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ABSTRACT
We describe a simple adaptive quality control procedure that limits the impact of individual observations likely to
be inconsistent with the state of the data assimilation system. It smoothly increases the observation error variance
depending on the projected +increment, state error variance and so-called K-factor so that the resulting increment
does not exceed the estimated state error times K. Because an estimate of the state error is readily available in the
Kalman filter (KF), the method is particularly suitable for the KF, ensemble Kalman filter (EnKF), or ensemble optimal
interpolation systems. The tests show that setting K to about 1.5–2 or above has no detrimental effect for performance
of nearly optimal systems; at the same time it still makes it possible to make use of observations that might otherwise
be discarded by the background check. The technique is successfully used in the EnKF codes TOPAZ and EnKF-C.

Keywords: data assimilation, observation quality control

1. Introduction

Geophysical data assimilation (DA) deals with imperfect models
and observations, so that in practice the assumptions of linear
unbiased model and Gaussian observation error commonly im-
plied by DA methods cannot be assumed to be universally valid.
In this circumstance, an abnormally high increment associated
with a given observation cannot be fully trusted, and should be
moderated for the sake of the system robustness. By ‘abnormally
high’, we mean increments with magnitudes higher than, say, 2–
3 standard deviations of the state error estimate. The associated
observations can be considered as inconsistent with the state of
the DA system.

The inconsistency between the model and observations can be
caused by different reasons: model error; an observation outlier;
representativeness error; or an unconstrained model state due to
the system spin-up or divergence. Assimilation of inconsistent
observations can lead to an unbalanced analysis and result in a
loss of skill or even a crash of the system. In complex large-
scale DA systems (such as ocean forecasting systems) that can
typically assimilate of order of 107 observations occurrence of
such inconsistencies is difficult to avoid, and they should be dealt
with in a rigorous and robust way.

In this study, we refer to the related procedures as observation
quality control (QC), although inconsistencies between model
state and observations can occur with perfectly valid (that is,
Gaussian unbiased) observations.
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Generally, a QC procedure should satisfy the criteria for so-
called robust procedures, which include: efficiency; stability;
and breakdown (Huber and Ronchetti, 2009). This means that a
robust procedure should be computationally inexpensive; have
little or no effect in optimal situations; yield continuous output;
and be able to handle extreme situations.

There are a number of observation QC procedures of different
complexities. Some of these procedures represent individual
QC, others simultaneous QC (Lorenc, 2002). One of the most
common QC procedures is the background check (BC) (e.g. Dee
et al., 2011). It rejects an observation if the innovation magnitude
exceeds some threshold that can be set based on the innovation
error, e.g.

|o − H(x f )| ≥ K
√

σ 2
obs + σ 2

f , (1)

where o is the observation value, x f – forecast, H – observation
operator relating the model state and the observations, K – a
pre-defined multiple, σ 2

obs – observation error variance, and σ 2
f

– forecast error variance. There are some obvious downsides to
this simple procedure. If the background estimate is far away
from the truth, then most or all observations can be rejected,
and the system will keep staying in an unconstrained (diverged)
state. Further, the BC does not satisfy the stability criterion: a
small change in the model state or observation can change the
status of the observation from accepted to rejected or vice versa.
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Lorenc (1981) proposed a simultaneous QC procedure for
the optimal interpolation method that checks each observation
against the analysis using all the other observations. An obser-
vation is considered failed if

|o − H(xa)| > T
√

σ 2
obs + σ 2

a ,

where xa is the analysis obtained using all other observations, σ 2
a

– the corresponding analysis error variance, and T is the tunable
parameter called tolerance. A value T = 4 was initially used in
(Lorenc, 1981), but later a more sophisticated estimate based on
the Bayesian approach was obtained (Lorenc, 2002).

Another simultaneous QC procedure is known as the varia-
tional QC, or VarQC (Dharssi et al., 1992; Ingleby and Lorenc,
1993; Anderson and Järvinen, 1999). It reduces the weight of
observations that are found likely to be incorrect during the
minimisation by assuming the ‘Gaussian plus flat’ probability
density function for the observation error. Unlike the BC, VarQC
modifies weight of observations in a smooth way; however, the
impact of observations with very large innovations becomes neg-
ligible, and they no longer are able to contribute to the analysis.

