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decay of the large-scale atmospheric waves and jet stream 
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ABSTRACT 

To study the growth and decay of the atmospheric wave motions in middle latitudes, we have 
analyzed the mechanism for the kinetic energy change in wavenumber domain, and computed 
the composite average of each term in the kinetic energy equation at various stages in the life 
cycle of the atmospheric waves. It is found that for the first 1 to 2 days the extra-long waves of 
wavenumbers 1 and 3 grow by receiving kinetic energy from other finite amplitude waves 
through nonlinear interactions; in the next 1 to 2 days, they grow by gaining energy through 
nonlinear interactions and converting available potential to kinetic energy. These waves then 
maintained their peak energy for 3 to 4 days through the balance between the energy supply from 
conversion of available potential energy to kinetic energy and nonlinear interactions, and the 
energy lost by dissipation. The contribution of nonlinear interactions then changes to negative; 
and in the next 3 to 4 days, the waves decay by losing energy through nonlinear interactions and 
dissipation. The average life cycle of these extra-long waves is about 10 to 11 days. Similar 
results have been found with regard to the synoptic-scale waves of wavenumbers 4 to 8. They 
also intensify by receiving energy and decay by losing energy through nonlinear interactions 
among finite amplitude waves. Nevertheless, the conversion of the available potential energy to 
kinetic energy plays a more important role in the growing stage of the synoptic-scale waves than 
for the extra-long waves. The average life cycle for the synoptic-scale waves is about 6 to 8 days. 
It is interesting to note that the characteristics of waves of wavenumber 2 are quite different from 
those of the other waves. In all stages of its life cycle, the contribution of nonlinear interactions is 
negative and the conversion term always has large positive values. 

We have also analyzed the intensification and decay of the subtropical jet stream, and found 
that it is greatly affected by the convergence and divergence of eddy momentum flux. The 
fluctuations of the net momentum flux are mainly contributed by the synoptic-scale waves of 
wavenumbers 4 to 8. 

1. Introduction 

Analyses of the mechanism of the growth and 
decay of waves and zonal mean motion are 
essential to the understanding of weather changes 
in the atmosphere. The growth and decay of 
atmospheric motions may be contributed by linear 
and nonlinear mechanisms. For unstable waves of 
small amplitude in a barotropic fluid, it is known 
that their growth is generally at the expense of the 
kinetic energy of the zonal mean flow. In a baro- 
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clinic atmosphere, however, an amplify wave of 
small amplitude receives available potential energy 
from the zonal mean motion and at the same time, 
converts it to kinetic energy. The linear theory is 
able to describe time changes of a system very well 
while disturbances remain small, but not after they 
become finite in amplitudes. For waves of finite 
amplitude, the nonlinear transfers of energies 
become complex. In a barotropic fluid, interactions 
of two-dimensional waves of finite amplitude 
transfer a large portion of the kinetic energy to  
waves of larger scale and a small fraction of the 
energy to those of smaller scale (Fj0rtoR, 1953), 
and the exchanges of kinetic energy between a 
zonal flow and two waves lead to a process similar 
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to that of the index cycle in the atmosphere 
(Lorenz, 1960). Indeed, nonlinear interactions play 
an important role in the transfer of kinetic energy in 
wave motion. 

Because of the effects of baroclinicity and topo- 
graphy of the earth's surface, the linear and 
nonlinear interactions of waves in the atmosphere 
are much more complex. In addition, the math- 
ematical complexity also adds difficulty to the 
understanding of the characteristics of atmospheric 
waves. It is felt that in order to understand properly 
the mechanism for the large-scale wave motion in 
the atmosphere, it is necessary to  analyze the 
processes of energy transfers in the real at- 
mosphere. One of the fruitful approaches to such 
an analysis is to examine the atmospheric processes 
with the use of Fourier transformed governing 
equations. Spectral energy equations in wave- 
number domain were first formulated by Saltzman 
(1957). His study was followed by a number of 
observational studies (e.g. Saltzman & Fleisher, 
1960, 1961; Yang, 1967; Steinberg et al. 1971; 
Tenenbaum, 1976; Burrows, 1976). Spectral 
energetics have also been examined in the fre- 
quency domain (Tsay & Kao, 1973, 1974) and in 
the wavenumber-frequency domain (e.g. Kao, 
1968; Wendell, 1969; Kao & Wendell, 1970; Kao 
& Lee, 1977). 

Analyses of the meteorological observations in 
wavenumber domain indicate that the zonal mean 
flow generally transfers its available potential 
energy gained from the zonal mean radiative 
heating to waves of various wavenumber. Part of 
the eddy available potential energy is converted to 
eddy kinetic energy, and part of the latter is 
transferred to  the zonal mean flow. The nonlinear 
interactions transfer kinetics energy from the 
synoptic-scale waves to longer except wave- 
number 2 and shorter waves (Saltzman, 1970). 
Analyses of the data in wavenumber-frequency 
domain indicate that the nonlinear interactions 
generally supply kinetic energy to waves moving in 
the direction of the mean zonal flow, but extract 
kinetic energy from waves moving in the opposite 
direction of the mean flow (Kao & Lee, 1977). 

