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ABSTRACT 
The weighted-mean scheme is a method for constructing finite-difference approximations of 
second-order partial differential equations of the advection-diffusion type using only the center 
and adjacent points in each space direction. The scheme tends to a centered-difference 
formulation for strongly diffusive cases and to an upstream formulation for strongly advective 
cases. The error of approximation is O(hz) or better, when h tends to zero, and the scheme 
assures stability and convergence to all iterative methods no matter how large the grid size. The 
scheme thus makes it possible to choose the biggest grid size suitable for each specific problem 
thereby reducing the computing time considerably. 

1. Introduction 

Numerical solutions to the Navier-Stokes 
equations are most often obtained by finite- 
difference methods which involve approximations 
at several stages. The goal is to derive a solution 
which is as close as possible to the continuous 
solution of the system. In principle, it is always 
possible to achieve this goal with a sufficiently fine 
grid network, but practical and economic con- 
siderations may put the goal out of reach. We shall 
deal here with the problems generated by the 
discretization of the space domain and shall 
propose a method for obtaining accurate results 
economically. More specifically, we must first 
ensure that the correct qualitative behavior of the 
system is achieved and then that the correct 
quantitative results are optimal for the effort 
expended. 

Our analysis is for the steady advection-diffusion 
equation of a dynamically passive tracer in an 
incompressible fluid with a known velocity field. 
This equation contains many of the essential 
difficulties of the Navier-Stokes equations but it is 
simpler to analyse. Since the focus is on the space 
discretization, the treatment of the steady system is 
in no sense restrictive; the same spatial problems 

must be faced for the transient system irrespective 
of how the time derivatives are treated. 

Therefore, consider the equation for the conser- 
vation of a substance, C, 

v * (CV) = v .  ([KIVC) + J 

or 

V.(CV- lKlVC)=J.  

C is the concentration of the substance, v = (u, v, 
w) is the known velocity field, [Kl  is the diagonal 
matrix of the known coefficients of eddy diffusion 
and J (referred to as the consumption term) is the 
sum of all internal sources or sinks of the 
substance. J may be a function of C (as for a radio- 
active tracer) or of position but not of gradients of 
C. If the substance is being produced (as is oxygen 
during photosynthesis, for example), J is positive. 

The equation for the conservation of fluid mass 
is given when C = 1 and J = 0 and reduces to 

v . v = o .  

2. The matrix for the space domain 
Different finite-difference systems for eq. (1) 

may vary because of the type of grid used (uniform 
or not) and also because of the methods and the 
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number of points used to approximate derivatives 3. The finite-difference approximations 
by differences. In all cases, however, the problem 
ultimately reduces to a system of equations which 
can be written symbolically in matrix form as 

[QlC = B. (3) 

C is the vector of concentrations, [Q] the matrix of 
coefficients and the vector, B, contains 
inhomogeneous and boundary terms. Specifically, 
if we consider a difference scheme which for each 
point involves only the point and its immediate 
neighbors, each of the equations will have the form 

(4) 

where the summation is taken over the points 
adjacent to the center point (the latter denoted by 
subscript 0). The summation will involve two, four, 
or six points for one-, two-, or three-dimensional 
problems. Thus, typically, [ Q ]  will be a large-order, 
sparse, band-diagonal matrix. In these cir- 
cumstances, iterative methods are usually the best 
way to obtain the solution of the system of eqs. (3). 

The requirements for convergence of the 
iteration procedure depend upon the method used, 
but it can be shown that all reasonable iterative 
methods are stable and convergent if matrix [Q] 
has the following properties; 

(i) No diagonal terms vanish, Qo # 0, for all 
points. 

(ii) The matrix is of positive type, QdQ,, < 0, for 
all neighboring points. 

(iii) The matrix is diagonally dominant, lQ,l 2 
XflIQn I ,  at every point, with strict inequality 
for at least one point. 

(iv) All points are connected, that is, the grid 
connects all the points in one domain by a 
sequence of neighbors. 

Property (iv) depends on how the grid is laid. If 
the total domain of the variable is not connected it 
can be divided into two or more connected domains 
each with a set of boundary conditions. Properties 
(i), (ii) and (iv) make the matrix irreducible. 
Properties (i) and (ii) make it an L-matrix (Young 
& Gregory, 1973, ch. 16). Therefore, in the 
procedure proposed below we have satisfied con- 
ditions (i) to (iv) even though it is not clear whether 
they are absolutely necessary. 
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The derivation of eq. (1) makes use of the 
divergence theorem applied to a volume the size of 
which is allowed to shrink to zero. In the finite- 
difference formulation it pays to backtrack one step 
and work with surface fluxes across the faces of a 
finite volume thereby ensuring exact conservation 
of the substance. 

