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1. Introduction 

When a continuous jet of dense fluid is ejected 
vertically upwards into less dense surroundings it 
proceeds initially upwards, increasing in size and 
slowing down. The buoyancy force then becomes 
important, causing the plume to slow down even 
more and then, aRer reaching its maximum height, 
it falls down as an annular plume around the inner 
rising jet. This flow structure has been modelled 
both as a “double plume” (an inner rising circular 
forced plume and an outer sinking annular plume) 
on a computer and also in a laboratory experi- 
ment. This type of double plume structure has been 
invoked in the past to model the flow of dense salty 
water from the sea-bed (Turner and Gustafson 
(1978)), plumes driven by a source of bubbles in a 
stratified environment (McDougall (1978)) and 
cumulonimbus convection in the atmosphere (Ber- 
son and Baird (1975)). The evaluation of the 
buoyant body force for both the inner and the outer 
plumes has been very much an open question for 
these double plume structures and the main reason 
for doing this study was to compare the success of 
the two most reasonable body force formulations. 
The first formulation of the buoyant body force 
assumes that the constant-pressure surfaces are 
everywhere horizontal and this implies that 
the buoyant force acting on the inner plume is 
calculated by taking the density difference 
between the inner plume and the environment. 
The second formulation regards the outer plume 
as the “environment” for the inner .plume and 
the density difference between these two plumes 
is used, together with the acceleration of the 
outer plume to evaluate the buoyant force for the 
inner plume. These two different methods of 

evaluating the buoyant body forces lead to two 
estimates of the height of rise of a negatively 
buoyant jet which differ by 20%. 

2. Themodel 

2.1 Conservation equations 
The conservation equations of mass, momentum 

and buoyancy for a double plume structure have 
been derived by McDougall (1978) for the specific 
application of a bubble-plume in a stratified 
environment. Fig. 1 shows a sketch of a negatively 
buoyant jet which is injected vertically upwards 
from a small nozzle. In this paper we assume 
top-hat profiles of velocities and densities. The 
entrainment velocity into the inner plume from the 
outer plume is assumed to be a,(u, + uz), the 
entrainment velocity into the outer plume from the 
environment is assumed to be av, and the entrain- 
ment velocity from the inner plume into the outer 
plume is assumed to be aYuz (see McDougall 
(1978), and Morton (1962) for further discussion 
on these entrainment assumptions). Taking z to be 
defined positive upwards and z* positive down- 
wards, the conservation of mass and buoyancy 
gives: 

d(ri u,)/dz = 20, rI(u,  + u2)  - 20” rI uz (1) 

d(lr: - r~Iu,)/dz* = - 2 5  rl(ul + u 2 )  + 29. rl uz 

+ 2ar,u,, (2) 
d(r: u1 g;)ldz = 2ap rl (ul  + vJg;  - 29. rl  u2 g; ( 3 )  

and 
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Fig. 1. Sketch showing the upward-moving inner cir- 
cular plume surrounded by the downward-moving outer 
annular plume. The three entrainment processes are 
parameterized by the three entrainment coefficients ap, a,, 
and a. 

where 

g; = g(P1 - Po)/Po, g; = g(P2 - Po)/Po3 Po 

is the (uniform) density of the environment and rl 
and r2 are the radii of the inner and the outer 
plumes respectively. 

The first formulation of the buoyant body forces 
assumes that constant pressure surfaces remain 
horizontal through the environment and both 
plumes. This leads to the following vertical momen- 
tum equations, 

d(r: u:)/dz = -r: g{ - 2ap r ,  vz(vl  + v 2 )  

- 2a, r ,  u ,  u2,  ( 5 )  

and 

d([ri  - r:lv:)/dz* = [r:  - rilg; 

- 2ap r ,  u2(u,  + 0,) - 2ay rl u ,  v2 .  ( 6 )  

The second method of evaluating the buoyant body 
force on the inner plume refers the density of the 
inner plume to the density of the outer plume 

instead of to the environment. In this way, the outer 
plume is regarded as the “environment” for the 
inner plume and so we must also include the 
acceleration of this frame of reference (see 
McDougall, 1978). This second method of evaluat- 
ing the buoyant forces on the inner plume leads to 

d(r: v:)ldz = - r:(g; - g; + u2 dv,ldz*) 

- 2 5  r ,  u 2 ( u 1  + u z )  
- 2a, r ,  u ,  u2.  ( 7)  

We further assume that in taking the momentum 
equation across both plumes together, we can 
evaluate the total buoyant body force with respect 
to the density of the environment, i.e. 

d(r: u:)/dz - d([r: - r:lv:)/dz* = -r2 I  g1 

- [ r ;  - rilgi. 