These studies have provided valuable infor- 
mation regarding the seasonal averages of the 
atmospheric processes for the large-scale wave 
motion in the atmosphere. However, to understand 
the mechanism for the growth and decay of the 
wave motion, it is necessary to analyze the 
conversion, transfer, and dissipation of the avail- 

able potential and kinetic energies at various stages 
of the life cycle of the atmospheric waves. The 
main objective of this paper is to make such a 
study. 

2. Notations and equations 

In this study, q(1, 4, p ,  t )  is considered as an 
arbitrary atmospheric quantity, where 1, 4, p and t 
stand for longitude, latitude, pressure, and time. 
For brevity, q(1, 4, p ,  t )  is denoted by q(1). Its 
Fourier transform pair in wavenumber space is as 
follows 

Q ( n )  = Q,(n) + iQ,(n) = - 

q(1)= 1 Q(n)eid 

where d is normalized to 27r, n represents non- 
dimensional integer wavenumber, and Q(n) has the 
same unit as q(1). The following notations for the 
transforms will be used 

1 ln 
q(1) e-'"* d1 

2n 0 
m 

n=-m 

where, u and u are eastward and northward wind 
speed, w = dp/dt is vertical pressure velocity, z is 
height of an isobaric surface, and T is temperature. 
We would also like to mention here that notations 
of R, a, and g respectively represent gas constant, 
radius of the earth, and acceleration of gravity. 

Equations for the rate of change of the globally 
integrated kinetic energy in wavenumber space 
were first derived by Saltzman (1957) and could 
also be found in his review paper (Saltzman, 1970). 
In the present study, we apply the same equations, 
except we only integrate them over a latitude belt at 
a pressure surface. Consequently, additional boun- 
dary flux terms would appear in the present forms 
of equations. In addition, the unit of (m/s)2 will be 
adopted for the kinetic energy per unit mass in 
wavenumber space. The equation of zonal kinetic 
energy per unit mass in a computational form is 
as follows 
a m m 

at n= I n= I n= I 

+ C(0) - D(0) + SVZ(0) + SWZ(0) + BVK(0) 

-K(o) = c M,(n) + c ~ ~ ( n )  + FM,(n) 

+ BWK(0) .+ 2 F,(n) + 2 F2(n) (1) 
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where 

N O )  = ; J K(O, 4) cos # d#, 

K(0, #) = - ( U 2  + O*), 

1 *N 

*S 

1 

2 
the kinetic energy of the zonal mean motion; 

contributions of interaction between waves of 
wavenumber n and the mean meridional motion; 

the rate of conversion between the available 
potential and kinetic energies of the zonal mean 
motion; 

g _ _  BVZ(0) = - - [uz" ms # 4N ba 4s ' 

the net boundary fluxes of mean potential energy; 

the net boundary fluxes of mean kinetic energy; 
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the net boundary fluxes arising from interaction 
between waves of wavenumber n and the zonal 
mean motion; 
and 
b = (sin #,,, - sin #.&; 
@,&) = 2[Rc(n)Q,Jn) + R,(n)Q,(n)I. 
For an arbitrary atmospheric quantity q: 

1 
q = - 2 K  
4 = d J2 q cos # d#, meridional average of q; 
q" = q - 4, deviation from the meridional average; 
qr = 84/84, derivative with respect to #; 
qp = aqfap, derivative with respect top. 

The equation of eddy kinetic energy per unit mass 
in wavenumber domain in a computational form is 
as follows: 
a 

at 

- M3(n) + C(n) - D(n) + B VZ(n) + B WZ(n) 

q dA, zonal average of q; 

-K(n) = L,(n) + L2(n) - M,(n) - M2(n) 

+ BVK(n) + BWK(n) + BLl(n)  + BL2(n) (2 )  
where 

K(n) = - K(n, #) cos # d#, 's" *s 

K(n, n = f[@urr(n) + @""(41, 
the kinetic energy of waves of wavenumber n; 

+ [#&,(n) - @&)] } cos # d#, 
a 

nonlinear interaction contributions to waves of 
wavenumber n; 
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the rate of conversion between the available 
potential and kinetic energies of waves of 
wavenumber n 

the net boundary fluxes of potential energy of 
waves of wavenumber n; 

l r  1 *N 

ba 

the net boundary fluxes of kinetic energy of waves 
of wavenumber n; 

the net boundary fluxes arising from nonlinear 
interactions among waves; 
and 
~&(n)= ZQ,(n)[H#(n) + HB(n)l 

+ ZQ,(n)[HiY(n) + HB(n)I; 
~ & p ( n )  = -2Q,(n)[fijt!(n) + fiiJ(n)l 

+ 2Q,(n)[fii](n) + fi3WI; 

m = l +  R,(n + m)P,(m) 

m 

q $ ( n )  = c [R,(m)P,(n + m) + R,(m)P,(n + m) 

fiy)!(n) = c w[R,(m)P,(n - m) - R,(m)P,(n - m) 

Mi](n) = c [R,(m)P,(n + m) - R,(m)P,(n + m) 

- R,(n + m)P,(m)l; 

fii)(n) = c w[R,(m)P,(n - m) + R,(m)P,(n - m) 
+ R,(n - m)P,(m) 
+ R,(n - m)P,(m)I; 

+ R,(n + m)P,(m)I; 
N 

m = l +  R,(n -m)P,(m) 

m=l+  R,(n + m)P,(m) 

- R,(n - m)P,(m)l; 
m 

N 

m= 

0.5 if n is even and m = n/2 
1 otherwise; 

if n is even 
if n is odd. 