The space domain is divided into a rectangular 
grid network of points where each point is at the 
center of a small cell. Without loss of generality we 
shall assume regular grid intervals of sizes h, I ,  m in 
the x, y ,  z directions respectively. We shall develop 
a finite-difference formulation of (1) with solutions 
that agree within O(hZ,I2,m2) with the solution of 
(1) at the grid points for small grid sizes. The 
matrix of coefficients will obey conditions (i), (ii) 
and (iii) above for any grid size. 

The following notation is used: Values at the 
generic point ( i j , k )  are denoted by the subscript 
zero, thus, F(ij ,k)  is written F,. Values at other 
points are identified by the value of the subscript 
that differs from i , j ,  or k. Thus, F(i + 1 / 2 j , k )  is 
written as Fj+  F ( i j  - 1,k) as Fi- I ,  etc. 

In Cartesian coordinates (1) becomes 

( 5 )  

We can use the divergence theorem to write ( 5 )  in 
term of a surface integral over a small cell of size 
hlm or, alternatively, we can approximate the 
derivatives in (5) by finite differences to obtain an 
expression in terms of fluxes at the interfaces of the 
cell. The result is: 
1 1 

h -(Fi+l /2-Fi- l /2)  + T(Fi+l/2-Fi-l ,2) + 

Here, 
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Equation (6) is exact if the fluxes have the mean 
values over the interfaces and J,, the mean value of 
J in the cell. The equation is correct only to 
O(h2,12,m2) if F and J are given at mid-point values. 

For mass conservation we have C = I and J = 0 
so that (6) becomes 

It is sometimes desirable to satisfy mass conser- 
vation with no truncation error. If the velocity is 
given analytically, eq. (7) can be made exact by 
averaging the component velocities over the sur- 
faces designated by the subscripts. If the velocity is 
given as an array of numbers, the array can be 
adjusted by suitable interpolation to satisfy (7) 
exactly. If the velocity must be computed as part of 
the calculation, it is not generally possible to avoid 
truncation errors in (7). 

We now make three statements about the fluxes 
at half-interval points: 

(a) The flux is expressed as a linear combination 
of the concentrations at the adjacent grid points. 

Hence, only u or fi is independent in each flux 
equation. Furthermore, from (6), (7) and (8) we 
have 

1 an= 1 p, 
" n 

and 

1 a,, C,, - a, C, = -Jn 
I 

(9) 

where the sum is taken over the neighboring points. 
The value of a, is l$,,, which is equal to c,a, to 
the accuracy of conservation of mass. In practice, 
it is best to use a, = Xnan because that ensures 
conservation of C in (10). Thus, even though the 
individual values of C may still involve an error, the 
total conservation of C will not. 

(b) Since diffusion is a symmetric process, the 
diffusive flux is evaluated by central differences: 
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(c) The concentration in the advective flux term 
at the half-interval points is taken as a weighted 
mean of the values of the adjacent points. Thus, 

The values of u are to be evaluated as functions of 
h, I, m, and of the values of K and the velocity 
components at the half-interval points. The sign of 
u should take on the sign of the velocity component 
and in absolute size IuI < 1. We note that u = + 1 
and u = -1 correspond to the advection of the 
upstream value as we would expect when diffusion 
is negligible. For u = 0, Ci+l12 is the arithmetic 
mean of Ci,, and C, (the centered mean) as we 
would expect when diffusion processes dominate. 