This deficiency of the ‘Gaussian plus flat’ distribution has
been addressed in Tavolato and Isaksen (2015), which proposed
using the Huber norm distribution (Gaussian plus exponential
tails) (Huber, 1964). It is argued that the Huber norm is a ‘very
suitable distribution to describe most innovation statistics’ and
that using it ‘makes observations with large departures active,
so that the data get a chance to influence the analysis’. It is
currently implemented in the ECMWF assimilation system for
in situ observations.

Dee et al. (2001) suggested a procedure called adaptive buddy
check that adjusts tolerances for suspect observations based on
the variability of surrounding observations. This procedure tar-
gets situations with dense observations containing occasional
outliers and does not consider inconsistencies between observa-
tions and the state of the DA system.

In this study, we propose a simple individual QC procedure
that keeps the impact of inconsistent observations finite rather
than negligible, similar to that in the Huber norm QC. It is shown
to achieve good stability and avoid any significant deterioration
in performance in nearly optimal cases, while increasing the
robustness (and sometimes, improving the performance) of the
system in suboptimal situations.

The outline of this paper is as follows. In Section 2, we pro-
pose a solution for the moderated observation error, followed
by experiments with idealised and realistic models in Section 3.
The discussion and conclusions are given in Section 4.

2. Solution

Anatural way to reduce the impact of an observation is to increase
its error estimate. It is much simpler to formulate and implement

such observation error-based control than, for example, correct
possible deficiencies in the analysis.

The basic idea behind the proposed approach is to increase
observation error variance when the magnitude of innovation
(mismatch between the forecast and observation) is too large
compared to the observation error and state error. This leads us
to the problem of choosing a particular function for the new,
‘moderated’ observation error.

In the Kalman filter (KF) framework, the increment can be
written as

δx = Kd, (2)

where x is the state estimate; δx = xa − x f – its increment;
superscripts f and a refer to forecast and analysis variables,
correspondingly; d = o − H(x f ) – innovation; o - observation
vector; and K is the Kalman gain:

K = P f HT(HP f HT + R)−1,

where H = ∇xH(x f ) is the sensitivity (Jacobian) of the ob-
servation operator, P f – forecast state error covariance, and
R – observation error covariance. For a scalar observation, (2)
simplifies as follows:

δx =
σ 2

f

σ 2
d

d, (3)

where

σ 2
d = σ 2

f + σ 2
obs (4)

is the innovation error variance, σ 2
obs – observation error vari-

ance, and σ 2
f = HP f HT – the corresponding estimate of the

observation forecast error variance.
We aim to modify the observation error standard deviation

based on the values of the original observation error standard
deviation σobs, observation forecast error standard deviation σf
and innovation d:

σobs → σ̃obs(σobs, σf , d). (5)

Let us formulate general requirements to the modified observa-
tion error variance as a function of observation error.

(1) The system should retain its optimality in the case of small
innovations; therefore, the observation error should not
change in this limit:
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σ̃obs(σobs, σf , 0) = σobs. (6)

(2) For simplicity, we assume that, as in (3), the increment
remains an odd function of innovation. This means that
the modified observation error variance should be an even
function of innovation:

σ̃obs(σobs, σf , −d) = σ̃obs(σobs, σf , d). (7)

(3) Finally, as has been argued in Section 1, in the case of
large innovations the increment should have some finite
asymptotic value, rather than reduce to zero. We choose to
limit the increment by a factor of the state error standard
deviation in observation space:

lim
d→∞ |δ x̃ | = Kσf , (8)

where K is a tunable parameter (do not confuse with the
Kalman gain K), and δ x̃ is the modified increment:

δ x̃ =
σ 2

f

σ 2
f + σ̃ 2

obs

d. (9)

We will now build a simple solution that satisfies the require-
ments (6), (7) and (8). Looking at expression (3) for the incre-
ment, we seek a candidate solution for the modified increment
along the following line:

δ x̃ =
σ 2

f

σ 2
d + 1

K σf d
d.