{ 
(n - 1)/2 

3. Data and computations 

Northern hemisphere octagonal grid data on 500 
and 200 mb from National Meteorological Center 
(NMC) are used in this study. The period from 
OOGMT 1 December 1975 through 12 G M T  29 
February 1976 is selected. Wind, height and 
temperature data are 12 hourly analysis values. 
The analyzed wind fields are essentially nondiver- 
gent and the mean meridional circulation is zero. 
The data of w field at 00 and 12 GMT are linearly 
interpolated values from the available 4th to 6th 
hour averaged forecasting w values. The w field is 
used only for the computation of the rate of 
conversion between available potential and kinetic 
energies. As will be seen later, the seasonal and 
composite average values of the conversion term 
seem reasonable. All the octagonal grid data are 
interpolated by a 4-point double linear scheme to a 
2.5" resolution grid. In addition to the northern 
hemisphere data, NMC tropical grid temperature 
data in the same period are also used for the 
computation of northern hemisphere mean tem- 
perature. 

Eq. (2) is used for the computation of wave 
energetics on 500 mb. The domain of integration is 
30" to 60" N, which represents middle latitudes. 
The term of the rate of change of kinetic energy is 
computed by a centered finite differencing scheme 
from the 12 hourly analyzed wave kinetic energy, 
whereas, the derivatives with respect to latitudes 
are computed from a 2.5" latitude resolution grid. 
The terms involving vertical advection and the 
mean meridional circulation, i.e. L,(n), M,(n), 
M,(n), BWZ(n), BWK(n) and BL2(n) are not 
computed. Therefore, the residue term will include 
dissipation, data and computational errors, and all 
those uncomputed terms. Those uncomputed terms 
and the errors should be small because the residue 
term behaves similarly to the dissipation. 

Eq. (1) is computed similarly for the study of the 
energetics of zonal mean motion on 200 mb. The 
domain of integration is 20" to 45"N, which 
covers latitudes of maximum mean zonal motion 
(see Fig. 4). The terms involving vertical advection 
and the mean meridional circulation, i.e. M,(n), 

and second part of F,(n) are not computed. 
However, seasonal average of BVK(0) and 
BWK(0) could be estimated. The other uncom- 
puted terms should be small. 

Time oscillations of kinetic energy of waves and 
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n Table 1. Seasonal average contributions to the rate 
of change of wave kinetic energy for 3Oo-6O0 N, 
500 mb, winter 197.5-76. Unit in (m/s)2 day-' '1 1975-76 KINTER 

\ 

24 ' ' ""... . . . .....( 
1 OD 10' 10' 

UFlVE NUH6ER 
Fig. I. Seasonal average kinetic energy spectra in 
wavenumber domain. The two straight lines have n-3 
dependence. 

zonal mean motion could be easily seen in Figs. 2 
and 5 ,  respectively. Composite studies are conduc- 
ted to investigate the amplitude increasing and 
decreasing mechanisms of waves and zonal mean 
motion. Each cycle of time oscillations is divided 
into five stages. Stages I and I1 are energy 
increasing stages with their kinetic energies respec- 
tively smaller than 0.5, and within 0.5 to 0.85 times 
of the peak energy in the cycle. Stage I11 is a stage 
with its kinetic energy larger than 0.85 times of the 
peak energy; whereas, stages IV and V are energy 
decreasing stages with their kinetic energies respec- 
tively within 0.5 to 0.85, and smaller than 0.5 times 
of the peak energy. Time average in each stage is 
computed for each term of the kinetic energy 
equations. Composite averages of several cases are 
then calculated for the five stages. 

4. Energetics of wave motions 

To provide a background for the analysis of the 
mechanism for the growth and decay of wave 
amplitudes at 5 0 0  mb, a brief discussion of the 
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number wav\r.-s dKldl L , - M I  C BVZ BLI RES 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 

.1 5.7 -.3 
-.l -2.9 -.5 

. 1  3.5 -5 

.1 -.3 .3 

.o -2.2 .o 
-.l -2.0 -.3 
-.2 -.6 -.2 

.O -.6 -.l 

.o .o - .I  

.o -.4 .o 

.o -.2 -.o 

.o .o -.o 

.o -.l -.o 

.o . 1  -.o 

4.1 -.3 
13.8 -.l 
8.3 -1.0 
5.3 -1 .1  
5.9 -.7 
6.3 -.8 
8.1 -1.4 
7.7 -.4 
4.1 -.5 
2.2 .1 
1.6 -.l 
1.5 .O 
.9 -.2 
.4 .o 

