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ABSTRACT 
A theoretical framework for the description of an estuarine system is outlined, with particular 
reference to the Baltic. This description, in terms of continuous functions of salinity and 
time, may be considered as an improvement of existing “box models”, which are inherently 
incapable of making efficient use of hydrographic data. Relations between deep water supply 
and internal mixing properties, as well as the equations controlling diffusion of substances in 
general, are derived and their applicability discussed. 

1. Introduction 

Despite the great amount of  work (see, e.g. 
Fonselius, 1969) that has been devoted to  the 
understanding of the Baltic, it seems that we are 
still missing an appropriate quantitative description 
of the general circulation in the system. Obviously 
such a description is vital for a correct evaluation 
(or even estimation) of the fluxes involved in the 
overall ecological balance. 

There is a gap between our relatively detailed 
knowledge of the hydrographic state and the very 
crude estimates of the fluxes involved; the latter 
are based on box models in one form or another. 
Indeed our understanding of the deep layer 
exchange is founded on the so-called Knudsen 
relations involving only three quantities related to 
observation, i.e. the net fresh water supply M,,, 
a deep and a surface layer salinity (s, and s2) 
representing in some vague sense the conditions 
in the Kattegatt and the Baltic. M,, s, and s2 are 
related in the following way to satisfy continuity of 
volume and salt. 

M ,  + MI = M ,  
MIS, = Mzs* 

M ,  = M, -* 
or 

$ 2  

where M ,  represents the flux into the Baltic of 
water having salinity s,, while M2 represents the 
flux leaving the Baltic with salinity s2. Although 

some refinements on this description are possible 
(see Fonselius, 1969), it should be recognized 
that our present ideas about the mean circulation 
in the Baltic rely almost completely on the above 
simple calculation. 

The basic assumption needed in using the above 
estimate of M ,  is that the more saline, deeper parts 
of the Baltic can be considered as an essentially 
homogeneous entity. We may then estimate fluxes 
of various nutrients by multiplying volume flux 
from the lower to the upper layer (given by or 
closely related to M I )  with the mean concentrations 
in the lower layer. 

Although such calculations are of primary 
importance for our present knowledge, it should be 
recognized that the result may be wrong even 
with respect to order of magnitude. The reason is 
simply that the concentrations involved may well 
vary by an order of magnitude within the deep 
layer, a situation which is in fact typical for any 
strongly stratified fluid. Consequently we may 
make an order of magnitude error when repre- 
senting the lower layer as a single homogeneous 
entity (i.e. when we attribute a single concentration 
value to the lower layer). 

In this paper I will try to develop the first step 
in an effort to cope with the above-mentioned 
difficulty. This will amount to describing the system 
(possibly divided into a number of subsystems) 
with continuous functions of one space-like 
variable and time. The choice of the space-like 
variable is not obvious. I have chosen salinity 
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Fig. I .  Section through basin with illustration of control surfaces used in derivation of  continuity relations. Surface I: 
lsohaline surface so at time I,. Surface 11: Isohaline surface s, at time f, + AI. Surface 111: Position at time I ,  + A /  of 
surface which at time to was identical with I but has followed the mean (non-turbulent) motion thereafter. 

mainly because the density variation is dominated 
by the salt concentration, which most likely implies 
that the variation of any other concentration 
involved will tend to be small along surfaces of 
constant salinity. 

2. DeBnitions 

We consider a semi-enclosed basin like the 
Baltic, i.e. a region enclosed by the free surface 
facing the atmosphere, the bottom and fued 
vertical control surfaces across the connections 
with adjacent Ocean basins (Fig. 1). 

In the following the salinity s and time t will 
be used as independent variables. 

The h-vdrographic sfate in the basin is repre- 
sented by the function V(s,t) defmed as the volume 
of  all the water in the basin with salinity larger 
than s. We will also make use of the related 
functions v(s,f) and S(s,f) defined by 

av 
as u(s,t) = - - 

a 
S(s,t) = v . sds 

S 

It is easily recognized that vds equals the volume of  
water with salinity in the interval (s, s + ds) while 
S(s,t) equals the salt content in the volume V(s,t). 

The circulation in the basin is described by the 
function G(s,f) representing the volume flux 
through the isohaline surface with salinity s. 