This expression would satisfy the requirements (6) and (8), but
the gain in it is not an even function of the innovation. We
therefore modify it as follows:

δ x̃ =
σ 2

f√
σ 4

d +
(

1
K σf d

)2
d. (10)

This expression for the increment satisfies all three formulated
requirements. It implies use of the following modified innovation
error variance:

σ̃ 4
d = σ 4

d +
(

1

K
σf d

)2
. (11)

The corresponding solution for the modified observation error
variance is

σ̃ 2
obs =

√
(σ 2

f + σ 2
obs)

2 +
(

1

K
σf d

)2
− σ 2

f . (12)

Fig. 1 shows the solution (12) for modified observation error
variance and the corresponding increment vs. innovation for
three combinations of observation error variance and state error
variance in the case K = 2.

Expression (12) is indeed not the only possible solution that
satisfies requirements (6–8); however it is simple, smooth, and
has only one tunable parameter. We will refer to it as ‘K-factor
QC’.

3. Experiments

In this section, we demonstrate the effect of the proposed QC
procedure on the performance of the system for both idealised
and operational systems.

3.1. Experiments with a small model

The experiments with the small model below aim to test the KF-
QC procedure in three situations: in nearly optimal settings; with
observation outliers; and with model error. The 40-dimensional
model by Lorenz and Emanuel (1998) is used.The model is based
on the 40 coupled ordinary differential equations in a periodic
domain:

ẋi = (xi+1 − xi−2)xi−1 − xi + 8, i = 1, . . . , 40;
x0 = x40, x−1 = x39, x41 = x1.

Following Lorenz and Emanuel (1998), this system is integrated
with the fourth-order Runge–Kutta scheme, using a fixed time
step of 0.05, which is considered to be one model step.

The DA system uses the ensemble square root filter (ESRF
Tippett et al., 2003) method with ensemble size of 35.

3.1.1. Experiment 1: a nearly optimal system. In this exper-
iment, each element of the ‘true’model state is observed at every
time step with normally distributed error with standard deviation
equal 1 (R = I), and these observations are assimilated at every
time step. Multiplicative inflation of 1% is used for stability of
the system.

These settings have been used in numerous studies, following
Whitaker and Hamill (2002). They are known to result in a
weakly nonlinear DA regime with mean analysis root mean
square error (RMSE) about 0.178–0.180. The resulting system
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Fig. 1. Behaviour of the solution (12) for σ̃obs (thick red line) and the associated increment δ x̃ (thin red line) vs. innovation d; calculated for three
combinations of observation error variance σobs and state error variance σf in the case K = 2. The black lines show non-modified variables σobs
and δx , and the dotted red lines indicate the maximal achievable increment of 2σf .

represents a good test bed for the effect of the KF-QC in a nearly
optimal situation when the QC is supposed to be redundant.

Each run in this experiment is spun up for 500 cycles from
an initial ensemble of random states from a long model run and
then run for 105 cycles. A run in Experiments 1–3 is considered
invalid (diverged) if the mean analysis RMSE for the last 100
cycles exceeds 3. Runs with the same initial seed are started
from the same initial conditions and assimilate the same sets of
observations.

Fig. 2 shows the mean analysis RMSE over 105 cycles de-
pending on the K-factor. It also shows the RMSE for the system
using the standard BC (1), when an observation is discarded
if the corresponding innovation magnitude exceeds Kσd . Note
that due to the run length smaller than normally required for
a system with this model (Sakov and Oke, 2008, Section 4b),
there is a relatively large variability of the mean RMSE for the
runs started from different initial conditions; at the same time
there is a fairly good continuity of results obtained in the runs
started from the same initial conditions. (The smaller run length
is adopted in this and following experiments to achieve balance
between quantifying the system performance and the probability
of breakdown.)