-2.9 -6.3 
1.3 -11.7 

.O -10.5 

.2 -4.3 

.7 -3.6 

.5 -3.8 
-.l -5.9 
-.7 -6.0 
-.4 -3.4 

.1 -2.0 

.1 -1.4 

.O -1.5 
-.I -.5 

. 1  -.6 
15 .o .o -.o .5 .o -.l -.4 
16 .o .2 -.o .4 .o .o -.5 
17 .o .1 -.o .2 -.l .o -.3 
18 .o .2 -.o .2 .o .o -.4 
19 .o .1 -.o .2 .o .o -.3 
20 .o .2 -.o .1  .o .o -.3 

seasonal average statistics is in order. We shall first 
examine the seasonal averaged kinetic energy 
spectra in wavenumber domain. Fig. 1 shows that 
in the wavenumber range between 7 and 20 the 
energy spectra of both the zonal and meridional 
components of the velocity are approximately 
proportional to the minus three power of the wave 
number. In the low wavenumber end, the energy 
spectrum of the zone velocity generally decreases 
with increasing wavenumber, whereas that of the 
meridional velocity shows an energy peak between 
wavenumbers 3 and 7. These spectral charac- 
teristics are similar to those observed in earlier 
studies (e.g. Wiin-Nielsen, 1967; Kao & Wendell, 
1970). 

As an aid to the analysis of the seasonal mean 
linear and nonlinear contributions to the rate of 
change of spectral kinetic energy, listed in Table 1 
are values of contributions to the rate of change of 
spectral energy due to the nonlinear interactions 
among waves (Ll), interaction between waves and 
zonal mean motion (-MI), conversion from the 
available potential energy to the kinetic energy (0, 
fluxes of potential energy (BVZ) and of those 
arising from the nonlinear interactions among 
waves through boundaries (BLl), and due to the 
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effects of dissipation including the Reynolds stress 
force, data and computational errors and the 
uncomputed terms (RES). It is seen from this table 
that the characteristics of the seasonal averaged 
transfers of energies are in general agreement with 
those reported by Saltzman (1970). Both the extra- 
long waves of wavenumbers 1 and 3, and shorter 
waves of wavenumbers 14 to 20 gain energy from 
synoptic-scale waves of wavenumbers 4 to 13 and 
from the extra-long wave of wavenumber 2 (L, 
being positive for energy gaining waves and 
negative for energy losing waves). The magnitudes 
of our results could also be compared with 
Saltzman’s (1970) vertically integrated results, if 
we assume values at 500mb are approximately 
equal to that of vertical averages and if values in 
Table 1 are multiplied by pdg. For po = loo0 mb, 
our values of L,, C, and RES are respectively 
about 1.9, 2.7, and 2.2 times larger than those 
reported by Saltzman. The discrepancy in the 
magnitude is probably due to the fact that wave 
motions between 30° and 60°N at 500mb are 
generally stronger than that of the global average, 
and could also be a result of the stronger wave 
activities in our observational period. Since the 
term L, could be computed accurately from the 
observed horizontal wind fields and our values of C 
and L, are both about double those of Saltzman, 
we believe that the NMC forecasted w field is good 
enough for qualitative discussions of the conversion 
term C. It is also seen in Table 1 that the residue 
term is negative for all wavenumbers. If eddy kinetic 
energy decays exponentially with time by the rate 
of the residue term, then the e-folding decay time 
for the seasonal averaged total eddy kinetic energy 
is about 2.5 days, which is of the same order of 
magnitude as the spin-down time (4 days) 
estimated by Holton (1972). Since the residue term 
behaves like a dissipation term, we may infer that 
data and computational errors, and contributions 
from those uncomputed terms are rather small. 

Although the seasonal averaged results can 
describe well the maintenance of the general 
circulation in the atmosphere, they cannot explain 
the time evolution of wave amplitudes. In the 
atmosphere, intensification and weakening of a 
weather system are commonly observed synoptic 
phenomena. For a better understanding of the life 
cycle of wave motion, the time evolutions of kinetic 
energies of large-scale waves are shown in Fig. 2. 
The time oscillations of wave amplitudes are clearly 
seen. It may be noted that the oscillation periods 

for extra-long waves (n = 1, 2, and 3) range from 5 
to 17 days, while those for synoptic-scale waves (n 
= 4 - 8) from 4 to 11 days. Amplitude oscillations 
of waves at 200 mb (not shown) are similar and in 
phase with those at 500mb. Several significant 
cycles for each wavenumber are selected for the 
study of the mechanism for the growth and decay 
of wave amplitude. It may be pointed out that 
terms in equation (2) are computed at every 12 h of 
observation time and that composite averages (as 
discussed in section 3) are calculated for five stages 
of the life cycle of waves of each wavenumber. The 
averaged contributions to the rate of change of 
wave kinetic energy at the five stages are shown in 
Table 2. The contributions of nonlinear interaction 
components at amplitude increasing (stage I + 11) 
and decreasing (stage IV + V) stages are shown in 
Fig. 3. Discussions of these contributions to waves 
of various wavenumbers are made in the following 
subsection. 