Now with ( i  1) and (12) in the flux terms and use 
of (8) at the point i + 1/2 we obtain 

or collecting coefficients of Ci I and C,, 

x (C;, I - C,) = 0. (14) 

Since C is generally not constant, we have C j t  I # 
C, so that the term in the square brackets must 
vanish. Therefore, 

K; t I12 
+ ---(I + U,+I/21. p. = - u, + I12 

h2 2h + ( l  - ‘ k t  I / ? ) ]  c k +  I 2m 

I t 1  

A similar procedure at the other five surfaces 
leads to 

ai-l = __ +-  ( 1  + 0;- 1 / 2 1 ?  
+ fJk- 112) Ck- I 1 Ki- I / >  ui- 112 

2m h2 2h 

p. =-- Ki I/2 - 4 1  ui 1 / 2  
- 0;- 1 / 2 1  (15b) - a,C, = - J ~ ,  a,=\‘a,,. 

h2 2h I -  I 
n 
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We must still find the values of u that lead to the 
best approximate solutions for the values of C.  
Consider first the one-dimensional case with J = 0 
and constant K. Conservation of mass yields u = o.8 

constant so that ui- l ,z = uit l ,?  = u. Then (16) 0.6 

reduces to 0.4 

2.0 

1.5 

,.o 

U 1.0 y 

; ]cit1-2(-;+~)Co 
0 2 4 6 8 10 12 14 16 18 2 0  

8. uh 
2 K  

7, Fig. I .  Values of u vs H for the exact-equivalent equation 
are shown by the curve marked 1. Values of y vs u and 6 
are shown in the shaded portion of the region. The upper 
bounding curve corresponds to 6 s 1 and the lower to 6 
< 1. Intermediate values of S lead to points in the shaded 
region for each value of H. 

+ l ; + ( l + U ) -  ci-1=0. 

Multiplying by hZ/K leads to 

I1 - ( 1  - #?31Ci+, - 2(1 + U@C, 

2h "1  

uh 
H =  -. 

2K 

Equation (18) is the finite-difference approxi- 
mation to the differential equation 

Young & Gregory (1973) show that the finite- 
difference equation (we shall call it the exact 
equivalent equation) 

eceCi+ I - 2 cosh OC, + eeCi_ ,  = 0 (21) 

has solutions that agree identically at the points xi 
with the solutions to the continuous eq. (20). We 
can reduce (1 8)  to the form (2  1) with the choice 

u = coth 0-  l/B. 

Thus, (22)  eliminates errors of all orders from the 
finite-difference system. 

In Fig. 1 the curve marked 1 shows values of u 
vs O which lead to the exact equivalent equation. u 
is an odd function of u and tends to 1 for increasing 

For condition (ii) in Section 2 to be obeyed by 
(18), the coefficient of Ci+ (if u is positive) or the 
coefficient of Ci-, (if u is negative) must be greater 
than zero, that is, 

1 + G O >  lei. (23) 

(22)  

8. 

For I 8  I < 1 or h < 2K/u, the condition is satisfied 
with centered-differences (a = 0). This is, in fact, 
the limit for the grid size that can be used to solve 
the finite-difference equations with the centered- 
difference approximation. For 161 > 1, Id should 
be greater than 1 - 1/181. Equation (22) is thus 
consistent with the requirement for a positive 
matrix. In the limit of large 181, (22) reduces 
essentially to 1 - l/ IO l .  The system then becomes 
purely advective. The best way to solve the system 
in this case is along characteristics. 

When the centered-difference scheme is used 
(a = 0) the coefficient of C, in (17) is -2K/hZ where 
K is the diffusion coefficient. In the more general 
formula ( 1  7) the coefficient of C, is 2K( 1 + 09/h2 .  
Hence, for non-vanishing u, the weighted-mean 
scheme can be viewed as a centered-difference 
scheme with a virtual diffusion coefficient given by 
K (  1 + uO) = K(B/tanh 8). In the limit of small h (or 
O),  u tends to 8/3 and the virtual diffusion 
coefficient becomes K [ 1  + (u2h2/12K2)l, where the 
term uZh2/12K2 (= 8?/3) is necessary to correct 
errors of O(h2) introduced by the centered- 
difference scheme. More generally, the factor 
O/tanh B corrects errors of all orders. 

In more complex situations, ones with variable 
coefficients and/or more than one dimension, there 
is no general technique for obtaining an exact 
equivalent equation. Indeed, it is not generally 
possible even to eliminate errors of O(h2,12,rnZ), 
although higher-order approximations to the 
derivatives can be used to reduce second-order 
errors. One can apply the results of the present 
section to those problems, treating the system 
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locally as if the one-dimensional constant- 
coefficient analysis were applicable in each direc- 
tion. The value of u will change from point to point 
since it is dependent on the respective values of K ,  
u, u, w, h, 1, m. Accordingly, the coefficients of (16) 
will have the following values: 

v'.[ coth ( ___ 4 1 1 2  ) + ] 
21 2Ki- 112 

= 

a, = 1 a,,. 
n 

The formulation uses only a five- and seven- 
point operator for two and three dimensions 
respectively and is antisymmetric in relation to the 
velocity field. When the components change sign, 
the coefficients upstream and downstream of the 
point are automatically reversed, a feature par- 
ticularly useful in computer programming because 
the sign of the velocity components need not be 
known a priori. 