Equations (7) and (8) give 

d([r: - r:lui)/dz* = [r: - rilg; + r;(g; 
- u2 dv,/dz*) - 2ap rl v2(v1  + v 2 )  - 2a,, rl u ,  u2. 

(9) 

The acceleration of the outer plume, v2dv2/dz* in 
these equations can be readily calculated from (2) 
and (9). 

2.1.1 Nondimensional variables 
There are two dimensional variables which 

characterize a negatively buoyant vertical jet, 
firstly the buoyancy flux poFo and secondly the 
momentum flux poMo from the source. The 
influence of the mass flux from the source is 
assumed negligible (Morton (1959)). The non- 
dimensional variables, x ,  x* ,  R,,  R2 ,  S, V,,  V,, G,  
and G, are defined by 
z = 1M3014 6 1 1 2  x, 
z*= M24 F-112 x* 

7 

- w 2 4  F;ll2 R - F-112 R 
1- 

2 -  2 9  
- M-114 FlI2 V 

1- 0 0 1, 

0 2’ 1, 2 - 
0 -M;ll4Fr2 V 
gt - M;514 FVZ G g;= M;’” F r 2  GI, 2 -  0 2 9  

and S2 = R i  - R:. 

become 
With these variables, the differential equations 

d(R:  Vl)/dX= 2pR1(V, + V 2 ) -  2yR1 V2,  
d ( S 2  V2)/dX* = -2pR,(V1 + V J  + 27RI V2 

(10) 

+ 2R2 V2, (1 1) 
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d ( R :  V ,  G , ) /dx  = 2/3R,(V, + V2)G2 - 2yR, V ,  GI,  
(12)  

+ ~ Y R ,  V ,  GI, (13)  

and for the first method of buoyant force 
evaluation 

d(S2 V ,  G,)/dx* = -2/3R,(V, + V,)G, 

d ( R :  V:)/dX = -R: GI - 2BR, V,( V ,  + V2)  

- ~ Y R I  V ,  Vz, (14) 
d ( S 2  V:) /dx* = S2 G2 - 2/3R, V,(V,  + V J  

- ~ Y R ,  V ,  Vz, (15) 

while for the second method of buoyant force 
evaluation we have 

d ( R :  V:)/dX = -R:(G, - G, + V ,  dV,/dx*)  

-2BRi V2(V1 + V J - ~ Y R ~  Vi V2 (16) 

and 

d(SZ V:)/dX* = S2 G, + R:(G, - V2dV,/dx*) 

- 2/3R, V,(V,  + V,)  - 2yR, V ,  V2. (17)  

Here we have put /3 = a,/aand y = $/a 

2.2 Starting conditions for  the jet  
Near the nozzle the upward-moving inner jet is 

virtually unaffected by its negative buoyancy and it 
behaves like a pure jet (see Morton (1959)). Setting 
z = 0 at the virtual origin of the jet, the radius at a 
small height z, is given by r ,  = 2apz, (Turner 
(1973) page 172) or, R ,  = 2/3x,. In the computer 
programme the starting value of x was x ,  = 0.05. 
The upwards momentum flux at the nozzle is 
defined by poMo = npor:v: and this leads to a 
starting value of V ,  equal to (2n1I2 The 
flux of buoyancy at the nozzle defined by po Fo = 
7rp&vl/g: and this gives GI = V ,  at the starting 
value of x,. 