4.1 Extra-long waves of wavenumber 1 and 3 
Composite averages for wavenumber 1 and 3 are 

shown in Tables 2a and 2c, respectively. As was 
described earlier, the rate of change of wave kinetic 
energy, dK/dt, is positive in stages I and I1 and 
negative in stages IV and V. Surprisingly, we found 
that the nonlinear term, L,, is also positive in stages 
I and 11, and negative in stages IV and V, indicating 
that the nonlinear interactions among waves (L,) 
contribute greatly to the growth and decay of 
waves of wavenumbers 1 and 3. It is also 
interesting to find that the conversion term, C, is 
negligible in stage I and positive in other stages 
with a maximum value in stage 111. The residue 
term, on the other hand, is negative in all stages 
and roughly cancels the contribution made by the 
conversion term. The transfer of kinetic energy 
from these extra-long waves to zonal mean motion, 
MI, is generally small. 

The amplitude oscillations of the extra-long 
waves may, therefore, be explained as follows. In 
the first 1 to 2 days (stage I) of the life cycle, the 
extra-long waves of wavenumbers 1 and 3 essen- 
tially grow by receiving kinetic energy from other 
waves through nonlinear interactions. They con- 
tinue to grow for the next 1 to 2 days (stage 11) by 
gaining energy through nonlinear interactions and 
through converting available potential energy to 
kinetic energy. These waves then maintained their 
peak energy for 3 to 4 days (stage III), as a 
consequence of the balance between the energy 
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1 
0.0 10.0 20.0 ~0.o Q.O 50.0 60.0 70.0 80.0 00.0 

I 

xj4, 
0.0 10.0 10.0 30.0 w.0 50.0 60.0 70.0 80.0 m.0 

n = 5  1 500MB 

d I , , , , , , , , , , , , , , , , , l  

41 
0.0 10.0 20.0 X.0 a.0 50.0 60.0 70.0 80.0 90.0 

0 

&i , , , , , , , , , , , , - 
0.0 10.0 20.0 30.0 Q.0 50.0 110.0 70.0 W.0 90.0 

n = 7  500MB 
A 

. . . . . . . . . . . . . . . . . . . .  
0.0 10.0 a0.0 30.0 (0.0 50.0 m.0 70.0 m.0 m.0 

%I f s 
63 

; 

53 - : 

2 9  
'R *- 
Ha 1 

Y 
x z  x w 

0.0 10.0 a0.0 ~ 0 . o  a.0 y1.0 60.0 70.0 a0.o m.0 0.0 10.0 1.0 30.0 Q.O m.0 80.0 m.o m.0 90.0 
TIRE [DAYS) TIPIE [DAYS) 

Fig.2. Time evolutions of kinetic energies of large-scale waves in the period of 1 December 1975 OOZ 
February 1976 12Z. 
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Stages I + I 1  

N e g a t i v e  C o n t r i b u t i o n s  P o s i t i v e  C o n t r i b u t i o n s  
[ a )  n = I ( 7  c a s e s )  

-- I k a - 1  3 * 4 = 1 2 . 3  
5 6 = 9 . 9  

7 8 = 6 .0  
2 = 5.6 

I-' 

( b )  n = 2 ( 7  c a s e s )  

( c )  n = 3 ( 7  c a s e s )  

2 * 5 = 4 . 7  
4 7 = 4 . 4  
5 8 = 3.5 
3 * 6 = 2 . 5  
6 9 f 1 . 9  

(d )  n = 4 (8  cases)  

2 6 = - .8  

6 *10 = 

( e )  n = 5 (8 c a s e s )  

2 * 7 = - . 4  
4 * 9 =  .6 
6 '11 f . 5  

Stages I V  + V 
V e g a t i v e  C o n t r i k u L i p n L  ~ _ _  P o s i t i v e  C o n t r i b u t i o n s  

9 '10 = . 8  
12 '13 = . 7  
11 '12 = . 6  
13 '14 : . 4  

1 * 3 =  
3 + 5 =  
1 + 1 =  
5 ' 7 ;  
4 * 6 =  
6 * 8 =  

I I  

1 3 = - 1 2 . 0  =3]CI !i:j 5 9 = ;! -1.3 r L 1  

8 *12 = - 1 . 2  

I I 
3 * 8 = -1.2 
2 * 7 = - 1 . 0  
1 6 = - . 7  
6 *11 = - . 7  
8 *13 = - . 6  
7 *12 = - . 5  

( f )  n = 6 (8  c a s e s )  

3 4 = 4 . 2  
2 9 = 4 . 1  
3 *10 = 3 . 1  
1 * 8 = 1 . 4  
4 '11 = . 9  
2 * 5 f  . 7  

(h) n = 8 (7  c a s e s )  

4 *12 = 1 . 4  
2 '10 = 1 . 3  
3 *I1 = . 9  
3 ' 5 -  .8 
6 '14 = . 6  

2 * 9 = - 4 . 4  
3 * 4 = -2 .6  
1 * 8 = -2.6 
1 * 6 = - 2 . 5  
3 '10 -.6 

1 9 = -6 .3  
3 *11 = -3 .8  
2 '10 = - 1 . 5  
4 *12 = - 1 . 4  
3 * 5 : - . 4  
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supply from nonlinear interactions and conver- 
sions, and energy lost by dissipation. During the 
next 3- to 4-day period of decay (stages IV and V) 
both the contributions of nonlinear interactions and 
the residue terms are negative. The period of the life 
cycle of waves of wavenumbers 1 and 3 respec- 
tively is about 11.5 and 10.1 days. 