The experiment shows that there is only a minor deterioration
for the mean RMSE (of order of 1% or less) at K = 1, and
the curves are essentially flat from approximately K = 1.7.
The system using the standard BC shows basically no effect
from it when convergence is achieved, from about K = 4,
and significant loss of performance or divergence for smaller
K . Note that on average only about 0.0026 observations per
cycle are discarded by BC at K = 4, 0.19 at K = 2.8 and
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KF−QC, seed = 0
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BC, seed = 0
BC, seed = 1
BC, seed = 2

Fig. 2. Mean analysis RMSE of a nearly optimal system with KF-QC
and BC for three different initial conditions (seeds).

3.6 at K = 2. Indeed, in this experiment the observations with
large innovations (more likely to be refused by BC) represent
the most valuable observations in terms of moving the model
state towards the true state.

3.1.2. Experiment 2: a system with non-Gaussian dense ob-
servations. This experiment is almost identical to Experiment 1,
except that the observations are contaminated with rare outliers.
Namely, with probability 0.995 the observation error is sampled
from N (0, 1), and with probability of 0.005 it is sampled from
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Fig. 3. Performance of a system with non-Gaussian dense observa-
tions using KF-QC and BC for three different initial conditions (seeds).
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Fig. 4. Performance of a system with non-Gaussian sparse observa-
tions using KF-QC.

N (0, 10). The DA system assumes that the error is distributed
as N (0, 1).

Both in Experiments 1 and 2, the system is in a regime when
the observation error standard deviation (equal to or about 1)
is much greater than the mean forecast error (about 0.2). This
means that the analysis error is mainly defined by the previously
assimilated observations rather than by those from the current
cycle. Therefore, the experiment is characterised by abundant
dense observations and rare outliers, when discarding an outlier
should hardly affect the performance. This is perhaps an ideal
case for application of BC. In contrast, KF-QC is a universal
method that limits the impact of an outlier, but does not filter it

Table 1. MAD of the forecast innovations for runs with different K-
factors, averaged over all cycles.

SLA (cm) SST (◦K) T (◦K) S (PSU)

K = 1 0.0529 0.383 0.536 0.105
K = 2 0.0530 0.385 0.520 0.105
K = 999 0.0546 0.392 0.509 0.105

Table 2. Mean dissipated TKE over 3-day cycle, calculated as mean
increment minus trend.

< dissipated TKE > < dissipated TKE/TKE >

K = 1 0.55 · 1017J 0.94%
K = 2 0.84 · 1017J 1.30%
K = 999 1.57 · 1017J 2.01%

out; hence it is not supposed to outperform BC in this case. The
purpose of this experiment is to examine whether KF-QC is still
able to manifest reasonable performance and robustness.

Fig. 3 shows the mean analysis RMSE of the systems with KF-
QC and BC. As expected, BC performs robustly and is able to
achieve the best overall performance, with the RMSE about 0.18
or slightly above. KF-QC yields a slightly worse performance,
with the best mean RMSE of 0.185–0.187, and also shows good
robustness by achieving convergence for a wide range of the
K-factor.

3.1.3. Experiment 3: a system with non-Gaussian sparse ob-
servations. This experiment aims at creating a situation with
much reduced redundancy in observations compared to Experi-
ment 2, so that discarding observations or reducing their impact
excessively can lead to the filter divergence. Specifically, all even
elements of the model state are observed every 5 time steps.As in
Experiment 2, the observations are contaminated with occasional
outliers: with probability 0.96 the observation error is sampled
from N (0, 0.4), and with probability of 0.04 it is sampled from
N (0, 4). The DA system assumes that the error is distributed as
N (0, 0.4). Each run is integrated for 105 model steps, or 2 · 104

DA cycles after a spin-up period of 200 cycles.
With these settings, in the absence of outliers the EnKF has

little problem constraining the model, although it needs sufficient
inflation to achieve long-term stability (about 1.20 or more). Due
to the substantial nonlinearity in the system, there are occasional
spikes in the forecast error exceeding the estimated forecast error
by a factor of 4 or more (not shown).