4. The consumption term J 

As long as the consumption term does not 
involve gradients of C or a positive first-order rate 
it does not affect the diagonal dominance of the 
coefficient matrix or the numerical stability of the 
procedure. However, the adopted form affects the 
accuracy of the solution. Suppose, for example, 
that J is due to radioactive decay so that 

J = -lC. 
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The most direct way to treat this is to write it as 

AC = 1c, (26) 

in which case eq. (18) becomes 

I 1 - ( I  - ~)eic,+,- 2(1 + UO + 6/2)c, 
(27) + [ I  + (1 + u)81C;-1 = o  

where 

6 = Lh2/K. (28) 

The exact-equivalent equation in this case is 

e-' Cit , - 2 cosh J m C ,  + ee Ci_ = 0. (29) 

and it is easily seen that no choice of u can reduce 
(27)  to (29).  Now u was introduced to give a 
weight to the advection term vis a vis the diffusion 
term and we saw that it introduced a virtual 
diffusion into the finite-difference system. Since it 
does not provide sufficient flexibility to yield the 
exact-equivalent equation, we introduce another 
parameter, one associated with radioactive decay, 
and write 

AC = ylcw (30) 

Then (27) becomes 

[ I  - (1 - U)B1C;,, 

- 2  ( l + u 8 + q c o  2 

+ [ 1 + ( 1 + u ) 8 1 C ; ~ , = 0 .  (3  1) 

Equation (3 1) can now be made identical to (29)  if 
u and y are chosen as 

u = coth 8 - l/$, 
y =  Wcosh m- cosh $)/a sinh 8. (32)  

Accordingly, u has the same value as for the 
case without decay. We note that in addition to a 
virtual diffusion the present system involves a 
virtual radioactive decay coefficient of magnitude 
yA instead of A. For small increments, i.e. h (hence 
8) + 0, we obtain y + 1, and the usual form for the 
radioactive decay is recovered. 

Values of y vs u and 6 are shown in the shaded 
portion of Fig. 1. For small L (hence 6) y is 
essentially 1 but for large A, y is larger. In 
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particular, for weak advection (9 < 1) and strong 
decay (6 > I )  y has a value as high as 2.16. The 
reason for this is that in the absence of advection 
radioactive decay dominates the local behavior and 
can lead to relatively sharp gradients. In this case 
the diffusion process is not well represented by a 
centered difference and the proper correction is 
introduced by the enhanced decay. As 0 increases, 
advection has a larger effect so that a smaller 
correction for radioactive decay is required. 

In the general case with variable coefficients or 
multiple dimensions we can follow the same 
procedure as outlined in Section 3. The term a,, 
now becomes 

a, = 1 a,, + yoL.  

The values of a,, are still evaluated by (24) since 
they are unaffected by the presence of I.. For most 
practical cases radioactive decay does not domin- 
ate the local behavior and yo would not be much 
different from unity. In the most extreme cases 
where yo could exceed the value 2 in one of the 
three directions an approximate treatment would be 
t o  choose 

Yo = f(Y, + Yz + r J  
where the yi are the values obtained from (32) for 
each of the directions treated separately. 

5. A test calculation 
The procedure proposed at the end of Section 3 

was tested in a simple, two dimensional case for the 
square region shown in Fig. 2. The velocity field is 

c =  1 
1.0’ 47 

I 
1 ;  
I ;  
I .  Y/ I :  

I 
I 
I 

; ;c=1 0.5- 

c=o  
, 

- ___- -  --- 
P~// ‘”’ ’ ’ ’ /  ” / / / / r ” / , / , / / / /  -,,,,,; 

c.0 0.5 X / L  1.0 
Fig. 2. The flow pattern for the first test calculation IS 

shown as a set of hyperbolae. The fixed concentrations at 
the boundaries are C = 0 along left and bottom and 
C = I along top and right, as shown. 

described by u = U ( 1  - x / L ) ,  u = Uy/L. The 
stream function, ty, defined by u = -aty/ay, 
21 = aty/ax, is given by t y =  Uy(x/L - 1). Hence, 
the streamlines are the hyperbolas shown in Fig. 2 
with flow entering along the left boundary and 
leaving through the upper boundary. Boundary 
conditions are C = 0 at left and bottom and C = 1 
at right and top. In the purely advective case the 
concentration vanishes throughout the region. In 
the absence of advection (U = 0) C varies smoothly 
from the value C = 0 at the lower left corner to 
C = 1 at the upper right corner. 