In view of the important role played by the non- 
linear interactions in both the growing and decay- 
ing stages of the extra-long waves, the mechanism 
for wave interactions is analyzed. Figs. 3a and 3c 
show the interaction components for composite 
stages (I + 11) and (IV + V). In these figures 
notation (ni n,) represents the interaction between 
waves of wavenumber n, and wavenumber n,. In 
general, contributions of wave interactions change 
from positive in the energy increasing stages (I + 
11) to negative or negligible in the energy decreasing 
stages (IV + V). There is no specific dominant 
interaction component. However, interaction com- 
ponents of 3'4, 2*3, 5'6, 1.2, and 4 * 5  are 
important contributions to the amplitude oscillation 
of waves of wavenumber 1 ; while interactions 1 * 4, 
4*7, 1*2, 3*6, and 2.5 are the major contri- 
butions to the amplitude oscillation of waves of 
wavenumber 3. 

4.2. Synoptic-scale waves of wavenumbers 4 to 8 
Contributions to the rate of change of kinetic 

energy of synoptic-scale waves of wavenumbers 4 
to 8 are shown in Tables 2d to 2h. Waves of wave- 
number 4 are classified here as synoptic-scale 
waves because of their having characteristics 
similar to those of the synoptic-scale waves. Like 
the extra-long waves, the contributions of nonlinear 
interactions to the synoptic-scale waves are positive 
in energy increasing stages I and 11, and negative in 
energy decreasing stages IV and V. Therefore, the 
synoptic-scale waves also become intensified by 
receiving energy and decayed by losing energy 
through nonlinear interactions among several 
waves. Nevertheless, the conversion term plays a 
more important role in the life cycle of the syn- 
optic-scale waves than in that of the extra-long 
waves, since it has relatively larger magnitude and 
also contributes significantly in the initial energy 
increasing stage (stage I) of the synoptic-scale 
waves. The conversion term here also has a 

maximum value in stage 111, especially for wave- 
numbers 6, 7 and 8. Again, the residue term is 
negative in all five stages and roughly cancels the 
contribution by the conversion term. The average 
period for the synoptic-scale waves is about 6 to 8 
days. 

Contributions of nonlinear interaction compo- 
nents to the amplitude oscillations of waves of 
wavenumbers 4 to 8 are shown in Figs. 3d to 3h. In 
general, interactions involving extra-long waves are 
important. Major interaction contributions to both 
the energy increasing and decreasing stages of 
waves of wavenumber 4 are 1 * 3; of wavenumber 5 
are 2* 3 , 3  8, and 4 9; of wavenumber 6 are 1 * 5, 
2.4, 1*7, and 3*9;  of wavenumber 7 are 3*4, 
2 * 9, 1 * 8, and 3 * 10; of wavenumber 8 are 1 * 9, 
3 11,2 * 10, and 4 * 12. 

4.3 Waves of wavenumber 2 
The mechanism for the life cycle of waves of 

wavenumber 2 is rather different from that of the 
other waves. Table 2b shows the contributions to 
the rate of change of kinetic energy of waves of 
wavenumber 2. It is noted that the contribution of 
nonlinear interactions is negative in all five stages. 
Examination of the detailed nonlinear interactions 
in Fig. 3b reveals that it is a result of a dominant 
negative interactions component of 1 3 in both the 
energy increasing and decreasing stages. Most of 
the secondary interaction components, however, 
change from positive contributions in the energy 
increasing stage to negative in the energy decreas- 
ing stage, e.g. interactions 3.5, 4*6, and 1 1. As 
a consequence, the negative value of the resultant 
nonlinear interactions is smaller in energy increas- 
ing than in energy decreasing stage. In addition, the 
nonlinear boundary term, BL 1, also contributes 
positively in the energy increasing stages. There- 
fore, the amplitude oscillations of waves of n = 2 
may also be attributed to the fluctuations of the 
nonlinear interaction contributions. The charac- 
teristics of the conversion term of n = 2 waves are 
also very different from those of the other waves. 
Its magnitude is large in all five stages with no peak 
at stage 11. The anomalous behavior of n = 2 waves 
may be attributed to the effects of ocean-continent 
distribution in the northern hemisphere. The 
residue term of n = 2 waves is the only term which 

Fig. 3. Composite contributions of nonlinear interaction components in the energy increasing (stage I + 11) and 
decreasing (stage IV + V) stages. 
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Table 2. Contributions to the rate of change of 500 mb wave kinetic energy at individual stages. 
Unit in (m/s)2 day-' 

(a) n = 1 (7 cases) (e) n = 5 (8 cases) 

Stages (number of days) 

I I1 III IV V 
Terms \ (2.4) (1.9) (3.0) (2.3) (1.9) 

\ (pumber:days)m Iv 
V 

Terms (1.6) (1.0) (1.5) (1.4) (1.4) 

dKldt 5.3 8.5 -.2 -7.0 -6.0 
10.5 14.7 8.6 -2.8 -1.5 

.O -.3 -.3 -.8 -.2 
Ll 
-MI 
C .5 3.0 5.3 4.1 4.5 
B VZ .8 -1.8 -1.1 -.5 1.3 
BL 1 -2.3 -4.9 -5.0 -.7 -2.6 
RES -4.2 -2.2 -7.7 -6.3 -7.5 

