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ABSTRACT 

A bricf rcvicw is given of the concepts age distribution, transit t ime distribution, turn-over 
t ime,  average age and average transit t ime (residcnce time) and their relations. The charac- 
teristics of natural reservoirs are discusscd in terms of these concepts, and a classifica- 
tion is proposed based on whether the average age is larger, equal to  or smaller than tho 
averagc transit time. Somc examples illustrate the diffcrcnces betwcen thcse various 
cases. 

1. Introduction 

Whcn concerned with transftr of matter in 
nature, particularly when attempting an overall 
treatment of how exchange takes place between 
tho major natural reservoirs, it  is common and 
useful to introduce concepts as age dist’ribution, 
transit time, residence time, turn-over timc etc. 
Obviously these different concepts are inter- 
related. To avoid misunderstandings and even 
erroneous conclusions it is important to intro- 
duce precise definitions and to use them with 
care. Eriksson (1961, 1971) has dealt with some 
of these problems in two important papers, to 
which reference is made. I n  this note we sum- 
marize certain results into a, simplc and rigorous 
form. We also wish to give some further examples 
which illustrate the way in which tho concepts 
defincd are dependant on reservoir charac- 
teristics. Since Eriksson’s work particularly 
refers to hydrology it is of interest t o  give somc 
examplts from other fields of geophysics, such 
as meteorology. Obviously the following con- 
siderations are also of considerable interest in 
the development of models in ecology. 

2 .  Basic concepts 

Consider a reservoir (such as the atmosphere 
or a closed water body) a t  a givcn time t .  Assume 
that this rcservoir is in exchange with other 
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reservoirs. We shall further limit the present 
study to steady statc conditions, i.e. we assume 
that tho total mass and the statistical distribu- 
tions studied do not vary with time. Such a 
rcstriction may of course limit the applicability 
of the rcsults obtained. A study of steady state 
conditions, however, necessarily must precede 
an analysis of transient developments. 

Each element in such a reservoir can be 
charactcrized by the time z that  has elapsed 
since it entered the reservoir under considera- 
tion, i.e. t is the “age” of the element. These 
elements can be arranged in a cumulative fashion 
whereby the cumulative function M ( t )  is de- 
fined as tho mass that has spent a time less or 
equal to t in the reservoir. Strictly, such an  
arrangement is only possible by considering 
molecules or atoms. When mixing occurs, which 
is normally the case, WQ must be careful when 
talking about “a fluid element”. We shall return 
to this problem later. 

I f  the total mass of the reservoir is &Io we 
obviously have 

lim M ( t )  =&Io (1) 
7-m 

From M ( t )  we define the frequency function 
y ( t )  of mass with respect to age (i.0. the “age 
distribution” function of the particlcs in the 
fluid). Sincc we require that 

IOm y ( t )  d t  = 1 (2) 
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it follows that 

1 d M ( t )  
y ( t )  = - ~ 

M ,  dz 
(3) 

or equivalenty 

It should be noted that this definition is slightly 
different from that used by Eriksson (1961). 

Next consider the flux to and from this 
reservoir. Since steady state prevails at  any one 
time a constant amount equal to F ,  enters and 
leaves the reservoir per unit time. Each element 
of mass leaving the reservoir can be charac- 
terized by the time that has elapsed since it 
entered the reservoir. We arrange these elements 
in a cumulative fashion and define the function 
F ( t ) ,  as the mass leaving the reservoir per unit 
time which has spent a time less than or equal to 
t in the reservoir. This function we call “transit 
time” function. Thus 

The frequency function for the transit time 
p(t), (i.e. the age distribution for the particles 
leaving the fluid) is consequently 

or equivalenty 

For the frequency function p(5) the normali- 
zation condition 

roo 

holds. 
In the case of steady state the two functions 

M ( r )  and F ( t )  are uniquely related by the equa- 
tion 

(9) 

This equation can be verified in the following 
way. Po - F ( z )  is the flux out of the reservoir per 
unit time of fluid elements with an age larger 
than 7. In  a steady state this must be balanced 
by the number of elements per unit time reach- 
ing the age t, i.e. the number of elements M , . y ( t )  
that a t  any one moment have an age lying 
within an interval of unit length around t. 