With the x and y coordinates scaled by L and 
u and L‘ by U the advection-diffusion equation 
reduces to 

where x, y ,  u and u are non-dimensional. 
P( = U L / K )  is the Peclet number and serves as 
a measure of the intensity of advection relative 
to diffusion. Although P is the only physical 
parameter in the continuous system, the significant 
parameter for the finite-difference system is 0 = 

Uh/2K = P/2N where N = L/h is the number of 
grid intervals of size h in each direction of the 
square region. (Note that 0 is defined in terms of 
overall magnitudes in contrast to 0 which was 
defined locally. For the one-dimensional problem 
discussed in Section 3, 0 is constant and equal to 
0.) 

The parameter, 0. serves a dual purpose. It is a 
measure of the relative intensity of advection via 
the ratio, U / K ,  and it also reflects the density of the 
grid network via the increment, h = L/N. Thus, a 
small value of 0 may correspond either to a system 
with weak advection or to one with a large number 
of gridpoints. It is the latter that ensures high 
accuracy if large gradients are present. 

In Table 1 we list values of P and N and the 
corresponding values of 0 for which calculations 
were made. Thus, we explored a parametric range 
over which the effect of advection ranges from 
dominant (large P) to comparable ( P  L 1) to that 
of diffusion, and over which the grid network 
ranges from relatively coarse ( N  = 8) to fine (N = 
64). 

For each combination of P and N calculations 
were made with the centered-difference scheme 
(a=0) and with the weighted-mean scheme in 
which we used eqs. (24) for the value of a. The 

Tellus 29 (1977). 6 



ON WEIGHTED MF.AN SCHEMES 519 

Table 1. Values of @,for the two-dimensional 
calculation 

N P  

128 64 32 16 1.6 

8 8  4 2 1 0.1 
16 4 2 1 0.5 0.05 
32 2 1 0.5 0.25 0.025 
64 1 0.5 0.25 0.125 0.0125 

solutions were obtained by successive over- 
relaxation by lines, alternating the x and y 
directions. 

The iterative procedure diverged for the 
centered-difference equations with @ > 2. For @ = 
2 convergent solutions were obtained but some 
local values differed from the correct values by an 
order of magnitude. With 0 = I ,  the maximum 
error was 15%. Smaller values of 0 led to 
correspondingly smaller errors in the interior of the 
system. In general, decreasing h by a factor of two 
decreased the errors by a factor of four as one 
would expect for the centered-difference scheme 
where the errors are O(h2).  

The weighted-mean scheme led to convergent 
iterations for all values of 0. For the most strongly 
advective case ( P  = 128, N = 8 and @ = 8) 
maximum errors of 25% occurred near the upper 
left and lower right corners. The reason for these 
errors is that N = 8 provides poor resdlution of the 
large gradients in the relatively thin boundary 
layers that exist near x = L and y = L for a 
strongly advective flow. The errors elsewhere in the 
region did not exceed 6%. Halving the grid 
increment led to a fourfold decrease of the errors 
indicating that the errors are of O(hZ). Also, the 
errors did not exceed those of the centered- 
difference scheme for any of the cases. Therefore, 
we conclude that the method is correct to O(hZ), as 
is the centered-difference procedure, but errors of 
O(hZ)  are quantitatively smaller for the weighted- 
mean scheme. 

The most significant result is that convergent 
solutions can be obtained for essentially all grid 
intervals and all velocity amplitudes. With the 
centered-difference scheme, larger velocities can be 
treated only if the grid interval is made correspon- 
dingly smaller. This restriction often puts the 
calculation out of reach economically. 
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Of course, even though one can obtain a 
numerical solution, the latter may not be accurate, 
and one is still faced with the problem of 
interpreting the results. If the grid is too coarse to 
resolve large gradients in small regions, the 
numerical values may overshoot or undershoot in 
those regions. Other inaccuracies may also be 
present. One can always get around these by 
decreasing the grid interval sufficiently but nor- 
mally it is necessary to compromise between really 
satisfactory accuracy and economic feasibility. 