In the presence of outliers, the QC has to reduce the impact
(KF-QC) of or discard (BC) observations with large innovation
magnitudes. Some of these observations are perfectly valid and
represent spikes in innovation caused by the system’s nonlinear-
ity. These observations are quite valuable for constraining the
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Fig. 5. Total kinetic energy for a realistic DA system with different K-factor values.

system, and discarding them can lead to the filter divergence.
Therefore, the system needs to find balance between the need
to discard or reduce the impact of outliers and the need to keep
or not reduce excessively the impact of valid observations with
large innovations.

Fig. 4 shows the mean analysis RMSE of the systems with KF-
QC and BC for three different settings of inflation: 1.15, 1.20
and 1.25. It also shows the RMSE of the system with KF-QC
assimilating observations without outliers.

The system with KF-QC performs stably with inflation set to
1.20 and 1.25, while with inflation of 1.15 it is prone to occasional
divergence. The best performance is achieved with K = 2. The
corresponding average modified observation error standard de-
viation is about σ̃obs = 0.75 (while the actual observation error
standard deviation is σobs = 0.63). The system with BC is only
able to complete one run at a substantially worse performance.
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Fig. 6. Observations assimilated in analyses in Fig. 11, on 1 July 2011.
The red circles correspond to the regions shown in Fig. 11.

3.2. Experiment with a realistic model

This section investigates using KF-QC in a realistic ocean DA
system by conducting three runs with different values of the K-
factor: 1, 2 and 999. The case K = 999 is practically equivalent
to running the system without KF-QC. All three runs start from
the same initial condition obtained from a spun up system with
K = 2 and are run for the period from 1 July 2011 to 4 July
2012.

The DA system is based on a version of OFAM3 model (Oke
et al., 2013). The model represents a version of MOM 4p1 set in
domain from 75 S to 75 N. The grid has 0.1◦ horizontal resolution
and 51 vertical layers. The model uses ERA-interim bulk forcing,
a fourth-order Sweby advection method, General Ocean Turbu-
lence Model κ-ε vertical mixing scheme and a scale-dependent
isotropic Smagorinksy horizontal mixing scheme.

The DA system uses the ensemble optimal interpolation
(EnOI) method with a three-day centred cycle, and assimilates
satellite altimetry sea level anomalies (SLA) from the RADS
database, sea surface temperature (SST) observations from the
NAVO database and in situ T and S observations by Argo floats.
The system uses a 144-member ensemble with members cal-
culated as the difference between the 3-day and monthly av-
erages from a long free model run. The system does not use
any specific initialisation procedure (that is, initialises to analy-
sis).

The histograms for SST observations are shown in Fig. 9.
Table 1 shows the mean absolute deviation (MAD) of the

forecast innovations for these runs. KF-QC improves the sys-
tem’s performance on SLA and SST but worsens on subsurface
temperature (T). Therefore, in terms of the MAD of the forecast
innovation there is no clear benefit from applying KF-QC to
this system; however, other characteristics of these runs contain
some significant differences.
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Fig. 7. SLA observations in Fig. 6.

Fig. 5 shows the three-hourly time series of the total kinetic
energy (TKE) of the ocean for the whole time period (left panel)
and for the four cycles (right panel) that include the last cycle of
spin-up and the first three cycles of runs with different K-factors.
At each cycle, there is a sharp increase in the TKE followed by a
gradual decrease; there are also smaller inertial oscillations with
the period ∼0.6–0.7 days.

While there are situations when ocean currents and fronts are
expected to strengthen due to DA (e.g. when they cannot be
sustained by the model because of an insufficient resolution), this
strengthening rarely represents a desirable feature of the system.
Ahigher level of the TKE in a data assimilating model is typically
associated with larger analysis increments and instabilities.