The interaction with adjacent basins is described 
by the function M(s,t) defined as the volume flux 
of water with salinity larger than s into the basin. 

We may also define a function m related to M by 

aM 
m(s,t) = - - as 
meaning that mds will represent the influx of  water 
in the salinity interval (s, s + ds). 
To represent the rate of mixing in the basin we 

introduce the function F(s,t), giving the diffusive 
flux of salt through the isohaline surface with 
salinity s. With diffusive flux we mean essentially 
the non-advective part of the flux, i.e. the flux 
through a surface following the “mean” motion. 
Since some confusion may arise as to the precise 
meaning of F we refer the reader to  the discussion 
in the next section where F is introduced into the 
salt balance. 

The chemical and/or ecological state of  the 
system is described by functions C W )  giving 
the total content of  some particular dissolved 
substance (referred to  by the index v) in the volume 
v(s,t). 

We will also make use of  the “concentration” 
c&t) defmed in such a way that 

(3) 

This definition of c ,  implies that cvvds 
is the content of  “v” in the salinity interval (s, s + 
ds), i.e. c, must be the mean concentration 
in the incremental volume vds. 
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Since the volume in ordinary space may be 
thought of  as a sheet of  fluid with small but vari- 
able thickness we may interpret c,, as a 
weighted area mean value of  the local concentra- 
tion in which the weighting function should be pro- 
portional to the thickness of the sheet. Since 
the sheet is composed of  the space between two 
“neighbouring” isohalines having usually very 
small slope, it follows that the weighting function 
is closely approximated by azlas where z is the 
depth of the isohaline. 

Finally, we define functions F&t) so that 
F,. represents the dirusioe flux of the sub- 
stance “Y” through the isohaline surface with 
salinity s (see next section also). 

3. Continuity of mass (volume) and salt 
Let us now formulate the conservation prin- 

ciples for mass and salt in terms of  the concepts 
introduced in the previous section. First we note 
that with exceedingly good accuracy conserva- 
tion o f  mass implies conservation of volume 
(Boussinesq approximation) for the type of 
phenomena under consideration. 

In the following we will thus use volume con- 
servation as the basic principle rather than mass 
conservation. In order to make use of conservation 
of  volume, we consider the rate of change of the 
volume V(s,t). In accordance with the definition 
of  M and G (see Fig. 1) we have 3 

av - = M - G  
at 

(4) 

(Note that the volume between I and I11 in Fig. 1 
equals M(so. tJ . At.)  

Let us now consider continuity of salt and 
begin by a quantitative (hopefully unambiguous 
and appropriate) definition of the function F(s,t) 
introduced in the previous section. Let us first 
recognize that a diffusive flux (whether turbulent or 
molecular), contrary to an advective flux, is a flux 
within the fluid itself, i.e. a flux through a surface 
following the motion of the fluid. 

Regarding turbulent diffusion we should 
consider the flux through a surface following the 
mean (non-turbulent) motion. As usual we may run 
into difficulties if the mean and turbulent motions 
cannot be clearly distinguished, i.e. if the turbulent 
motion ranges over scales all the way up to  the time 
and length scales of the “mean” motion. These 

difficulties are always present in the description of 
turbulent motion and will not be discussed any 
further in this context. 

Let us now consider a surface Y which at time 
to coincides with the isohaline so and which is 
displaced by the mean motion field. In the time 
interval (to, to + At) .  Y is displaced to some 
new position (illustrated by 111 in Fig. 1). We then 
define F(s,l) in order that the salt flux through 
Y in the time interval (to, to + A t )  approaches 
F(so, to)At when At --t 0. 

The “ecological” and chemical fluxes F&t) 
are defined in a precisely analogous manner in 
order that Fv(so, to)dt equals the flux of “1.”’ 
through Y in the time interval (to, to + At). 

As will be discussed and utilized in the next 
section the fluxes Fv and F are not indepen- 
dent since they are caused by the same turbulent 
activity. 

