
At the borderline between these two cases, 
U(T+)  Z U(T-) ,  one should keep the contribution 
from both T+ and T- in eq. (3.5). The result is a 
two-hump distribution with equal height maxima, 
which is very well approximated by two Gaussians 
peaked sharply around T ,  and T - ,  and joined 
smoothly in a shallow minimum around To. 
Setting 

U( T - )  = V( T + )  = V,,, 

we obtain: 

P,(x)  Z (n”* q)-’ [ ( 4 ~ u T : ) - ” ~  

W+) - W T - )  (3.8) 
The interpretation of eq. (3.6) to (3.8) is fairly 
obvious: If V(T+)  < U(T-)  the influence of the 
deep-freeze state disappears in the limit of long 
times. T+ is therefore dominant and attracts all 

initial conditions. If on the contrary V(TJ < 
U(T+), state T -  is dominant, and the present-day 
climate will sooner or later be subjected to a 
runaway effect leading to the deep-freeze state. 
Note however that, as we will show in Section 4, 
the characteristic times associated with this 
transition may be exceedingly long. Finally, if 
V(T+)  z U(T-)  states T ,  and T- are equally 
dominant and will survive with equal probability 
in the long time limit. This means that, while the 
system will jump back and forth between them, 
the average residence times on both states will 
be equal (and, presumably, exceedingly long as 
pointed out earlier). Figure 2 gives the shape of the 
steady-state probability in the above three cases. 

We see that the situation is reminiscent of the 
diffusive motion of a material point in a bistable 
well, or of the passage from vapor to liquid phase 
in the region of coexisting phases as described by 
the Van der Waals free energy (see e.g. Landau 
and Lifshitz, 1959). In order to impress on the 
reader these analogies, we coin the term climatic 
potential for the quantity U ( x ) .  When the 
amplitude of fluctuations q is no longer small the 
probability distribution becomes broader and the 
distinction between dominant states is not as sharp 
as before, nevertheless the qualitative picture drawn 
above remains correct in its essential aspects. 

What are the elements which decide the 
dominance of a particular climate? From eqs. (3.3) 
we see that the relation between V(T+) and U(TJ 
depends on the system’s parameters. As P, (x )  is 
vanishingly small for x > T2, it is likely that the 
particular choice of the value of uhot is not crucial. 
Fixing uhol to 0.25, as well as the present-day 

Fig. 2. Steady-state probability distribution P,(x)  for 
three representative cases: CJ, > CJ-, U, - U- and 
U, < U- and for q = 7 yr-”* K. Note that, in the 
second case, P,(x)  is a two-hump distribution. 
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planetary albedo to 0.30, we are left with two free 
parameters, y, (i.e., alee) and B, the albedo- 
temperature slope. The condition that U(T+)  - 
U(T-), in other words that both stable states T+ 
and T- are equally dominant, corresponds to a given 
relationship between y1 and 8. Figure 3 depicts this 
climatic coexisfence curve for the model discussed in 
the present Section. A different picture of the situ- 
ation is provided by Fig. 4, which gives, through 
various ice-isoalbedo curves, the way the difference 
U ( T + )  - U(TJ varies with the albedo-temperature 
feedback slope /?. We see that high values of /? 
favor, for reasonable choices of alee, the deep- 
freeze state. Conversely, for moderate values of /?, 
the present-day climate tends to dominate, in the 
sense that it constitutes the most probable state 
of the stationary probability distribution. 

osy I , I I 1 

a Ice 

Fig. 3. Climatic coexistence curve: Values of 
temperature feedback parameter p versus albedo of ice, 
a,, for which U ,  - U - .  

u.>u- 

1000 l------ 

I /090 I 

60 70 80 90 
P 104 

Fig. 4. Dependence of (U, - U-) on parameter p for 
different values of alee. 

4. Time-dependent properties 

In this Section we analyze the time-dependent 
behavior of the fluctuations for the climatic model 
discussed in Section 3. Essentially, we must solve 
the initial-value problem for the Fokker-Planck 
equation (2.5), in which the nonlinear friction 
coefficient f (x, A) has the structure described by 
eqs. (3.1) and (3.2). This type of problem was 
investigated recently by a number of authors in the 
context of bifurcations in nonlinear physico- 
chemical systems, for an f displaying a cubic 
nonlinearity (Suzuki, 1977; van Kampen, 1977; 
Caroli et al., 1979). At present it appears difficult 
to extend these calculations for the type of 
nonlinearity characterizing our model. We 
therefore resort, for the most of this Section, 
to numerical simulations. 

