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ABSTRACT

To evaluate the effect of external forces on the northern water motion of Adriatic Sea, we
calculate the Green’s Function of Laplace’s tidal equation for a simple geometry. As an appli-
cation, we use known data on sea level variations at various stations, in order to determine the
external forces. We then compute the “theoretical” sea level at Venice. Its comparison with
“experimental” data taken at Venice gives encouraging results.

1. Introduction

The Laplace Tidal Equations are widely used to
study motion in oceans, seas and lakes, particularly
tides. Many methods have been used to study the
problem. In practice, however, the most natural
method for solving inhomogeneous linear
equations, i.e. by using their Green’s Function, was
only recently introduced by Webb (1974, 1976).
Also Miles (1974) and Garrett and Greenberg
(1976) have applied this method to harbours.
Important previous research on similar aspects of
tides was carried out by Fairbairn (1954),
Cartwright and Munk (1966) and Proudman
(1925). In this work we use Webb’s formalism to
obtain the sea level variation as the integral of the
external forces applied to the fluid. Owing to the
mathematical form of the Green’s Function, our
approach to the real solution is like Webb’s.
Because our experimental data came from com-
paratively few oceanic stations, we were obliged to
consider only the lowest eigenmodes of the basin.
This is not a bad approximation, as also Garrett
and Greenberg (1976) remarked. A simple alge-
braic relation between sea level variation and
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external forces is then obtained. We use precisely
this relation to compute the external forces from
sea level data at various stations of the northern
Adriatic Sea. This basin was chosen because of its
very simple form (Fig. 1), but the method is rather
general. We then used the computed external forces
to obtain the sea level variation at Venice from sea
level variations of other stations. The computed
results are in reasonable agreement with the sea
level data.

2. The equations and their Green
Functions

The Laplace Tidal equations read

2 2 ix
—u—for=—g— ¢+
PRl Lot 2w

- O evy
—v+fu=—g— L&+
o

ot
66 " 0 a —0 W
o + h, a—xu+5v =

where f'is the Coriolis parameter, g the gravity, v =
(u, v) the depth-averaged velocities, &(x, y, ) the
sea level variation, A, the bottom depth. We assume
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Fig. 1. Schematic representation of the northern Adriatic
Sea and location of the stations.

hy to be constant, a fairly realistic hypothesis for
the northern Adriatic Sea, schematized roughly as
a box of dimensions hy, d, D (Fig. 1); X, Y are
external forces.

The boundary conditions are: v-n = 0, where n
is the normal to the coast, and & = Z(x, f) on the
open boundary.

Introducing the Fourier transform

E(w) = [=, et g(r) dt

the preceding equations can be written
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with E = Z{x, w) on the open boundary.

The mathematics of the problem become simpler
if, instead of the above boundary conditions, at the
coast we assume

4 0
n 6=

This is tantamount to disregarding the effect of
the Coriolis force on the boundaries; it is allowed if
lwl > f. To deal with the open boundary
conditions, without introducing derivatives of the
Green’s Function, we rewrite the equations in terms
of

ox, p, ) = &(x, ., ) — Z(x, 1)

In order to use a more compact formalism, we
introduce the % operator as

jW:(w’—f’)‘P«kghOV“Y

and the “forces” @ as

. d
O(x,p, w) = Fx,y, 0) — (0~ D2 —ghy— Z
ox?
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Equation (2) is now

-,

Pop= 3)
with
o .
— ¢ =10 along the coast
on

®=0 along the open boundary

We introduce the Green Function £(x, x,, y, Vg, £,
t,) as the “inverse” of the operator <.

LG = 8(x — Xo)- 8y — yo)- 8(t — 1)

where d(x) is the Dirac function. This definition
allows us to write in a comparatively formal way

(l’(x, Y, t) = é(xs Vs t) - Z(x, t) = J. J.bns\n dxo dyO d’“
x?(X, Xos Vs Vos &s to) (D(xos Yo to) (4)

The sea level variation &(x, y, ¢) can be said to be
the result of the effect of some unknown “forces”
obtained through the operator £. These forces are
schematized in ® and can be divided into at-
mospheric “forces” F(x, y, t) and the effect of the
input of water from the open southern boun-
dary—the terms in @ being proportional to Z (x, ).
These formulae can be explicitly computed once
the Green’s function is known.