Let us now consider the rate of change of the salt 
content, S(so, t),  below the isohaline so. We note 
that we have three contributions to this quantity 
associated with (i) the inflow M(s,f), (ii) the 
advection G and (iii) the diffusion F. In ac.cordance 
with the definition of these quantities we obtain 

Co _-  as - - G . s + [  m . s d s - F  
at 

Equations (4) and ( 5 )  form the basis for our 
theoretical framework. It should be noted that (4) 
and ( 5 )  are exact within the Boussinesq approxi- 
mation. We may also consider (4) and ( 5 )  as defi- 
nitions for the functions G and F which makes 
it unnecessary to introduce explicitly the surface 
9 used in the above discussion. 

Differentiating (4) and (5 )  with respect to  S, 

multiplying the fust with s and subtracting from the 
latter we obtain 

or when combined with (4) 

- _  av- ,+-  aF 
at as 

Taking an average over a sufficiently long time 
(denoted by an overbar) we obtain 

aF - 
- = - M  or F =  Mds + const. 
a s  

- 0 0 -  

(7) 
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Equation (7) represents in the most simple way how 
the deep water supply is related to the overall 
“vertical” (i.e. cross-isohaline) mixing properties in 
the basin. 

Making appropriate measurements of the supply 
function M(s,f) we may thus gather information 
about the mean rate of mixing through any 
isohaline surface without doing a single measure- 
ment inside the basin. 

According to the definition of F and G the total 
saltflux through an isohaline surface H(s,t) towards 
lower salinity is given by 

H(S,t) = F(s,f) + G(S,t) . s (84  
or making use of the volume balance (4) 

av 
at 

H = F + M s - s -  

Making again an average over a sufficiently long 
time we have 

H = F + M S  (9) 
Combining with (7) and integrating by parts we 
obtain the relation 

H =  6 rTisds 

between H and the mean salt supply from adjacent 
regions. 

- 

4. Continuity of some other substance 

Let us now consider continuity of some other 
quantity “v”. We do not assume that “v” is con- 
servative, i.e. there may be sources and sinks inside 
the basin. We thus define a source function Q,(s,t) 
so that Q ,  represents the production of “v” in all 
the water with salinity exceeding s. 

The continuity relation for the substance “v” 
may then be written (compare derivation of (5) ) :  

m 

(10) 
acv 
at 

- = - G . c : +  I, m y v d s - F v + Q ,  

In eq. (10) we have been forced to introduce two 
new symbols yv and c:; yv representing the con- 
centration in the inflowing water, and c: the mean 
concentration in the incremental volume G A f .  
Neither of these concentrations is in general 
equal to cv defined in section 2. cu and c,! are mean 
values over isohaline surfaces formed with 

different weighting functions, while yv represents a 
local concentration of “v”. Only when the local 
concentration is constant over the isohaline sur- 
faces are c: and yv identical with cv. In what follows 
we will keep y, as a variable distinct from cu but 
approximate c: by cv. The latter approximation is 
absolutely vital for our description. In fact the 
accuracy which can be obtained is usually limited 
by this and the corresponding approximation 
underlying eq. (1 1). The reason to keep yv as a 
distinct quantity, which might seem inconsistent, is 
that yv is likely to represent an extreme value of 
the local concentration in the system. Replacing 
c,! by c, is, on the other hand, justified if the 
correlations between the local concentration and 
the weighting function for cv and c: are weak. 
This is however not necessarily the case. If, e.g. the 
flux G is concentrated to regions where the local 
concentration is small and the stratification 
strong (i.e. azlas small), we are in difficulties. In 
such cases we are probably forced to divide the 
system into parts within which the deviations of the 
local concentration from cv (or some other mean 
value) are sufficiently small. 

In order to use eq. (10) we have to introduce 
some relation for Fy) i.e. make explicit use of the 
fact that Fv and F are not independent. In what 
follows we will use the relation 

acv 
as . FV=F.  - 

Equation (1 1) essentially involves an approxima- 
tion of the same type and order as replacing c: by 
c,. This may be seen by considering local fluxes f 
and& so that Fv = SfYdA and F = $ fdA, wheres 
dA represents integration over an isohahe surface. 
We now assume that f and& satisfies 

where n is a coordinate perpendicular to the iso- 
haline s and c!, is the local concentration of “v”. 
The validity of eq. (1 2) is not undisputable. It may 
be violated when molecular processes are of impor- 
tance, e.g. in so-called double diffusion. Otherwise 
no restriction on the variation in space and time of 
the mixing intensity is involved. Physically (12) im- 
plies that the substance “v” and salt are mixed by 
the same fEld of turbulence. 