The problem is highly nontrivial because of the 
stiffness properties of the Fokker-Planck equation. 
Numerical solutions using straightforward dis- 
cretizations of the various derivatives of x can lead 
rapidly to negative solutions for the probability 
density P(x ,  t) ,  and to further inconsistencies. As 
it turns out, similar problems arise in plasma 
physics. We have therefore followed a proposal by 
Chang and Cooper (1970), according to which the 
discretization must be performed with a variable 
mesh size. The latter is chosen to reproduce as 
closely as possible, the exact steady-state proba- 
bility distribution. The results are very satisfactory: 
in addition to positivity, normalization is secured 
provided that appropriate boundary conditions are 
imposed. The convergence is excellent and is 
maintained even if the time step is relatively 
large. 

Throughout our simulations, the boundaries 
were chosen to be at x = 0 K and x = 360 K. Three 
different types of situation were considered (see 
also Fig. 5): 

(i) Present climate at T ,  is dominant, that is to 
say U(T+) < U(T-) .  For a value of the albedo 
of ice alce = 0.80 and a value of temperature 
feedback coefficient B = 0.0065, the minimum 
of the climatic potential U at T, is quite 
deep. In order to evolve to the deep-freeze 
state at T- starting from T, (this will show 
up by the appearance of a second peak of 
increasing size at T - )  the system must diffuse 
through the potential barrier constituted by 
the maximum of U at the unstable state To. 
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Fig. 5. Climatic potential V ( x )  for three representative 
cases. The difference between the value V(T+) and the 
maximum value of U gives m each case, the magnitude 
of the harrier that the system must overcome before 
evolving to the low temperature state T- ,  starting from 

For the parameter values chosen, the jump of 
U between To and T+ turns out to be equal 
to U,, - U, = AU = 713 yr-I K2. 

(ii) T+ and T- are equally dominant. For uleC 
also near 0.80 and for = 0.0075, the 
potential barrier turns out to be AU = 213 
yr-1 K2. 

(k) T- is dominant. For aice = 0.80 and p = 
0.0085 the barrier one has now to overcome 
to jump from T+ to T- is much lower, 
AU = 33 yr-l K2. 

In each of these three typical situations, the 
evolution of the probability distribution was 
followed for different values of the variance of 
the fluctuations, q2. The initial condition was taken 
to be a Gaussian centered on T+ (see eq. (3.6)), 
or a delta function also centered on T+.  

A general property that emerges from all 
simulations is that the time evolution is exceedingly 
slow if the variance q2 is small. For instance, 
taking q = 0.5 yr-”* K (or q2 = 0.25 yr-I K2, 
to be compared with the values of incoming and 
outgoing radiation, normalized by the thermal 
inertia coefficient, of the order of 200 yr-’ K) 
and an initial probability distribution as in eq. (3.6), 
one finds that P ( x , t )  hardly moves for times up 
to 10,OOO yrs, both in the case where T+ is 
dominant, and T+, T- are equally dominant. It is 
oiily in case (iii) mentioned above, where T- 
dominates, that one finds a modest tendency to 
evolve slowly. What is happening here is that 
because of the relatively small height of the barrier 
AU, diffusion over it is possible. The states near 

150 100 250 1. m 350 
I 

=+ * 

T+ are therefore progressively depleted even if the 
initial condition favors T+.  A convenient way to 
express this is to introduce the probability diffusion 
flux at the barrier position To: 

At t = 0 and t -. cn this flux practically vanishes 
owing respectively, to the initial condition chosen 
and to detailed balance at the steady-state (see 
eq. (2.7)). For intermediate times and q = 0.5 
yr-”2 K the system is unable to build up an 
appreciable flux as long as T- is not dominant. 
But when this latter state becomes dominant one 
observes, after an initial overshoot, a plateau value 
which remains essentially constant up to 10,OOO 
yrs. The value of the flux in this plateau is very 
different from the numerically determined steady- 
state one and reflects therefore the nonequilibriurn 
behavior of the system. It is still, however, hardly 
detectable. 