For the northern Adriatic Sea the Green’s
function has a very simple form

E(x’ Xos Vs Voo w)

B 5: o A1) 4,(x;) B/) Bfy)) )
L LT hyg(a+ B
where 4,(x), B;(») are the eigenmodes
2 n
A,= ECOS(dzxﬁ aI:l;; [1=0,1,2...,00
2 I\
B;= Bsm(ﬂjy); B;= A Y
Jj=0,1,2...,00
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(Morse and Feshbach,
becomes

E(x’ya w) - Z(x’ w) +ff
bas
Af(x)B j(}’) A (x,) 'Bj(yo)
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1953). Then eq. (4)

>

in j_g1=0

J' J' A,(x,) Bj(yo)
basin @ _f2 - ho g(df + 'BIZ)
x ®(xq, o, ) dx, dy, 6

3. Application to the northern Adriatic
Sea

Equation (6) relates water levels to the forcing
functions themselves, Z(x, w) and &(x, y, w). Let i
us now assume that the {(x, y, ¢) is known at the
oceanographic stations, (x;, ;). We thus know the
values

O =¢(x,yt) i=1,...N

Table 1 gives the positions (x;, y,) of the stations;

the values are normalized with respect to the basin

dimensions. As we have only a finite quantity N of

informations, we must take a finite number of terms

in the sums inside the Green’s Function (6).
Moreover, these stations are approximately on the

x = 0 and x = d bank of the northern Adriatic Sea.

So we are not obliged to deal with an unknown
function Z(x, w) of two variables but we can limit
ourselves to only two unknown functions of one
variable, Z,(w) and Z,(w). As sea level data are

Table 1. Position of the stations in the northern
Adriatic Sea

. X; Vi

Station — —

d D

1 Ortona 0 0.2
2 Ancona 0 0.6
3 Trieste 1.0 1.0
4 Rovinj 1.0 0.8
5 Split 1.0 0.1
6 Venezia 0 1.0
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available from only five stations plus the Venice
station (see Fig. 1 and Table 1), in order to have as
many linear equations as unknowns, only three
eigenmodes can be considered. Then eq. (6) gives:

~ 3
é(xt’yb W)= Z(X,, wy+ X A[(xi)'Bj(yl)
K=1

' f f A (x4} B;(3g)
basin w? _f2 - ho g(a\l2 + ﬁ})
< ®(xg, Yo, ) dixy dy,
where
K=1 means [=0, j=0
K=2 means [=0, j=1
K=3 means I=1, j=0

We note that this system of linear equations
allows a matrix description

5
EI(W) = Z Mlm q’m(w)
m=0
if we call ¥, the “forces”, that is
¥ (w)=2Z(w)=2(0, w); ¥,=2Z,(w)=2(d,w)

Ay(xo) Bo(y)
\'p = o\t oo
S(w) f J\basin w? —f2 - hﬂ g(ag + ﬂé)

- ® dx, dy,

Ag(xo) B, ()
¥, (w) =
@ f J<bﬂsln w? —fz - ho g(a% + ﬂ%)
x @ dxy dy,

_ Al(xo)Bo(yo)
‘I‘S(w) N f J<l‘msln w2_f2 - hO g(d} + ﬂg)

x ® dx, dy,

and M, the matrix elements.

M, =06, + 9,
M,=08,+08,+0, i=1..,5
My =A,(x;) By(x,)
M,,=A4,(x) B,(y)

Mis = A,(x) By(y).