2.3 Method of the computer solutions 
The three differential eqs. (lo), (12) and either 

(14)  or (16) which describe the variation of the 
mass flux, the buoyancy flux and the momentum 
flux of the inner plume are integrated numerically 
from the starting condition at x, = 0.05 up to a 
height at which the inner plume has slowed down 
considerably and is about to stop its upwards 
ascent and begin to fall downwards. For the first 
integration up the inner plume we take V ,  = S2 = 
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0, that is, we ignore the presence of the outer 
plume. Having reached the end of the inner plume 
integration, we then integrate the three differential 
equations of the outer plume downwards until we 
arrive at the starting value of x (=x,)  again. During 
this downward integration the values used for R,, 
V ,  and G, at each level are those derived by the 
previous integration up the inner plume. This 
process of integrating up the inner plume and down 
the outer plume is performed many times until a 
steady state is achieved. 

The upward integration is stopped at x = x, 
when the velocity of the inner plume has fallen 
below (2g; r1)1’2. This condition is equivalent to V :  
s 2aR, G I .  

When the solution is steady, the downward flux 
of buoyancy in the outer plume at x ,  is equal to 
poFo, that is n d  S 2  V ,  G2 = 1 at x,. This condition 
was used as a test of whether the solution had 
reached a steady state. n d S Z V , G ,  - 1 was 
usually about k0.02 after 10 iterations. The results 
presented in this paper were all after 20 iterations 
by which stage l n d S 2  V ,  G, - 1 I was less than 
0.005. 

2.4 Treatment of the region where the plume turns 
around. 

When the upward integration finishes at x, the 
fluid of the inner plume continues to rise a little 
above this level while at the same time turning 
around, spreading out a little and then beginning to 
sink as an annular plume. If we assume that in this 
region there is no appreciable mixing with the 
surroundings and that the flow is steady, we have at 
this level 

G, = GI (18) 
and 
s2 v, = R :  v,. 
Fig. 2 shows a sketch of this region of the flow. We 
have assumed here a shape which is a cylinder of 
height h capped by a hemisphere of radius r,. The 
application of the vertical momentum equation to 
the control volume which is defined as this 
cylindrical and hemispherical shape gives 

(nr: h + 2/3nri)g; = n(ri - r!)v: + nr: v: (20) 

where the left hand side is the downward force on 
the fluid in this control volume and the right hand 
side of (20)  is equal to the flux of downward 



3 16 T. J. MCDOUGALL 

r-- 
i-- 
Fig. 2. Sketch of the region where the jet turns around. 

momentum out of the control volume. This 
equation is equivalent to 

- 1 =o, (21) 

and for any given value of hlr, this equation is 
solved by Newton’s method to give R , / R , .  In this 
way the assumed size of the cap (i.e. h/rJ  leads to 
R, and hence V, (from (19)) at x,which are needed 
as the initial values for the integration down the 
outer plume. The total height of rise of the jet is 
given by 

x,..=x,+ctR,(~+ 1). 

3. Results of the model 

The most fundamental characteristic of a 
negatively buoyant vertical jet is its height of rise. 
Turner (1966) performed a series of experiments 
with dense salty jets injected upwards. He 
measured the volume flow rate of the jet fluid, the 
initial buoyancy g; and the radius of the jet. He 
calculated the momentum flux using the measured 
volume flow rate and the nozzle radius and found 
that z,,, = 1.85 M g 4  F;II2. However the flow out 
of the nozzle at the laboratory Reynolds numbers is 
likely to be close to a Poiseuille flow rather than 
having a constant velocity (mean velocity = u,) 

across the nozzle and this has a significant effect on 
the momentum flux, as we show below. The 
velocity at radius r of a Poiseuille flow in a tube of 
radius a is u(r) = 2uJl - r2/uz). The integrated 
mass flux across the nozzle is then np, u2 u, and the 
integrated momentum flux is 4/3np0 a2 uf. This 
means that the actual momentum flux, po M ,  is 4/3 
of that used by Turner which was based on the 
mean velocity across the nozzle. Therefore, in 
terms of the true momentum and buoyancy fluxes 
from the source, the maximum height of rise found 
from experiment is 

Zmax = 1.5 Mg4 Fil l2 .  (23) 

We performed several laboratory experiments with 
dense salty jets forced upwards. The jet fluid 
contained many very small polythene spheres and 
we obtained streak photographs of the double 
plume structure with side slit-lighting against a 
black background. These experiments confirmed 
that zmax = 1.5 Mg4 Fil ’ ,  (where M,, is calculated 
by assuming a Poiseuille velocity profile at the 
nozzle) and the included angle of the inner plume 
was consistent with ap = 0.056. 