We also tested two other weighted-mean 
schemes that have been used earlier. Kuo & 
Veronis (1973) ran a set of numerical experiments 
on (27) to arrive at an empirical set of values of u 
vs 6 which can be approximated very closely by 
u = tanh 6/3. For small 0 this relation reduces to 
u = 6/3 in agreement with ours. For larger 0 their 
values for u exceed the ones obtained here by as 
much as 15%. Calculations with u = tanh 0/3 for 
@ =  8, yield errors at least twice as large as those 
with the scheme proposed in this paper. As 0 is 
decreased, the results of the two methods merge. 

The form used by Fiadeiro ( 1  975) is u = (-1 + 
d m ) / 2 0 ,  which tends to 6 for small 6 and is 
also larger than our u. Calculations for the two- 
dimensional problem using this form led to errors 
larger than those of either of the other two 
methods. However, even this form yielded conver- 
gent solutions for all values of 0. 

Another procedure which has often been used in 
advection-diffusion problems is to evaluate the 
derivatives in the advection term by upstream 
differences. We did not test this scheme specifically 
because it has errors of O(h). 

6. A second test calculation 

Our second test calculation involves deter- 
mination of the temperature field in a two- 
dimensional, square, Benard convection cell for a 
liquid layer heated uniformly from below and 
cooled from above. The system is cyclic in the 
horizontal (x) direction and the boundaries at the 
bottom and top of the layer (I = 0, d) are stress- 
free, perfect conductors. The cell has width and 
height nL. The space dimensions are made non- 
dimensional by use of the length scale, L .  The 
velocity has maximum amplitude, U, which is used 
in the non-dimensionalization. 



5 20 M. E. FlADElKO AND G.  VEKONIS 

The non-dimensional temperature equation has 
the form 

with the Peclet number defined as P = U L / K  where 
K is thermal conductivity. The dimensionless 
velocity field is given by 

u = -sin x cos z, 

and satisfies the boundary conditions 

u = 0 at x = 0, n; w = 0 at z = 0, n. 

Boundary conditions on Tare  

w = cos x sin z 

T =  1 a t z  = O ;  T =  Oat2 = n; 
ilTliix = 0 at x = 0 , ~ .  

This problem is only part of the free convection 
problem since the velocity field is given. The full 
problem has been discussed extensively in the 
literature (Moore & Weiss, 1973, present an 
excellent, comprehensive summary). We cannot 
compare either our calculations or our results 
directly with published data because we have 
chosen the velocity field and are calculating only 
the temperature distribution. Normally, both fields 
are calculated. Although our chosen velocity field is 
close to  the calculated ones, it is not exactly the 
same and will lead to somewhat different results for 
T. The purpose here is to show the advantages of 
our proposed technique for the numerical solution. 

The centered-difference scheme that is normally 
used to solve this problem has two disadvantages 
when P is large. First, N ,  the number of grid 
intervals, must be large (> nP/8),  if a solution is to 
be obtained. Therefore, it is not possible to obtain a 
rough estimate with a crude grid. Second, when P i s  
large and N is sufficiently large to yield a 
convergent solution, the calculation becomes time- 
consuming and can be prohibitively expensive. 
Typically, the larger the value of P, the larger the 
computational effort. 

We used the weighted-mean scheme to obtain 
the temperature distribution for a range of values of 
P by relaxation by lines. Initially the temperature 
was set to zero everywhere except along the z = 0 
boundary where T = 1. Values of 0 (= UhI2K)  
are shown in Table 2 for P = I ,  3, 10, 50, 100,400 
and N = 16, 32, 64, 128, when N is the number of 
grid increments in each direction. 

Table 2. Values of 0 for different values of N and 
P for the BCnard convection calculation 

P N 

16 32 64 128 

1 .098 .049 ,025 .012 
3 .29 .I45 .073 .037 

10 .98 .49 .245 .123 
50 4.9 2.45 1.23 .6 1 

100 9.8 4.9 2.45 1.23 
400 39.2 19.6 9.82 4.9 1 

Table 3. Values of Nu for selected values of N and P 

P N 

16 32 64 128 

- 1 1.117 - 
3 1.738 - 

- 

- - 

- 10 3.380 3.406 - 
50 7.122 7,424 7.535 - 

100 9.727 10.26 10.56 - 
400 - 19.195 20.33 20.99 

The first, and perhaps most informative, piece of 
information about the weighted-mean scheme is 
that the larger the value of P, the faster the 
convergence. For example, with N =  16 and for 
P = 1,  3, 10, 50 the number of iterations required 
for convergence was 66, 52, 32 and 15 respectively. 
Since the scheme reduces to the centered-difference 
approximation when the velocity is very small (@< 
I), faster convergence for larger P means that 
the slowest calculations take the same time as 
the fastest calculations by the centered-difference 
method. Thus, the present scheme provides access 
to calculations that cannot be obtained with 
reasonable effort by the centered-difference 
scheme. 