From Fig. 5, the system with K = 999 has the largest in-
crements in the TKE from the forecast to analysis, followed by
the systems with K = 2 and K = 1. The mean increment of
TKE is 1.60 · 1017 J (2.05% of the TKE) for the system with
K = 999; 0.77 · 1017 J (1.19%) for K = 2, and 0.43 · 1017 J
(0.74%) for K = 1. At the end of the run period, the system
with K = 999 has about 37% larger TKE than the system with
K = 1, and 20% larger TKE than the system with K = 2. The
average trend of the TKE is 0.03 · 1017 J (0.04%) per cycle for

K = 999, −0.07 ·1017 J (-0.11%) for K = 2, and −0.12 ·1017 J
(−0.20%) for K = 1. Therefore, given that the experiments were
run for 133 DA cycles, for all three systems the TKE increments
are mainly not sustained by the model; however, the average
dissipated TKE per cycle is by far greatest in the system with
K = 999, both in absolute (1.57 · 1017 J) and relative (2.01%)
terms, followed by the systems with K = 2 (0.84·1017 J, 1.30%)
and K = 1 (0.55 · 1017 J, 0.94%) (Table 2). This indicates that
the system without KF-QC works in a more ‘stiff’ regime, with
larger increments and imbalances. It comes to an equilibrium
between injected and dissipated energy at a substantially higher
energy level than the other two systems.

We will now analyse the effect of DA with different K-factors
on the model fields. Specifically, we will look at the model
velocity fields before and after the very first cycle where the
analyses are calculated with different K-factors.

Fig. 6 depicts locations of all superobservations assimilated at
this cycle (on 1 July 2011). The superobservations were obtained
by collating all observations of one kind (SLA, SST, T, S) within
each model grid cell. There are total 24946 SLA observations,
86460 SST observations, 2756 in situ T observations and 3010
in situ S observations.
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and for observations with innovation magnitude exceeding 0.5 m (lower row).
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Fig. 7 shows histograms and maps for the SLA observations
and corresponding innovations. There are two regions where
the magnitude of innovation reaches or exceeds 1 m, one about
(25 E, 40 S), and another about (60 E, 43 S). They mainly co-
incide with the regions 1 and 2 designated by the red circles.
Such a large magnitude of innovation means that the model is
mainly not constrained there. This creates conditions favourable

for applying the KF-QC, when valid observations have large in-
novation due to the divergence of the model. These observations
would be discarded by the BC or produce unbalanced analysis if
assimilated without moderation; with KF-QC they still can have
a positive impact on the system.

Fig. 8 shows histograms of the assumed SLA observation
error standard deviation (STD) before and after application of
the KF-QC with K = 1, both for all SLA observations (upper
row) and for observations with innovation magnitude exceeding
0.5 m. They illustrate the effect of applying the KF-QC on the
observation error standard deviation.

Fig. 10 shows the surface velocity field for the Agulhas re-
gion for the very first cycle where analyses are calculated with
different K-factors. There are some significant differences in the
surface velocity field in some regions in the analyses calculated
with different K-factors. These differences are particularly well
manifested in Regions 1 and 2 highlighted by red circles in Figs.
6–10. There is nothing special about the observations in these
regions (Fig. 6), so the large increments in them must be mainly
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Fig. 10. Sea surface height and SST ensemble spread in the ocean DA system.

associated with more chaotic flow leading to larger innovations
and/or ensemble spread (Fig. 11) than elsewhere.

The system with no KF-QC (K = 999) has a rather discontin-
uous and visually chaotic analysed flow in Regions 1 and 2, with
structure much different to that in the forecast. Such a dramatic
change in the system state assumes a high degree of optimality in
the DAsystem, including a nearly perfect model, linearity and the
use of an advanced DA method. Neither of these pre-conditions
are likely to be satisfied here or in most realistic DA systems;
therefore, the behaviour seen with K = 999 should, generally,
be avoided. Moreover, even in a situation with a nearly perfect
model and dense observations, the use of static ensemble in the
EnOI results in increments not related to the flow of the day,
so that large increments can lead to an unrealistic (and, likely,
strongly unbalanced) analysis. In contrast, the systems with KF-
QC generally preserve the flow structure from the forecast to
analysis, both for K = 1 and K = 2. This is a desired regime
for a realistic DA system.