Fig. 3 shows the results of the model with the 
second formulation of the buoyant body forces for 
a = 0.085, y = 1.0, ap = 0.056 and h/r, = 2. We 
will consider the effects of variations in these four 
parameters before we study the consequences of 
the two different buoyant force formulations. The 
values of a and ap are taken from List and 
Imberger (1973) as being the values of the 
entrainment coefficients appropriate to a pure 
plume and a pure jet respectively. Because the inner 
plume initially behaves like a pure jet, it seems 
reasonable to choose ap 7 0.056, however this 
value could perhaps be varied in the upper half of 
the flow where the buoyancy of the inner plume 
begins to dominate its momentum. While the 
downward-flowing outer plume is driven by 
buoyancy and so a value of a equal to 0.085 
(which is appropriate to a pure plume) seems 
reasonable, the flow here is different to a normal 
plume because the eddies do not extend across the 
whole width of the double plume structure. For this 
reason we show results in Fig. 4 for a different 
value of 4 namely a = 0.10. The profile of the 
outer radius rz of the double plume structure looks 
more believable with a = 0.10 as this avoids the 
“necking in” which is apparent near the top of the 
outer plume with a= 0.085. 
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Fig. 3. Results of the model with the second method of 
evaluating the buoyant body force and with a = 0.085, y 
= 1.0, up = 0.056 and h/r ,  = 2.0. This run gave x,,, = 
1.55. 

a,, parameterizes the entrainment into the outer 
plume from the inner plume and as there is no 2 
priori reason to assume that y = 1 .O (i.e. ay = a) we 
have run the model with different values of y. Fig. 5 
shows the results with y = 0.5 and 1.5 and we see 
that y has quite a sensitive effect on the shape of the 
outer edge of the outer plume near its top. 

The fourth parameter we can vary is the size of 
the cap at the top of the structure. In all the 
examples above we have used hlr, = 2 but Fig. 6 
shows the case with hlr, = 0. This change also has 
a marked effect on the R, profile near the top of the 
plume. With hlr, = 0, the outer plume is started 
with a much larger radius and a much smaller 
velocity. Consequently it accelerates (i.e. V ,  dV,/  
dx* > 0) and so it tends to become narrower. This 
shows why we have chosen hlr, = 2 as it gives a 

0 i-idL 0 1.0 

I.0 .- 0 

Fig. 4. Results of the model with the second method of 
evaluating the buoyant body force and with a = 0.10, y 
= 1.0, up = 0.056 and h/r ,  = 2.0. This run gave xmaX = 
1.65. 

“smoother” start to the outer plume, that is, the 
outer plume does not “neck down” abruptly near 
the top of the plume and the acceleration also has a 
smoother variation with height. 

The above discussion gives an indication of the 
sensitivity of the model to variations of 4 y and 
h/r2.  We do not intend here to juggle all the 
parameters of the system so as to give the best fit 
with the observed laboratory flow. To do this 
would involve having all three entrainment 
coefficients a function of the height (or the Froude 
numbers at each height) and would not lead to any 
new insights into the flow. 

The main purpose of this work is however to 
compare the consequences of the two different 
buoyant force formulations. Fig. 7 shows the results 
of the model with the first method of evaluating the 
buoyant body force and this is to be compared with 
Fig. 3 which uses the same values of the four 
parameters 4 y, ap and h/r2. This shows that there 
are some significant differences between the results 
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Fig. 5. Results of the model with the second method of evaluating the buoyant body force and with a= 0.085, y = 0.5 
(figure (a)) and y = 1.5 (figure (b)), ap = 0.056 and h/r ,  = 2.0. These runs gave x,,, = 1.48 (figure (a)) and x,,, = 
1.59 (figure (b)). 