,cad I II 111 Iv 
Stages (number of days) 

Terms (1.2) (1.7) (2.8) (1.2) (2.3) 

dKdt 4.0 7.8 -.3 -5.8 -3.7 
1.8 2.4 -5.8 -2.2 6.4 

.1 -.4 -.l 
Ll 
-M1 .O .4 
C 5.0 3.1 6.1 4.5 5.3 
B VZ .8 .O .1 -.l .5 
BL 1 1.0 2.8 1.4 -1.5 1.4 
RES -4.6 -.9 -2.2 -6.1 -4.4 

(f) n = 6 (8 cases) 

Stages (number of days) 

Terms (1.2) (1.3) (1.5) (1.4) (2.1) 

dKldt 3.4 4.4 .1 -6.6 -2.9 
Ll -5.9 -1.6 -1.1 -9.4 -5.6 
-M1 -3 -.1 -1.6 -1.1 -.l 
C 12.7 17.4 15.8 16.7 15.1 
B vz 1.4 -2.4 -1.4 1.5 -.8 
BL 1 5.3 3.7 2.9 -1.1 1.7 
RES -10.4 -12.6 -14.5 -13.2 -13.2 

dKldt 4.9 5.7 .4 -5.3 -3.1 
Ll 
-MI .O 

B VZ -1.1 -3.9 1.0 -A .2 

3.6 8.4 -2.9 -4.9 -6.4 
.3 -.8 -.2 -.3 

C 4.6 8.5 10.4 5.9 4.5 

BL 1 1.3 -1.5 -1.2 -1.2 1.5 
RES -3.5 -6.1 -6.1 -4.3 -2.6 

(c) n = 3 (7 cases) (9) n = 7 (9 cases) 

Stages (number of days) 

Terms (1.4) (1.9) (3.9) (1.8) (1.1) Terms (1.1) (1.0) (1.9) (1.1) (1.2) 

dKldt 3.9 6.9 .3 -8.3 -5.4 dKldt 5.5 8.4 -3 -5.3 -5.7 
6.4 7.4 -2.7 -5.1 -5.4 
.o -.8 -.4 -.3 -.l L, 
3.5 9.6 17.1 10.4 7.7 -MI 

B VZ -3.9 3.3 1.2 -1.8 -1.1 B VZ -1.1 -2.1 -1.7 -2.3 -2.2 
BL 1 .O -4.6 .5 3.3 -2.8 BLl -1.6 -1.2 .8 2.0 .9 

10.6 13.0 3.1 -5.1 -2.0 L1 
-.l 1.2 -1.0 -2.5 .1 -MI 

C .O 8.4 10.8 11.4 7.1 C 

-2.7 -14.4 -14.3 -13.6 -6.7 RES -1.7 -4.5 -13.9 -10.0 -6.6 RES 

(d) n = 4 (8 cases) (h) n = 8 (7 cases) 

Stages (number of days) Stages (number of days) 

Terms (1.5) (1.1) (2.2) (2.3) (1.3) Terms (1.6) (.7) (1.1) (1.1) (1.4) 

3.0 8.7 -.4 -4.3 -4.6 
.6 -6.0 -6.4 L1 2.6 8.7 -5.3 -6.1 -2.9 

-. 1 .o -.3 -.7 .2 .6 -.l -.2 -MI 
-MI 4.8 13.3 17.3 14.0 6.1 C 5.1 7.6 6.1 7.2 2.4 C 
B VZ -.l -.4 .O -.5 1.4 BVZ -.6 -1.2 1.1 .1 -.6 

.6 BLl -.4 -.7 -.l -.6 -1.1 BL 1 -.8 -.4 -2.4 .O 
-3.3 -11.4 -13.1 -11.0 -6.3 RES -5.6 -6.6 -5.3 -4.5 -3.4 RES 

dKldt 5.1 9.2 -.4 -3.9 -5.6 dKldt 
6.2 6.8 
.3 2.2 

Ll 
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o-io.o 0.0 10.0 m.0 Y).O 10.0 s0.0 w.0 t0.0 0 . 0  

\ 1975-76 WINTER 

-5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 

Fig. 4. Meridional distributions of average zonal wind and eddy momentum transport. 
ct--Q PlEfiN ZONAL VELOCITY, LH/Sl 

behaves similarly to that of the other waves. It is 
negative in all stages and also cancels most of the 
contribution of the conversion term. 