The Nusselt number, Nu, is the total (conductive 
plus convective) vertical heat flux averaged across 
the cell divided by the heat flux that would occur by 
diffusion alone. In the steady problem Nu must be 
the same at each level. It was calculated here at all 
levels as a check on the convergence of the 
procedure and the difference of maximum to 
minimum values was always less than 0.01% ofthe 
mean. 

Values of Nu vs P are shown in Table 3 for 
different-sized grids. As we stated earlier, we 
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about the strongly convective cases (P = 400) is 
illustrated in Fig. 3 which shows the contours of the 
mid-temperature (T = 0.5) of the fluid. Strong 
convection causes a warm (T > 0.5, shown shaded) 
blob of fluid to well up along the left of the cell and 
then to intertwine with the symmetrically shaped 
cold (T < 0.5) blob of fluid sinking at the right. The 
bulk of the fluid near the center of the cell is nearly 
isothermal with T E 0.5 but the small deviations 
from T = 0.5 provide a striking demonstration of 
the effects of strong convection. 

7. Summary and conclusions 

0 x/L + 
Fig. 3. The spiraling curve is the isotherm T = 0.5 for 
the Benard convection cell with P = 400. The shaded 
region corresponds to T > 0.5 and the clear region to T 
< 0.5. The intertwining tongues indicate the strong effect 
of convection. (The vertical coordinate is z /L  rather than 
.vlL.) 

cannot compare our results directly with published 
ones because the velocity field is taken as given 
here. However, the value of Nu for P = 400 is 
comparable to that corresponding to the most 
convective case calculated by Moore & Weiss 
(1973). With the 128 x 128 grid the present 
calculation required 44 iterations and five minutes 
on an IBM 3701158. Moore and Weiss, using a 
time-stepping, centered-difference method to cal- 
culate both the temperature and the velocity fields, 
required 5 hours on an IBM 360144 with a grid 
that was somewhat finer than the one that we have 
used. (Essentially, their grid interval had to be 
sufficiently small to satisfy the criterion Om,, I 4 for 
convergence.) 

One of the advantages of the weighted-mean 
scheme is that it is possible to obtain results with a 
coarser grid. With N = 64 the heat flux is within 
3% of that obtained with N = 128. Only 20 
iterations and 30 seconds of computing time were 
required for the calculation with N = 64. Thus, one 
can do the cruder calculation with the coarse grid 
to bring the system to the neighborhood of the 
solution and then to interpolate the field onto a 
finer grid for a more accurate calculation. This 
procedure is not possible with the centered- 
difference approximation since the cruder grid does 
not lead to a convergent system. 

A final point that we would like to bring out 
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The development in this paper started from the 
advection-diffusion equation with the advection 
terms written in divergent form in order to ensure 
that conservation integrals are automatically 
satisfied when the continuous system is approxi- 
mated by finite differences. Even with this form, 
however, the centered-difference approximation 
leads to a system of equations which can be solved 
by iterative methods only if the parameter uhlk is 
of O( 1). When advection dominates, this restriction 
on h may be economically impractical, especially 
for multi-dimensional systems. 

Therefore, we have proposed a weighted-mean 
scheme, in which the advective derivatives at half- 
intervals are evaluated with a stronger weight on 
the upstream value. For one-dimensional systems 
with constant coefficients the weight can be chosen 
so that the resulting finite-difference equation 
(which we call the exact equivalent equation) yields 
solutions at the gridpoints that agree exactly with 
the values obtained from the continuous system. 
The finitedifference equation with the weighted- 
mean scheme contains a term that can be in- 
terpreted as a virtual diffusion coefficient that 
differs from the physical diffusion coefficient by an 
amount dependent on the velocity and on the size 
of the grid interval chosen. It is important to 
observe that the virtual dirusion coeficient coun- 
teracts the distortion introduced by the Jinite- 
direrence approximation. In this sense it serves to 
preserve the physical characteristics of the con- 
tinuous system. 