When q increases the diffusion over the barrier is 
in many cases accelerated. Take for instance 
q = 3 yr-lI2 K. When T, is dominant the 
probability flux still remains practically zero up to 
t - 10,OOO yrs. However, when T+ and T- are 
equally dominant one observes a plateau value 
which is different from the steady-state one and 
subsists up to t - 10,000 yrs as shown in curve 
(a) of Fig. 6. On the other hand the time to reach 
the plateau is rather short, t - 50 yrs. For q = 3 
yr-lf2 K and T- dominant the evolution becomes 
still faster. No plateau is reached, and there is a 
continuous decrease of J, to the steady-state value 
of zero. After an initial transient, the regression of 
J, is practically linear in time, see curve (b) of 
Fig. 6. 

For larger values of q the evolution is further 
accelerated. Thus, for q = 10 yr-II2 K the steady- 
state is reached rapidly for all three characteristic 
cases (i) to (iii). Table 1 gives a recapitulative 
picture of the various forms of time-dependencies. 

In addition to the probability flux, a useful index 
of the qualitative aspects of evolution is the 
variance of the fluctuations around the mean, 

,,dX(X- (x) )2P(x, t )  (4.2) 

Fig. 7 represents the time evolution of the variance 
in two cases. One of them, curve (a), corresponds 
to the situation of curve (b) of Fig. 6. We see that 
during the approach to the steady-state the 
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variance increases almost linearly by one order of 
magnitude in a couple of thousands of years. This 
reflects the depletion of the states around T+ and 
the progressive appearance of a second probability 
peak around T-,  giving rise to a broad two-hump 

1 8  I I 1 
1 2 3 L 

1% 

Fig. 6. Time evolution of the probability flux J p  (in yr-l) 
at the minimum To of P, for q = 3 yr-1’2 K. The initial 
condition is a Gaussian distribution centered on T,.  
Curve (a): Probability flux when, T+ and T- are 
equally dominant. Curve (b): Probability flux when T- 
is dominant. 

1 I I I r I 

distribution. The second case, curve (b), refers to a 
fast evolution for large fluctuations, q = 10 yr-I’* 
K, under conditions of equal dominance of states 
T, and T - .  Again, as a result of the building of a 
second probability peak, the variance increases 
dramatically in a few thousands of years. 

The results reported so far in this Section are 
reminiscent of the basic ideas underlying Kramers’ 
phenomenological theory of chemical kinetics (see 
e.g. Wax, 1954): A chemical reaction is viewed 
as a diffusion problem over a potential barrier, 
corresponding to the activation energy that must 
be overcome before an initial chemical bond is 
broken and a new one is formed. After an initial 
lapse of time, and well before the reaction is 
completed, a weak diffusion flux over the barrier 
is postulated and assumed to remain practically 
constant for all x near the barrier position, and 
slowly depending on time provided q is small 
enough. Using the Fokker-Planck equation (2.5) 
one obtains, from eq. (2.6) and the definition of 
the potential U 

(4.3) 
For J , ( x )  independent of x one can integrate 

both sides over x to obtain, in the notation of our 
model: 

0 1 2 t 10’ 3 5 x ( P(T+,O exp [ W T + ) ]  

Fig. 7. Time evolution of the variance of the probability 
distribution. Curve (a): State T- is dominant and 
q = 3 yr-I’* K. Curve (b): States T+ and T- are equally - P(T-,i) exp [ u ( T - ) ] )  
dominant and q = 10 yrrl” K. (4.4) 

Table I 

= 0.5 q = 3  q =  10 

T+ dominant no evolution visible up to no evolution visible up to steady-state rapidly reached 

T+,  T- equally no evolution visible up to nonequilibrium plateau with steady-state rapidly reached 

T _  dominant nonequilibrium plateau with regression of J, to steady- steady-state rapidly reached 