4. Discussion and conclusions

We proposed an adaptive QC procedure referred to as KF-QC. It
is based on presumptions that (1) large increments in the analysis
should be avoided and (2) simply discarding the associated ob-
servations can often prevent assimilating important information
by the DA system. KF-QC smoothly increases the observation
error so that the magnitude of the increment does not exceed a
multiple (called the K-factor) of the estimated state error.

As demonstrated in Experiment 1, in nearly optimal cases for
moderate or large values of the K-factor (say, K ≥ 1.5) the KF-
QC does not affect the model performance. In this sense, KF-QC
is non-intrusive and can be used by default in practical DA. It has

been used for considerable time in the EnKF-based operational
ocean DA system TOPAZ (Sakov et al., 2012, Section 3.2) , and
since early 2016 in the EnOI-based operational ocean DAsystem
OceanMAPS v3 run by the Australian Bureau of Meteorology
(Sakov, 2014, Section 2.7.3).

In situations with observation outliers, the KF-QC achieves
better robustness of the system compared to BC, at a cost of a
rather minor deterioration in performance (Exp. 2). It achieves
both good robustness and performance in situations with simul-
taneous presence of observation outliers and significant non-
linearity (Exp. 3). From our experience with operational ocean
forecasting, due to improved quality control by observational
data providers, outliers have became less frequent in recent
years. Therefore, handling of observation outliers becomes rela-
tively less important compared to handling of instances of large
innovations caused by other reasons, such as initial conditions,
model error or nonlinearity.

When tested with a realistic global eddy resolving ocean DA
system over a period of 1 year, the KF-QC has not yielded
obvious benefits in terms of the innovation error, but produced an
arguably more balanced output, with overall smaller increments,
including much smaller increments in the total kinetic energy of
the ocean. This is a desirable feature for reanalysis products used
for providing open boundary conditions for limited area models.
When first used in OceanMAPS, the KF-QC made it possible
to assimilate subsurface T and S observations in regions with
large discrepancies in the initial model state. Previously such
observations were routinely discarded by BC, resulting in long-
term systematic errors.

Apart from the good performance and universality, the sys-
tems with the KF-QC have also shown good stability manifested
in smooth dependence on the K-factor around the optimal value.
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Fig. 11. Surface velocity magnitude in a realistic ocean DA system: the forecast, and analyses obtained with different K-factors.

By contrast, in Experiment 1 the system with BC exhibits a
break-down behaviour for K ≤ 2.8, and in Experiment 3 it
could only achieve convergence once in three series of runs with
different inflation factors.

The aims and ideas behind the KF-QC are very similar to those
manifested for the Huber norm QC (Tavolato and Isaksen, 2015).
‘... the relaxation of the background QC ... is a very important
side benefit of the Huber norm method, because it makes obser-
vations with large departures active, so the data get a chance to
influence the analysis’. The two procedures can perhaps behave
similarly when applied to individual observations (e.g. by using
their Equation 4), although the KF-QC with its single tunable
parameter can be easier to use, particularly in ensemble-based
systems.

Because the KF-QC targets not only the observation outliers,
but rather a variety of potential issues that may lead to large
increments, it perhaps has functionality outside observation QC
in a narrow sense. We still qualify it as a QC procedure because,
firstly, it can be seen as a simple modification of the common BC,
and secondly, the other procedures with similar functionality,
such as the VarQC, are also considered to be QC procedures.

The proposed procedure is rather simple, even simplistic, as
it only considers the increment in observation space for a sin-
gle observation. Limiting increment for individual observations
does not guarantee that the overall increment will remain small.
It would be nice to develop a consistent method limiting the
total magnitude of the increment depending on the estimated
state error to limit the potential imbalance of the analysis, but
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that, much more challenging, problem is outside the scope of
this paper and perhaps outside the scope of observation QC.

Because of its serial character, the KF-QC works best in sit-
uations with sparse observations. In the context of ocean DA,
this means that it will be more effective in limiting the increment
from subsurface S and T and track SLA observations, and less
effective for that from SST observations because of a typically
large number of local observations assimilated at a given loca-
tion. Note that even in the case of dense observations the KF-QC
still effectively reduces the impact from potential observation
outliers.
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