Tellus 29 (1977). 2 



132 GOSTA WALIN 

Applying the integral operator dA on (1 2) we 
obtain 

The last part of eq. (13) defines another “mean 
value”, c:, such that c:/as equals a weighted mean 
value of  &‘/as. Equation (1 1) is thus obtained by 
replacing I$ by cv. 

Replacing c: with cv and making use of  (1 1) we 
have from (10) 

acv - a cv=i 
at as 

m 
myv ds - F - - Gc, + Qv (14) 

Equation (14) is the required continuity relation for 
“u”, which together with salt and volume con- 
tinuity form the basis for our description of the 
chemical state and development. 

Differentiating (14) with respect to S and mak- 
ing use of (6a) we obtain 

Taking the average we obtain 

Equation (1 7) becomes much more useful if it may 
be approximated by 

H p = F . - + G . G  (18) 

or one of the alternative forms 

- - a 6  - 

a s  

It has to  be carefully recognized that the step 
from (17) to (18) is far from trivially justified. It 
is thus strongly recommended to reconsider the 
situation any time this type of approximation is 
needed. 

5. Indirect determination of F(s,t) 

au acv ac a%, aQv We have found that the flux H4s.t) in general 
may be determined if the state of  the system I V(s.t) 
and C&t)l and the function F(s,t) is accurately 

~ ~ - + ~ - = m y ~ + c ~ . -  + F - - - -  
at a t  as as2 as 

known (having assumed of course that the system 
satisfies our basic assumptions). The purpose of  the 
analysis is to arrive at more efficient ways of 

Making use of volume continuity (i.e. operate 
with cv(a/as) on (4) and subtract) we obtain 

making use of our knowledge of  the state of  the 
(15) system. It is thus natural to  consider for the 

at as2 moment V(s,t), C&t) (and thus the derived 

a2cv - ac,. 
u - = m(y,. - cv) + 9“ + F - 

where qV = -aQv/as. 
Equation (15) may be considered as a diffusion 

equation for “u” in s-space, in which the function u, 
m and F describing the salt balance enter as coef- 
ficients. Equation (15) however represents just one 
possible way to manipulate eq. (14) (with the aid of 
the salt and mass balances). Which form of the 
balance equations to use depends of course on the 
type of data available. 

The flux of “u”, H,(s,t), through the isohaline s is 
given by 

Hv(S,t) = Fp + GcE 

or within the approximations involved in deriving 
(14) 

functions u(s,t) and c,(s,t)) as known with sufficient 
accuracy. The crucial question is then how to 
obtain information about the function F(s,t). 

Obviously the most straight-forward approach 
is to measure M(s,t) and calculate F(s,t) with the 
aid of (6b). We then need a boundary condition 
on F(s,t). As we will find in (5.1) it is most natural 
and sometimes even necessary to assume the exist- 
ence of a finite amount of water having the 
maximum salinity present in the system (Sm). This 
means that the functions V(s,t), G(s,t), M(s,t) not 
necessarily tend to zero when s + sm. To obtain a 
boundary condition on F(s,t) we consider eqs. (5 )  
in the limit s -+ sm obtaining 

a sm SI. 

SrnZ u d ~ = - G . ~ ~ + s m l  m d s - F  

when s + s, or in view of  the definitions of  u 
and m 
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a 
at 

sm - V(S,t) = G(s,t ) s R ~  + Sm M(S,t) - F(S,t) 

where s - Sm -+ 0. 
Making further use of  volume continuity as 

expressed by eq. 4 we obtain 

F(S,t) = 0 s +sm (18) 
which is the required boundary condition on F(s,t). 
We thus have 

F(s,t) = Jsm M(s,t)ds (191 

irrespective of whether M ,  V, G vanish at s = Sm or 
not. 

Although the direct observation of  M and subse- 
quent determination of F is a most attractive 
approach, it is far from always possible because 
of observational difficulties. It is thus of  the 
utmost importance if we can determine F in some 
indirect way from available knowledge about the 
state functions C&t) and V(s,t). 