Since lim F ( t )  = 0 it follows from eq. (9) that 
T+O 

With the aid of eq. (6) we may transform eq. (9) 
into 

M ( t )  and F ( t )  are, by definition, non-decreasing 
functions, and it follows from eq. (9) that y ( t )  is 
non-increasing. p(t), on the other hand, may 
well have a less regular shape. 

The concepts discussed above can be well 
illustrated by an analogy with a human popula- 
tion. Let M ( z )  be the number of people of an 
age equal to or less than z (i.e. measured in 
years). M , y ( t )  is then the age distribution me&- 
sured as the number of people in each year class. 
F ( t )  is the yearly number of deaths among that 
part of the population that is younger than or 
equal to t and eq. (9) expresses the fact that in a 
steady state the number of deaths among people 
older than t years must be balanced by the 
number of persons each year reaching the age 
of t. 

3. Characteristic types of frequency 
functions 

In  many applications it is desirable with a 
simple description of the frequency functions 
y ( t )  or p(t). We shall next discuss some of the 
time constants that are used commonly to 
characterize these functions. 

A. The turn-over time, to, is usually expressed 
as the ratio of the total mass in the reservoir to 
the total flux 

MO 
FO 

to = - 
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B. The average age, ta, of particles in the re- 
servoir a t  any one time is given by 

ta = j o m t y ( t ) d t =  

C .  The average transit time, tt, of particles 
leaving the reservoir ( =the expected life time 
for newly incorporated particles) is given by 

tt = /om t&) dt (14) 

Making use of eq. ( 1  1 )  this expression for tt may 
be transformed 

Thus the average age of particles leaving the 
reservoir is identical with the turn-over time. 

As an alternative name for “average transit 
time” one may use the word residence time. 
Especially for a reservoir where no flux in the 
physical sense occurs within the reservoir, resi- 
dence time should be preferred. It is important to 
note a t  this point, that Eriksson (1961, 1971) 
uses the word residence time for what we pro- 
pose more appropriately should be called the 
average age. 

The relation between tt( =to) and tu is deter- 
mined by the form of the frequency function 
y ( t )  (or p(t)) .  We may distinguish three cases 

a )  ta i t t  -to 

b) tu =tt  =to 

c) ta>tt =to 

Case a:  ta <tt 

y ( t )  and p(t) have typical shapes as shown in 
Fig. l a  and are characterized by the fact that 
few elements leave the reservoir soon after 
having entered it, i.e. p(z) is small for small t. 

A reservoir with modest transport velocities 
and source and sink regions far apart belongs to 
this case. One example of such a reservoir is 
particulate matter being introduced high up in 
the stratosphere and removed at  the tropo- 
pause by transfer into the troposphere (i.e. 

nuclear bomb testing). Another example is given 
by the age of water in a lake with inlet and 
outlet a t  opposite sides. 

Referring to the analogy with a human 
population, a country with low infant mortality 
represents a case of this kind. I n  Sweden for 
example, the expected length of life of a newly 
born child (tt) is about 70 years, while the 
average age (of living people) (7,) is about 35 
years. 

Case b: ta =tt 

for ta to be equal to tt is 
As seen from eqs. ( 1 3 )  and (14) the condition 

(16) 

and thus a sufficient condition is that 

Y W  = dt) (17)  

It then follows from eqs. (6) and (9) t,hat 

and thus 

(19) 

If, on the other hand, one of the frequency func- 
tions can be shown to have an exponential form, 
it follows from eq. (1 1 )  that the other frequency 
function must be identical. This case is il- 
lustrated in Fig. l b. 

Exponential frequency functions charac- 
terize reservoirs, in which all elements have a 
certain constant probability of being removed 
per unit time. Well-known examples of such 
sink processes are radioactive decay and first 
order chemical transformation. 

A reservoir, in which the sink region is 
isolated and the removal probability of an ele- 
ment is constant once it has reached this region, 
is characterized by an exponential age distribu- 
tion only if the reservoir is “well-mixed”. In  
such a case all elements in the reservoir will 
“touch” the sink region an equal number of 
times per unit time, independently of their 
initial position in the reservoir. It should be 
remarked, however, that even though the fre- 
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f 

1 

Pig. 1. Characteristics of the frequency functions 
y( t ) ,  age distribution, and v(t) ,  transit time distribu- 
tion and the corresponding average values t, and tt 
for the three cases described in the text (a)  ta <tt; 
( b )  tu =tt; (c) t, >tt. 

quency function for the age of individual mole- 
cules in such a reservoir is exponential, the con- 
cept “well-mixed” of course implies that any 
finite element of the reservoir contains mole- 
cules of all ages. I t  i s  therefore impossible to 
establish the frequency functions by direct observa- 
tions in such a case. 