5. Energetics ofthe subtropical jet stream 

In this section, an analysis is made on the growth 
and decay of the subtropical jet stream at 200 mb. 
Let us examine first the meridional distributions of 
mean zonal wind and eddy momentum transport as 
shown in Fig.4. The mean zonal wind shows a 
maximum value near 30°N, while the mean eddy 
momentum transport reaches its maximum be- 

' tween 32S0 and 35ON. Accordingly, we choose a 
latitude belt of 20O-45 O N as the integration 

Tellus 30 (1978), 1 

domain of the subtropical jet stream. We first 
compute each term in equation (1) at every 12 h of 
observation time, then calculate the seasonal and 
composite averages of each term. These seasonal 
averages are shown in the last column of Table 3. It 
is clearly seen that the subtropical jet stream is 
maintained by receiving kinetic energy mainly from 
waves (&fl = 9.4 m2 s - ~  day-') of wavenumbers 
1, 5, and 6 (5.7, 1.2, and 0.9 m2 sW2 day-', re- 
spectively). The maintenance of the subtropical 
jet stream is also contributed partly by the 
convergence of momentum flux ( Z F ,  = 2.3 
m2 s - ~  day-I). These two contributions are 
balanced by the energy lost through the 
residue term (RES = -11.1 m2 s - ~  day-'). 
The conversion from zonal mean available 
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potential energy to kinetic energy is small. The 
contributions of the uncomputed terms B VK(0)  
and BWK(0) could be estimated from the seasonal 
average values of h,  U, and ih by Oort & 
Rasmusson (1971). They are both of the order of 
10 m2 s-* day-', but opposite in sign. Therefore, on 
the seasonal average, the meridional convergence 
of zonal mean kinetic energy near the subtropical 

jet stream is cancelled by the vertical divergence. 
The other uncomputed terms were found to be 
small. 

The amplitude of the subtropical jet stream also 
oscillated with time as shown in Fig. 5 .  It is seen 
that the energy is never less than half of the peak 
value in the cycle. Therefore, there are no stages I 
and V in the life cycle of the subtropical jet 
oscillation. Five cases are selected for the com- 
posite averages. The results of these averages in 

find that the linear interaction term, ml, is 
positive in all three stages, whereas the conversion 
term, C, is generally small. However, the most 
interesting thing is that the boundary momentum 
flux term, u,, is positive in the energy increasing 
stage (stage II), and negative in the energy 
decreasing stage (stage IV). Therefore, the inten- 
sification and decay of the subtropical jet stream 

- P MAn)  13.9 7.7 11.4 9.4 are respectively the effect of the convergence and 
divergence of eddy momentum flux. A similar 

C . I  3.8 4.8 .9 phenomenon has been observed by Mintz & Kao 
20 2.3 (1952) and Lorenz (1952). The oscillation period is 

" = I  about 1 1  days. Table 4 shows the contributions of 
R ES -7.5 -17.1 -29.8 - I  1 . 1  &,, by individual waves. It is seen that the change 

of ZF, from positive in stage II to negative in stage 

3. Conrribufions Of change Of 

individual sfages and for  seasonal average. Unif in 
(mls)2 dav-l 

kineric energy Of 2oo mb mean motion for  stages 11, 111, and IV are also shown in Table 3. We 

Stages (number of days) 

(3.7) (4.7) (2.3) average 
I" Terms 

dKldt 24.8 - 1 . 1  -30.4 

" = I  

1 F,(n) 18.3 4.5 -16.8 

i 
W 
a?: 
W z 
W 

V 
h w z 
Y 

CI 

- 

200MB, n =  0 

ii 
9 

0 

8 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 60.0 90.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 60.0 90.0 
~ ~ ' 1 1 ~ , , 1 1 , 1 1 1 1 , 1 1 1 , ,  

TIME [DRYS] 
Fig. 5. Time evolutions of kinetic energies of the subtropical jet stream in the period of 1 December 1975 OOZ to 29 
February 1976 122. 
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Table 4. Contributions to F, (n)  from each 
individual wave 

Stages (number of days) 

number (3.7) (4.7) (2.3) 

1 9.1 7.7 11.2 
2 3.3 3.6 6.2 
3 -4.8 -4.0 -19.4 
4 -.8 -8.7 -7.4 
5 1.9 5.8 -.3 
6 4.5 -2.4 -5.2 
7 .8 1.2 -3.0 
a 2.0 1.7 .I 

IV is mainly contributed by the synoptic-scale 
waves of wavenumbers 4 to 8. 

6. Conclusions and discussion 
An analysis of the mechanism for the wave 

motion in the atmosphere indicates that the energy 

transfers for the growth and decay of the large- 
scale atmospheric waves are quite different from 
those predicted by  the linear baroclinic instability 
theory. In the real atmosphere, except for waves of 
wavenumber 2, the growth and decay of the extra- 
long and synoptic scale waves depend respectively 
on gaining and losing kinetic energy through non- 
linear interactions of finite amplitude waves. In the 
case of the synoptic scale waves, however, the 
baroclinic effect contributes as much as the 
nonlinear interactions to  the initial growth of the 
waves. During the stage of decay, these waves 
reduce their amplitude by losing kinetic energy 
through nonlinear interactions and dissipation. An 
analysis of the mechanism for the growth and 
decay of waves of wavenumber 2 indicates that 
these waves always gain kinetic energy through 
conversion of the available potential energy, and 
lose energy through nonlinear interactions. This 
anomalous characteristic may be atiributed to the 
effect of land-sea distribution in the northern 
hemisphere. 
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BKJIAA JIMHERHOCTkl M HEJIMHERHOCTM B POCT M 3ATYXAHME 
KPYlIHOMACILlTAEiHbIX ATMOCQEPHbIX BOJIH I4 CTPYfiHOrO TEYEHMII 
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