In sections (5.1H5.3) we will discuss briefly 
some such possibilities. The discussion is by no 
means complete; the purpose is only to poinr out 
some of the more obvious possibilities and diffi- 
culties. Most important, we have left out 
completely any discussion of computations based 
on timedependent tracer distributions, i.e. when the 
time dependence is used as a source of information 
rather than eliminated through the formation of 
mean values. 
5.1. Computations based on a conservative tracer 

If we can ignore the heat supply from radiation, 
which is usually the case in the stratified part of 
the system under consideration, the temperature 
T(s,t) becomes a conservative tracer, i.e. a tracer 
with zero source function. Equation (15) then 
simplifies to 

where y7(s,t) is the temperature distribution in the 
incoming (or outgoing) water. 

Differentiating (6b) we obtain 

Assuming now that the state functions u , T and 
YT are known, eqs. (20) provide an ordinary 

differential equation for the determination of m or 
F. The equation is of second order and we thus 
need two boundary conditions, e.g. on F. 

Let us illustrate the situation with the “steady 
state” case. We thus assume either that m, F and 
v are truly stationary, or that variations in these 
functions are only weakly correlated with varia- 
tions in T and YT (i.e. that v.aT/at may be 
approximated by U. aF/lat etc.). 

We then obtain 

- ar 
ij + F - = O  

d s 2  

As discussed above the only boundary condition 
available is that F should vanish at s = Sm. In fact 
eqs. (21) clearly demonstrate that we cannot 
require 

If so the homogeneous system (20) has in general 
only the trivial solution F = 0. (An exception is 
provided by the case when (21) is singular at s = 
Sm, i.e. when (YF - 

We thus have to  accept that we need some 
additional information from which we may 
calculate a second boundary condition on F. 

In some cases, e.g. when we consider the 
Baltic as a whole, this information may be pro- 
vided by the overall salt balance. We will not go 
into such details here but only emphasize this basic 
difficulty encountered when the computations are 
based on a conservative tracer. 
5.2. Radioactively decaying tracers 

= 0 at s = sm). 

For a radioactively decaying tracer we have 

q v  = - h c v  ( 2 2 4  
where 1 is the decay-constant for the substance 
having concentration cv. Considering again a 
“steady state” under the same condition as in 
section 5.1 we have from (15) and (6b) 

- zc, 
ds2 

G(Vy - 6) - m c v  + F - = 0 
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As in (5.1) we have only one boundary condition 

F = O  ats=s,,, ( 2 2 4  

unavailable and (22) is thus not a complete system. 
Unlike eqs. (21), eqs. (22) are, however, not 

homogeneous in iii and F. This probably means 
that solutions to (22) are not as sensitive to the 
missing boundary condition as are solutions to 
(2 1 ). 

Let us now assume that we have at  our disposal 
observations of a radioactive tracer cv described 
by (22) and a conservative tracer, e.g. temperature 
described by (2 1). 

We now have the possibility of combining eqs. 
(21) and (22), e.g. by eliminating iii between (21a) 
and (22b), obtaining 

(23) 

This very elegant formula provides information 
ZocaZZv (i.e. without solving any differential 
equation) on F(s,t) from the fields c,. T, y, and 
y ~ .  Whether (23) will become anything but an 
academic curiosity depends, however, on whether 
a suitable radioactive tracer is available on which 
dense enough data can be obtained. 

For the Baltic, tritium has a suitable time 
constant and is in fact supplied from atomic 
power stations. It is highly questionable, however, 
whether enough useful data will ever become 
available because of the relatively expensive pro- 
cedures when analyzing sea water for tritium. 

5.3. Non-conservative tracers with unknown source 
functions 

Generally the description of this type of tracer 
represents the goal of the analysis, i.e. we want to 
compute the unknown source function andlor the 
flux HAS,[) for the tracer in question. It may be 
worth pointing out however that we often en- 
counter two or more tracers with related source 
functions, e.g. we might have 

9v = u9p ( 2 4 4  

where a is a constant. 
We then have from (1 5) 

Multiplying the second equation with a and 
subtracting we obtain 

where 

c’ = cu - nc/I (24c) 

y’  = yv - ayfl ( 2 4 4  

From (24b) we can see that the linear combination 
c’ = clt - ncP behaves as a conservative tracer, 
which may be used in a similar way as temperature. 

