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ABSTRACT 

To evaluate the effect of external forces on the northern water motion of Adriatic Sea, we 
calculate the Green’s Function of Laplace’s tidal equation for a simple geometry. As an appli- 
cation, we use known data on sea level variations at various stations, in order to determine th: 
external forces. We then compute the “theoretical” sea level at Venice. Its comparison with 
“experimental” data taken at Venice gives encouraging results. 

1. Introduction 

The Laplace Tidal Equations are widely used to 
study motion in oceans, seas and lakes, particularly 
tides. Many methods have been used to study the 
problem. In practice, however, the most natural 
method for solving inhomogeneous linear 
equations, i.e. by using their Green’s Function, was 
only recently introduced by Webb (1974, 1976). 
Also Miles (1974) and Garrett and Greenberg 
(1976) have applied this method to harbours. 
Important previous research on similar aspects of 
tides was carried out by Fairbairn (1954), 
Cartwright and Munk (1966) and Proudman 
(1925). In this work we use Webb’s formalism to 
obtain the sea level variation as the integral of the 
external forces applied to the fluid. Owing to the 
mathematical form of the Green’s Function, our 
approach to the real solution is like Webb’s. 
Because our experimental data came from com- 
paratively few oceanic stations, we were obliged to 
consider only the lowest eigenmodes of the basin. 
This is not a bad approximation, as also Garrett 
and Greenberg (1976) remarked. A simple alge- 
braic relation between sea level variation and 
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Progetto Finalizzato “Oceanografia e Fondi Marini”. 

external forces is then obtained. We use precisely 
this relation to compute the external forces from 
sea level data at various stations of the northern 
Adriatic Sea. This basin was chosen because of its 
very simple form (Fig. l), but the method is rather 
general. We then used the computed external forces 
to obtain the sea level variation at  Venice from sea 
level variations of other stations. The computed 
results are in reasonable agreement with the sea 
level data. 

2. The equations and their Green 

The Laplace Tidal equations read 
Functions 

a a 
- u  - fu= -g- <+ x 
at ax 

a a 
- v + f u = - g - - +  Y 
at ar 
-t a + h o ( i  u + v )  = 0 
at 

where f is the Coriolis parameter, g the gravity, v = 
(u, v )  the depth-averaged velocities, &, y, t )  the 
sea level variation, h, the bottom depth. We assume 
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Fig. 1. Schematic representation of the northern Adriatic 
Sea and location of the stations. 

ho to be constant, a fairly realistic hypothesis for 
the northern Adriatic Sea, schematized roughly as 
a box of dimensions h,, d, D (Fig. 1); X, Y are 
external forces. 

The boundary conditions are: v.  n = 0, where n 
is the normal to the coast, and r = Z(x, t )  on the 
open boundary. 

Introducing the Fourier transform 

the preceding equations can be written 

* 
with {= Z(x, w) on the open boundary. 

The mathematics of the problem become simpler 
if, instead of the above boundary conditions, at the 
coast we assume 

a - r = o  an 
This is tantamount to  disregarding the effect of 
the Coriolis force on the boundaries; it is allowed if 
IwI > f: To deal with the open boundary 
conditions, without introducing derivatives of the 
Green’s Function, we rewrite the equations in terms 
of 

P(X, Y,  t )  = a x ,  Y,  0 - Z(x, t )  

In order to use a more compact formalism. we 
introduce the g o p e r a t o r  as 

GY = (0’- f’) Y + gho V’ Y 

&,(x,y, w )  = P(x, y ,  0) - (w’ -f 3 2 - gho 7 2 

and the “forces” @ as 
a 

ax 

Equation (2) is now 

$$= 5 
with 

a ,  
- a, = 0 along the coast 
an 

@ = 0 along the open boundary 

We introduce the Green Function F(x,  xo, y ,  y,, t ,  
to) as the “inverse” of the operator 9. 

where 6(x) is the Dirac function. This definition 
allows us to write in a comparatively formal way 

The sea level variation <(x, y ,  t )  can be said to be 
the result of the effect of some unknown “forces” 
obtained through the operator Y. These forces are 
schematized in @ and can be divided into at- 
mospheric “forces” F(x,  y ,  t )  and the effect of the 
input of water from the open southern boun- 
dary-the terms in @ being proportional to Z(x, t) .  
These formulae can be explicitly computed once 
the Green’s function is known. 

For the northern Adriatic Sea the Green’s 
function has a very simple form 

where A , ( x ) ,  Bj(y)  are the eigenmodes 

71 
A/=Jcos(4X);  & / = I - .  d’ I = O ,  1,2  ...) 00 

j = o ,  1,2 ...,a 
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(Morse and Feshbach, 1953). Then eq. (4) 
becomes 

3. Application to the northern Adriatic 
Sea 

Equation (6) relates water levels to the forcing 
functions themselves, Z(x,  w) and &(x, y,  w). Let i 
us now assume that the ( ( x ,  y, t )  is known at the 
oceanographic stations, (x , ,  yi). We thus know the 
values 

available from only five stations plus the Venice 
station (see Fig. 1 and Table l), in order to have as 
many linear equations as unknowns, only three 
eigenmodes can be considered. Then eq. (6) gives: 