We have in this way defined the values ¥, (w), m
=1, .., 5 as the unknown forcing factors, and M,,,,
the “response” matrix.
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We can now use the preceding relations for
concrete purposes. From the knowledge of (1) we
can, for instance, infer the forcing on the basin by
inverting the matrix by the Gaussian method. Only
the three components ¥,, ¥,, ¥, and the ¥, = Z,,
¥, = Z, can obviously be detected. We thus have

5 ~
¥, (@)= % (M), ¢ )
m=1

Once the “forces” ¥,(w) are known as linear
combinations of &(w) (i = 1, ... 5) it is possible to
check the method. Let us compute the theoretical
effect of the forcing terms ‘T’,,(w) on the sea level
E,(w) at a specific point x,,y, (i.e. Venice). We can
now say

E,,(w) = Zl(w) + Ay(x,) Bo(y,) q’:(w)
+Ay(x,) B,(»,) ¥u(w) + 4,(x,) B,(v,) ¥5(w)
®
since the M matrix is not time dependent, we can
make a Fourier antitransformation and obtain
exactly the same equation for time dependent
quantities &(¢)

LW =Z,0 + Ay(x,)Bo(y,) Z (M), 8,0

5
+Ay(x,)B,(y)- 2 (M), {0

+4,(x,) By(,)- ; (M=), 6,0
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We thus obtain the sea level at Venice as a linear
combination of sea levels of adjacent stations (Fig.
1). We must add that the experimental data are
usual sea level data, taken every hour. They were
supplied by Osservatorio Geofisico Sperimentale,
Triests.

There is another possible approximation. The / >
lw! approximation in the rigid boundary condition
could be useful in studying long-term (1 week or
more) motions.

This implies £ = cost = 0 on the rigid boundary.
The 4,, B; are now

4 2 . nl B = 2 (=
= dsm dx, = Dsm Djy

The formalism remains unchanged.

4. Discussion

In order to check the model, the period 4-18
October 1966 was chosen as a period of normal
tides. The numerical resuits are shown in Fig. 2. A
remarkable agreement between theoretical and
experimental data can be observed. This is a rather
surprising result, because the hypotheses, in par-
ticular (¢/dn)é = 0 on the rigid boundary, are
rather strained. One possible explanation is that the
motion of the Adriatic Sea was first studied in one
dimension with reasonable results (Palmieri and

Fig. 2. Theoretical and experimental values for the period 4-18 October 1966— a normal period without particularly
strong storms and 1967 16—20 February—a period with an “acqua alta”. The full line refers to experimental data; the
dotted line refers to theoretical values. The heights are in meters.
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Finizio, 1970). The present work shows up the
smaller effect of the transverse modes and of the
Coriolis parameter—in this kind of problem.

We have also checked the capacity for predicting
the “acqua alta” at Venice, a combined effect of
wind, atmospheric pressure and seiches that can
increase the sea level by as much as 1.5 meters
above normal tide level. We feel that once the &
becomes rather large (£/h, =~ 0, 1) our hypothesis
of linearized Euler equation is no longer valid. This
could explain why in the periods of “acqua alta” as
from 16-20 February 1967 (see Fig. 2) the ampli-
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tudes are in poor agreement with the experimental
data, even if the phase is rather correct.
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O ®YHKLUHM I'PUHA NPUJINBHOI'O YPABHEHUA JIATUJIACA; NMPUJIOXEHUE K
CEBEPHOU ANPUATHUKE

Jns oueuku 3¢ekra BHEWHEro BO3OYXAEHHS Ha
OBHKCHHE BOABI B CEBEPHON 4YacTH AAPHATHYECKOTO
MOpsA B Cllyqae NPOCTOH T'€OMETPUM BbIMMCIAETCA
¢yHkuusa I'para npunuBHOro ypasuexus Jlannaca.
B Hauane MPHIIOKEHHSA HCMOJB3YIOTCS H3BECTHLIE
NAaHHbIE MO H3MCHEHHIO YPOBHS MOpPS Ha pPa3HbIX
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CTaHUHUSAX C LNENbIO OINpPENeIEHHS] BHEIIHEro BO3-
OyxneHna. Janee BBIMHCISETCA TEOPETHYECKHHA ypo-
BeHb MOpsA B Beneumu. Ero cpasHeHHE C°‘IKCOie-
PHMEHTAbHBIMK®® JNAHHBIMM NPHBOOUT K OOHa-
HNEKUBAIOWIMM pe3ynbTaTaM.