6. Application to the Baltic 

It is indubitably an urgent task to obtain 
reliable estimates of various cross-isohaline fluxes 
in the Baltic, e.g. the fluxes of nutrients or bio- 
logically important trace substances. The theoreti- 
cal framework discussed in this paper has been 
developed for this purpose in particular. 

For background information regarding the 
hydrographic and chemical state of  the Baltic the 
reader is referred to the work by Fonselius (1969). 

The most attractive approach would be to  con- 
sider the Baltic as one single basin, i.e. described by 
a single set of  functions V, F and cu. It would then 
be sufficient for many purposes to observe the 
inflow function M a t  some suitably located section. 
In fact such observations are presently being made 
(Petren & Walin, 1976). It is, however, most likely 
that the local concentrations of  the substances 
“v” have a substantial variation along the iso- 
halines because of the considerable length of the 
basin, thereby violating our basic assumptions. The 
deeper parts of the Baltic of interest here may 
however be described as a number of basins 
separated by sills and/or relatively narrow trenches 
and it seems probable that the description devel- 
oped in this paper would be applicable to each of 
these basins separately rather than to the entire 
Baltic. 

Presumably the simplest practically useful 

Tellus 29 (1 977). 2 



A THEORETICAL FRAMEWORK FOR THE DESCRIPTION OF ESTUARIES 135 

I I I 

n 
V 7 v 

basin I basin I1 basin Ill 

Fig. 2. Illustration o f  multibasin model. Each basin is described by an individual set of functions, e.g. (Y", F", 
2;). fl describes the flow from basin N-l  into basin N while fl is the concentration distribution in 
this flow. 

description may be obtained by dividing the 
system into just two basins, essentially the 
Bornholm and the Gotland basins connected 
by the so-called Stolpe trench. 

Whatever division of  the Baltic we choose we 
are forced into a slight generalization of our 
theoretical framework. We thus have to introduce 
an individual set of functions v", FN, c"r: for the 
Nth basin. 

We also need functions M N  and fl, representing 
volume flux from basin N-1 into basin N and the 
concentration of  "v" in that flux respectively 
(Fig. 2). 

Obviously M' will correspond to our previous 
M, i.e. the supply from the surroundings. The modi- 
fications required to make the continuity relations 
derived in previous sections applicable to the Nth 
basin are fairly obvious. Equation (15b) for 
example will take on the form 

at 

Of course we greatly increase the number of 
unknowns passing over to a multiple basin descrip- 
tion. It should be pointed out however that a 
reasonable approximation may be to identify in 
(25) the concentration fl with c ,!-I. This amounts 
to assuming that the concentration of  c,, in the 
"incoming" water is determined by the concentra- 
tion in the "up-stream'' basin. Such an assump- 

tion requires of course that the concepts up- and 
down-stream make sense, i.e. that the motion is 
mainly unidirectional between the basins (e.g. 
from the basin N-1 to basin N). 

It is very unlikely that all of the flux functions 
A@' (or mN) may be observed directly with 
sufficient accuracy. In the case of a two-basin 
description of the Baltic we may probably not 
obtain anything better than an order of magnitude 
estimate for Id', i.e. the function which would 
describe the flow through the Stolpe trench. This 
means that indirect computations of  FN from 
observations of cf, as outlined in the previous 
section, become vital. 

At the oceanographic department in Gothenburg 
we are presently conducting flow measurements 
in the Bornholm strait (as mentioned above). 
The distribution thus observed is intended to be 
used as the function M' in a model of the circula- 
tion and fluxes in the deep, stratified parts of  the 
Baltic. 

We will next try to  organize existing data in 
order to determine as closely as possible the 
functions #(s,t) and v"(s,f) for suitably 
chosen parts of the Baltic. We also plan to arrange 
automatic observations of the salt s and temper- 
ature T structure in the centre of the main basins. 
This would give us estimates of the functions 
v"(s,f) and P(s,f) to be used in continuity calcu- 
lations as outlined in section (5). Note that the 
temperature P(s , t )  should be considered as one of 
the tracer concentrations c,.: indeed a most 
important one for the purpose of  indirect deter- 
mination of the unknown functions M N  and FN. 
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