?(xi, Y,, 0) = Z(X, ,  w) + 
3 

,I A [(xi) * BjcVJ 
K = l  

A I ( X 0 )  B,Cvo) 
‘ ’ ’basin w2 -f - hO g(@ + P;) 
* 6 (xg, YO,  w) 4, dyo 

where 

K = l  means I = O ,  j = O  
K = 2  means 1=0, j = l  
K = 3  means l = I ,  j = O  

allows a matrix description 
We note that this system of linear equations 

5 

<(w) = I M , m  ‘km(w) 
m=O 

if we call Y, the “forces”, that is 

P1(w) = Z,(w) = Z(0, w); q2 = Zr(w) = Z(d, w )  

( , ( f )  = ( (x i ,  yi, t )  i = 1, .  . . N 
AO(X0) BoCvo) 

Table 1 gives the positions (x i ,  yi)  of the stations; basin w2 - f  - hO dai + &) 
the values are normalized with respect to the basin 
dimensions. As we have only a finite quantity N of 

. b dxo 

informations, we must take a finite number of terms 
in the sums inside the Green’s Function (6). 

Moreover, these stations are approximately on the 
x = 0 and x = d bank of the northern Adriatic Sea. 
So we are not obliged to deal with an unknown 
function Z(x,  w) of two variables but we can limit 
ourselves to only two unknown functions of one 
variable, Z,(w) and Z,(w). As sea level data are 

Table 1. Position of the stations in the northern 
Adriatic Sea 

XI Station - 
d 

Yl 

D 
- 

1 Ortona 0 0.2 
2 Ancona 0 0.6 
3 Trieste 1 .o I .o 
4 Rovinj 1 .o 0.8 
5 Split 1 .o 0.1 
6 Venezia 0 1 .o 

x 6 dxo dyo 

x b dx, dy, 

and M i ,  the matrix elements. 

We have in this way defined the values Y,(w), rn 
= 1, . . ., 5 as the unknown forcing factors, and M,, 
the “response” matrix. 
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We can now use the preceding relations for 
concrete purposes. From the knowledge of t , ( t )  we 
can, for instance, infer the forcing on the basin by 
inverting the matrix by the Gaussian method. Only 
the three components Y3,  Y4, Y5 and the Y ,  = Z,, 
Y, = z, can obviously be detected. We thus have 

5 

Pn(w)= 1 (M-1Im/ <,(4 (7) 
m = l  

Once the ''force?" em(,) are known as linear 
combinations of t,(o) (i = 1, ... 5) it is possible to 
check the method. Let us compute the theoretical 
effect of the forcing terms F,(w) on the sea level 
tv(o) at a specific point x,yv (i.e. Venice). We can 
now say 

= a4 + Ao(x3 Bob$ 

+ Bib$ q4(o) + A BObv) 'kJ(w) 
(8) 

since the M matrix is not time dependent, we can 
make a Fourier antitransformation and obtain 
exactly the same equation for time dependent 
quantities &(t) 

J 

("(4 = Z,(O + A,(xv) BoCyJ 1 (M-')Q CP(r) 
p =  1 

J 

+ A&,) BlCVJ. .E (M-1)4p 
p =  1  

J 

+ A, (x , )  BOCy,). z (M- l ) sp  tp(d 
p =  1 

We thus obtain the sea level a t  Venice as a linear 
combination of sea levels of adjacent stations (Fig. 
1). We must add that the experimental data are 
usual sea level data, taken every hour. They were 
supplied by Osservatorio Geofisico Sperimentale, 
Triests. 

There is another possible approximation. The f > 
I o I approximation in the rigid boundary condition 
could be useful in studying long-term (1 week or 
more) motions. 

This implies ( = cost = 0 on the rigid boundary. 
rhe  A, ,  B j  are now 

The formalism remains unchanged. 

4. Discussion 
In order to check the model, the period 4-18 

October 1966 was chosen as a period of normal 
tides. The numerical results are shown in Fig. 2. A 
remarkable agreement between theoretical and 
experimental data can be observed. This is a rather 
surprising result, because the hypotheses, in par- 
ticular (?/an)( = 0 on the rigid boundary, are 
rather strained. One possible explanation is that the 
motion of the Adriatic Sea was first studied in one 
dimension with reasonable results (Palmieri and 

-mlM ALW 
pod 
&20hbg7.5' 

18 '17 '18 '19 ' 20 I 

Fig. 2. Theoretical and experimental values for the period 4-18 October 1966- a normal period without particularly 
strong storms and 1967 16-20 February-a period with an "acqua aka". The full line refers to experimental data; the 
dotted line refers to theoretical values. The heights are in meters. 
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Finizio, 1970). The present work shows up the 
smaller effect of the transverse modes and of the 
Coriolis parameter-in this kind of problem. 

We have also checked the capacity for predicting 
the “acqua aka” at Venice, a combined effect of 
wind, atmospheric pressure and seiches that can 
increase the sea level by as much as 1.5 meters 
above normal tide level. We feel that once the ( 
becomes rather large ( ( / h o  = 0, 1) our hypothesis 
of linearized Euler equation is no longer valid. This 
could explain why in the periods of “acqua alta” as 
from 16-20 February 1967 (see Fig. 2) the ampli- 

tudes are in poor agreement with the experimental 
data, even if the phase is rather correct. 
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