Case c: 7, >tt  

This case is characterized by a situation in 
which most of the elements that enter the 
reservoir stay there for a short period of time, 
making tt small. On the other hand those ele- 
ments that remain for a longer period of time 
stay sufficiently long to make t, comparatively 
large. 

The following two examples are of geophysical 
interest. 
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1. The source and sink regions are located 
close to each other or even coincide (the “short 
circuit case”). An important example is a 
gaseous constituent in the atmosphere for which 
the sea is the main source and sink and where 
the exchange is rapid in comparison with the 
transfer away from the sea surface into the bulk 
of the atmosphere. Water vapour in the atmos- 
phere may be taken as a specific example. The 
source of water vapour is evaporation from the 
earth’s surface, mainly the oceans. This evapora- 
tion is, however, only the net result of an ex- 
change process that involves flux of water 
molecules both to and away from tho water 
surface. Thus the process of evaporation re- 
presents both a source and sink for atmospheric 
water vapour. Since the net evaporation usually 
is quite a lot smaller than the gross fluxes, also 
precipitation as a sink for atmospheric water 
vapour is smaller than the direct condensation 
on the ocean surface. The average transit time 
(or residence time) tt, for water vapour in the 
atmosphere is often quoted to be about 10 days. 
Then only precipitation is considered as the sink 
mechanism. I f  we, however, wish to compute 
the average time spent in the atmosphere by 
each water vapour molecule leaving the ocean 
surface i.e. the true value of tt as defined here, 
we would (probably) find a considerably smaller 
value. The average age of water molecules in 
the atmosphere, tu, on the other hand, may well 
be of the order of 10 days, since at  anyone time 
there are only a relatively small number of 
molecules close to the ocean surface that have 
very recently left the surface and soon will 
return to it by direct impaction. It is important 
to recognize these facts, whenever one compares 
the residence time (or average age) of other 
atmospheric trace substances with that of water 
vapour. 

2. The removal is caused by two different 
physical processes of which one, for some reason, 
is confined to “young” particles. This may for 
example be the case with sulfur dioxide emitted 
into the atmosphere within a city. Near the 
source, where the concentration of other pollut- 
ants is high, an appreciable part of the sulfur 
dioxide is oxidized (catalytic oxidation). On the 
other hand, the part of the gas that escapes into 
comparatively clean air further away from the 
source is affected by less effective sink processes 
such as photochemical oxidation and direct 
uptake at  the earth’s surface. 
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A formal example of frequency functions that 
satisfy the condition t, > tt is given by 

if the constants A ,  R,  cc and /3 are chosen suitably 
( A s  B, a> p; note further that Alcr + B//3 = 1 in 
view of eq. (8)). The combination of two ex- 
ponential functions with significantly different 
decays illustrates the kind of situation which 
was referred to above. The characteristic fea- 
tures of such distributions are shown in Fig. 1 c 
(in which case it has been assumed that) A = 2 ,  
B = 0.2, a = 4, B = 0.4). 

4. Concluding remarks 
The brief comments given in the preceeding 

section only indicate some general properties of 
natural reservoirs. Clearly a closer analysis in 
specific cases may yield considerably more 
precise information. 

Observations of the behaviour of natural 
reservoirs usually give insufficient information 

to determine accurately the frequency func- 
tions. Most commonly they permit some con- 
clusions regarding the average age, z,, of particles 
in the reservoir and possibly some general 
features of the age distribution. For most appli- 
cations of reservoir theory, however, the average 
transit time (residence time), tt, is the most 
relevant parameter and we have seen that tt 
may be quite different from ta. The general rela- 
tions and results obtained in the previous see- 
tions may then be of help to deduce the average 
transit time. Quite generally they may be of 
value for interpreting observations of the be- 
havioiir of natural reservoirs (cf. also Rohde & 
Grandell, 1972). 
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