The weighted-mean scheme has the practical 
advantage of yielding solutions for relatively large 
values of the grid size and is, therefore, economical 
with computer time. Use of it is independent of the 
sign of the velocity since the weight is an odd 
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function of the velocity. The method can be used 
in time-dependent as well as in steady problems 

In multi-dimensional problems, an exact- 
equivalent equation does not exist in general. We 
have proposed a procedure in which the weight for 
the one-dimensional, constant coefficient case is 
applied locally in each direction. Errors are 
unavoidable with this procedure but a test cal- 
culation indicates that the errors are second order 
and that they are quantitatively smaller than those 
obtained with centered differences when the latter 
can be used. The principal advantage of the 
proposed technique is that iterative methods are 
stable and convergent even when very large grid 
increments are used. However, very large grid 
increments will introduce distortions and the 
physical interpretation of the results may not be 
straightforward. Some experimentation with grid 
sizes will be necessary in different problems in 
order that a proper balance between economy and 
accuracy be obtained. 

In a second test calculation we obtained the 
temperature field in a Benard convection cell. Our 
goal here was to test the relative usefulness and 
accuracy of the method as a function of the 
intensity of the velocity field and the size of the grid 
interval. We found that the weighted-mean scheme 
converges faster for more convective flows. This 

result is in contrast to that obtained by centered 
differences where convergence is more elusive as 
convection increases. Hence, the weighted-mean 
scheme makes previously inaccessible calculations 
relatively easy. It also enables one to obtain a crude 
approximation to a system by using a relatively 
coarse grid. One can use this crude solution to  
construct a good, initial-guess solution for a finer 
grid. 

In our treatment here we have focused on the 
practical and economical features of this scheme. 
Although we have made use of rigorous analysis to 
justify the procedure for one-dimensional, 
constant-coefficient cases, we have not explored the 
mathematical aspects of more complicated 
situations. Our hope is that numerical analysts will 
provide a firmer basis for the use of this method or 
one that is comparably efficient with computer 
time. In the meantime, we can certainly recom- 
mend the method as one with distinct advantages 
over the centered-difference scheme that is current- 
ly in use. 
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0 CPEfiHEB3BEUEHHOn CXEME fiAII KOHEY HOPA3HOCTHOn 
AnnPOKCMMAqWM YPABHEHMII AABEKqMM-AMQQY3MM 

C p e n ~ e ~ 3 ~ e r u e ~ ~ a n  cxeMa nBnneTcn MeTonoM noc- 
Tpoennn K O H ~ Y H O P ~ ~ H O C T H ~ I X  annporcnMaunfi Ann 
nn+4epesuwanbeoro ypaBHeHnn B qacTHbIx npons- 
BonHbix moporo nopanKa Tnna ypaeHeHna an- 

panbayro w cocenHWe TOYKW B KaxnoM HanpaeneHwi 
no npocTpaHcmy . IlocTpoeHHan cxeMa npe6ne- 
m a e m  K cxeMe UeHTpanbHbix p a s ~ o c ~ e i i  nnn 
cnyqaeB cTporofi nu++y3nm n K cxeMe O~HOCTO- 

BeKU€iW-nW+l$y3WW, MCnOJIb3yWUlHM TOnbKO UeHT- 

POHHUX pa3HOCTefi, HanpaBJIeHHblX IIPOTkiB IlOTOKa, 

nnn cnyqaee cTporoii anBeKuHW. Omw6~a annpor- 
cmaunn CocTaBnaeT 0 ( h z )  m n  nywue, Korna h 
CTpeMnTcn K Hynro. CxeMa 06ecnerusae~ 
yCT0fiWBOCTb W CXORUMOCTb nnX BCeX UTepaUUOHHbiX 
MeTOnOB He3aBUCWMO OT ulara C e T K W .  TaKWM 
o d p a s o ~ ,  cxeMa n o 3 ~ 0 n n e ~  BbI6paTb Halt60nbUMfi 
War CeTKn, n0nyCTRMbIfi Anll KaKnOfi KOHKPeTHOfi 
3aHaYW, TeM CaMblM 3HaYUTeJlbHO YMeHbluaJI BpeMR 
BblYWCneHWfi . 