of the two different methods of evaluating the 
buoyant body forces. With the first method the 
inner plume expands quite rapidly near the top of 
its travel and this occurs because the inner plume 
has a greater downwards buoyant force acting on 
it. In this case the body force is proportional to ( p ,  
- po) whereas with the second method of evaluat- 
ing the body forces the corresponding density 
difference is only (p l  - p2) but of course there is 
also the extra factor of the acceleration of the outer 
plume. In other words, the second method of 
evaluating the body forces partially shields the 
inner plume from directly “seeing” the density of 
the environment and this allows the plume to rise 
further (x,,, = 1.55 instead of 1.29). 

The most important result to arise from this 
study is the fact that the two different methods of 

evaluating the buoyant body forces on the double 
plume structure do give significantly different 
results. For example, the maximum non- 
dimensional height of rise of the structure is 20% 
higher with the second method than with the first. 
The previous comparisons between the two 
methods by McDougall (1978) showed very little 
difference between the methods but the reasons for 
this were given in that paper and they arose 
because the flow being studied was a bubble plume. 
It is however not possible to say with any degree of 
confidence which method of buoyant force 
evaluation corresponds closest with experiment 
because there are too many arbitrary approxi- 
mations in the model (e.g. top-hat profiles of 
properties across the plume) to allow a detailed 
comparison to be made. Having said this, we note 
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Fig. 6 .  Results of the model with the second method of 
evaluating the buoyant body force with a = 0.085, y = 
1.0, aD = 0.056 and h/r ,  = 0. This run gave x,,, = 1.16. 

that by using the standard values of ap = 0.056 and 
a = 0.085, together with the “best guess” values y 
= 1.0 and hlr, = 2.0, the second method of 
evaluating the body force gives x,,, = 1.55 which 
is closer to the experimental value x,,, = 1.50 than 
the first method which gives x,,, = 1.29. 

Another overall parameter which can be com- 
pared between the model and the experiments is the 
ratio of the height of the plume to its width. 
Laboratory observations show this ratio to be close 
to 2.0, but the model of this paper gives much 
larger values ranging from 3.8 to 4.0. One plausible 
reason why the computer model seriously under- 

0 x I0 
Fig. 7 .  Results of the model with the first method of 
evaluating the buoyant body force with a = 0.085, y = 
1.0. ap = 0.056 and h/r, = 2.0. This run gave x,, = 
1.29. 

estimates the width of the double-plume structure is 
that the model has top-hat profiles of velocity and 
density and so the width scale is compressed in 
relation to the measured outside radius r2 which 
reflects the maximum radius attained by any plume 
fluid. 

4. Acknowledgements 

The support of a Queen’s Fellowship in Marine 
Science is gratefully acknowledged. 

REFERENCES 

Berson, F. A. and Bird, G. 1975. A numerical model of 
cumulonimbus convection generating a protected core. 

List, E. J. and Imberger, J. 1973. Turbulent entrainment 
in buoyant jets and plumes. J.  ffydraul. Div., Prm. 

Quart. J .  Roy. Met. SOC. 101,9 11-928. A.S.C.E. 99, 1461-1474. 

Tellus 33 (1981), 3 



320 T. J. MCDOUGALL 

McDougall, T. J. 1978. Bubble plumes in stratified Turner, J. S .  1973. Buoyancy Effects in Fluids. 
Cambridge University Press. 

Morton, B. R. 1959. Forced Plumes. J.  Fluid Mech. 5, Turner, J .  S. and Gustafson, L. B. 1978. The flow of hot 
saline solutions from vents in the sea floor-some 

Morton, B. R. 1962. Coaxial Turbulent jets. Int. J .  Hear implications for exhalative massive sulfide and other 
ore deposits. Economic Geology. 73, 1082-1 100. 

Turner, J. S. 1966. Jets and plumes with negative or 

environments. J.  Fluid Mech. 85,655-672. 

151-163. 

Mass Transfer. 5,955-965. 

reversing buoyancy. J. Fluid Mech. 26, 779-792. 

Tellus 33 (198 I), 3 