f -. 10,OOO yrs 

t - 10,OOOyrs J,  -. 0.5 x yr-I r < 5000 yrs 

r < lo00 yrs verv small flux is reached 

-. 10,OOO yrs r < 100 yrs 

dominant 

state value J .  ~ = 0 
~~~~~ ~ 
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TO fix ideas, consider the case depicted on curve (b) 
of Fig. 6 of a climate dominated by T-. Still, if we 
start from a sharply peaked distribution around T+ 
the state T- will remain unoccupied for a very long 
period of time as long as the variance of fluc- 
tuations q is small (this is entirely confirmed by the 
numerical simulations). Hence, to a good approxi- 
mation eq. (4.3) will become; 

x W+, 0 (4.5) 

where a steepest descent evaluation of the 
denominator was performed and, as before, 

As regards the time dependence of J,  we see 
from eq. (4.5) that it is identical to that of P(T+). 
In the Kramers regime, the latter will be simply 
given by 

AU = U(T& - U(T+). 

(4.6a) 

since the only process going on is the depletion of 
the states in the potential well around T,. Thus: 

(4.6b) 

Within the range of Kramer’s theory the charac- 
teristic time turns out to be (Wax, 1954, Caroli 
et al., 1979) 

t .., a ( - 4 ~ T :  + Qfl-”’ ( ~ E u T :  - Qfl-‘” 

x e x p ( f i l U )  (4.7) 

For values of the variance q2 significantly smaller 
than the height of the barrier AU, r will be very 
long and, concomitantly, J(t) will be very small. 
For instance, for q = 3 and T- dominant we obtain 
a time scale of the order of glaciation onset, 
t - lo4 yrs, and values of J(t)  in agreement with 
curve (b) of Fig. 6. On the other hand, for the same 
value of q the time scale is much longer, t N 

yrs, if the states T+ and T- are equally dominant. 
This again agrees with curve (a) of Fig. 6. 

The possibility of reproducing, for suitable 
values of q and AU, characteristic time scales 
reminiscent of glaciations is a significant feature of 
our work. At present, however, it remains difficult 

to draw definite conclusions because of the 
uncertainties of values of the model parameters. 

5. Discussion 

In this paper we performed a stochastic analysis 
of a zero-dimensional climatic model showing 
bistable behavior, which is the simplest nontrivial 
form of climatic transition. We showed that both 
the static and the time-dependent properties of the 
fluctuations are monitored by two basic quantities: 
The climatic potential, U, and the variance of the 
noise, q2. A sensitivity analysis of U with respect 
to the system’s parameters-particularly the 
temperature feedback coefficient F l e d  us to 
distinguish between a regime where present climate 
dominates, and a regime where a deep-freeze 
climate dominates. We also determined conditions 
of “coexistence” of these two regimes in terms of 
the characteristic parameters. 

At a more quantitative level, we found that for 
a small variance the stationary probability 
distribution is very sharply peaked around the 
dominant state, and that the time scale of 
evolution becomes exceedingly slow. Moreover, an 
increase of the temperature feedback coefficient 
tends to favor the deep-freeze climate and to 
accelerate the evolution toward it, by diminishing 
the height of the potential barrier between the 
present climate, T+,  and the unstable state, To. 

We believe that the evaluation of the probability 
of climatic fluctuations, initiated in the present 
paper, is a prerequisite in the understanding of 
climatic change. The earth is a noisy environment. 
A local imbalance between incoming and outgoing 
energy-provoking for instance a sudden cooling 
- c a n  occur anywhere any time, with a certain 
probability. Depending on the time scale of evolu- 
tion triggered by such a fluctuation, one will have 
a qualitatively new behavior or an effect which 
will be masked by other factors acting on the 
system. In the first class one has the rather fast 
evolution depicted in curve (b) of Fig. 6 whose 
characteristic scale is about lo4 yrs, comparable 
to the onset time of a glaciation. In the second 
class one has the exceedingly slow evolution of 
curve (a) of Fig. 6, with a time scale larger than the 
age of the earth itself! As we saw in Section 4, 
a convenient criterion of evolution is the way the 
variance of the fluctuations behaves in the course 
of time. This is an interesting and workable 
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criterion since the variance is a measurable 
quantity. 

Our results can also be interpreted in an 
alternative way: Namely, in a climatic system 
involving more than one simultaneously stable 
states, fluctuations provide a mechanism of 
selection between these states. This joins a proposal 
recently formulated by Paltridge (1979) in the 
context of his maximum entropy production 
conjecture. 

The work we reported can be extended in at  
least two directions. First, relax the hypothesis of 
additive noise and analyse the effect of fluctuations 
of such parameters as Q or  E,  which couple to the 
system in a multiplicative way. A preliminary study 
of this aspect was recently carried out (Nicolis and 

Nicolis, 1979). And second, use more sophisticated 
energy-balance models like the one-dimensional 
model studied by North (1975). This latter 
extension is especially crucial, in view of the local 
character of fluctuations. Work in both directions 
is in progress. 
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