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ABSTRACT 

Historically, second order accurate difference methods have been used for computa- 
tions in dynamic meteorology and oceanography. We investigate more accurate dif- 
ference methods and show that fourth order methods are optimal in some sense. 
This method is then compared with a variant of the Fourier technique. 

1. Introduction 

Historically, second-or lower, order accurate 
difference methods have been most commonly 
used for computations in dynamic meteorology 
and oceanography. More recently some in- 
vestigators have looked at more accurate 
methods, e.g., Arakawa (1966), Burstein & 
Mirin (1970), Grammeltvedt (1969), Orzag 
(1971), Roberts & Weiss (1966), Rusanov (1967) 
and Sundstrom (1969). Grammeltvedt has com- 
pared fourth and second order methods for the 
shallow water equations. However, his com- 
parisons are clouded by the use of inappro- 
priate boundary conditions. 

The equations used in dynamic meteorology 
and oceanography are not, in general, hyper- 
bolic, but the behavior of these systems is 
essentially hyperbolic in regions of their space. 
time domains. 

In section 2, we examine the phase errors of 
second, fourth and sixth order centered schemes 
when used to compute approximate solutions to 
linear first order hyperbolic equations. Several 
investigators have examined the phase errors 
of various difference methods, e.g., Crowley 
(1967), Kurihara (1965), Matsuno (1966), Ok- 
land (1958), Orszag (1971), and Roberts & 
Weiss (1966). These investigations have been, 
for the most part, limited to the computation 
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of phase errors and perhaps the tabular or gra- 
phical illustration of their different behavior. 
More importantly, with the exception of the 
works of Roberts and Weiss and Orszag, the 
implication of these results has not been clear. 
We derive conditions such that the error for 
the computation of a wave structure of given 
complexity for a given length of time is less 
than some given bound. These are then used 
to indicate the computational advantage of the 
fourth and sixth order schemes. 

In section 3 we compute the asymptotic 
phase error of centered finite difference schemes 
as the order of accuracy is increased. We con- 
clude that a t  least two points per wave length 
are required for a finite difference scheme of 
any order. 

The computational work, however, increases 
proportionally with the order of the method. 
Therefore, one does not gain much by consider- 
ing difference methods of higher order than 
four. To decrease the number of points without 
increasing the necessary work too much, one 
must use other techniques. 

It has been known for some time that a more 
efficient representation of these problems can 
be obtained by Fourier transforming the dif- 
ferential equations. Recently, S. Orszag (1971) 
has developed efficient techniques for imple- 
menting these transform methods. In  section 4 
we investigate an alternate method where we 
use the Fourier transform to compute very 
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accurate approximations to derivatives. This 
has the advantage that the convolution sums 
which are required by Orszag’s methods, when 
the differential equations themselves are trans- 
formed, are not needed. 

In section 5 we look a t  the nonlinear equation 
ut =uuI. We first show that a quasi-conservative 
scheme is unstable when leap-frog time dif- 
ferencing is used, unless a dissipative operator 
is added. We then show that, for the solutions 
of the fourth order centered scheme, a quasi- 
bound of the same type as for the quasi-con- 
servative schemes holds if we add some-but 
very little, dissipation. Computational results 
indicate that this scheme is truely stable. 

In the last section several computational 
examples are shown which illustrate the 
superiority of high-accuracy methods. We in- 
clude a comparison of second and fourth order 
schemes for the shallow water equations to 
illustrate the relevance of the linear theory to 
a nonlinear problem typical of those in dynamic 
meteorology and oceanography. 

2. Second, fourth and sixth order schemes 

We restrict our attention to the scalar equa- 
tion 

U t  = -cu, (2.1) 

where subscripts denote partial differentiation. 
It is easy to extend these results to strictly 
hyperbolic systems of the form ut =Au,, where 
u is an 8-dimensional vector and A is a constant, 
non-singular, 8 x.s matrix which can be dia- 
gonalized and has real eigenvalues. The ex- 
tension to higher space dimensions is also 
straightforward. 

Consider the problem of computing the solu- 
tion of (2.1) on the interval 0 4 z < 1, 0 < t ,  with 
boundary conditions, u(0,t) =u( l ,  t ) ,  and the 
initial function 

u(z,  0) = f (z )  = (2.2) 

This problem has the solution 

(2.3) u(z ,  p = w ( r - c t )  

We nowTapproximate (2.1) by difference 
methods. We ignore any errors due to discreti- 
zation in time, i.e., we consider the differential- 
difference equation 

where 

(2.4) 

w ( z  + h, t )  - v ( z  - h, t )  
2h 

D,(h) w(z, t )  = 

which has local truncation error O(h2) .  
If w(z, 0) = ei2nwr then (2.4) has the solution 

v(z, t )  = e 1 2 n w ( r - c L ( ~ ) t )  (2 .5)  
where 

The phase error, e l ,  is 

el(w) = 2nwt(c - c,(w)) (2.7) 

A fourth order approximation is 

If, as before, v(z, 0) = elanwr, then ( 2 . 8 )  has the 
solution 

(2.9) v(z, t )  = et2nw(+ c d w ) L )  

where 
8 sin 2nwh - sin 4nwh 

12nwh 
(2.10) c,(w) = c 

The phase error, e 2 ,  is 

e , ( w )  = 2nwt(c -c,(w)) (2.11) 

We now look for conditions that the solutions 
(2.5) and (2.9) satisfy 

el(w) < e (2.12) 

e z ( w )  G e (2.13) 

for 0 ~e Q 4 and 0 ~t < (j/wc). j denotes the 
number of periods we want to compute in 
time. It is easily seen from (2.6),  (2.7), (2.10) 
and (2.11) that el  and e, are increasing functions 
of t .  Therefore, (2.12) and (2.13) are satisfied 
for 0 < t  Q(i /wc)  if we choose N =(wh)-’ such 
that 

1 ( 2n/N 

sin (Zn/N) 
e , (w , j )=2nj  1 - -~ = e (2.14) 

and 
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I 

8 sin ( 2 n l N )  -sin ( 4 n / N )  
12nlN 

ez(w,  i )  = 2nj 1 - - 
) = e  
(2.15) 

( 
N denotes the number of points per wave 
length. 

We develop the left-hand sides of (2 .14)  and 
(2 .15 )  in power series in (2n lN)  and retain only 
the terms of lowest order. Then we have 

(2 .22)  

and 

Consider N ,  and N ,  as functions of j .  Let e 
be the maximum phase error allowed. Utiliz- 
ing (2 .16)  and (2 .17)  we have 

N , ( j )  N 2n(2n/6e)* /2 j1 /2  (2 .18 )  

N , ( j )  N 2 ~ ( 2 n / 3 0 e ) ’ / ~ j ‘ / ~  (2 .19)  

A similar computation for the sixth order 

and 

scheme 

v V ~ =  - ~ ( $ D , ( h ) - ~ D , ( 2 h ) + & D , ( 3 h ) ) v ( t )  (2 .20)  

yields 
N J j )  - 2n(72n/7!  e)1/6j1/e (2 .21)  

If e =0 .1  then 

N , ( j )  - 20 j”’ 

N 2 ( j )  N 7 j1t4 

N,( j )  - 5 

and if e = 0.01 then 

N , ( j )  - 64 j “ ,  

N , ( j )  N 13 j1’4 

N , ( j )  - 8 j ” @  

Observe that the operation count of the 
sixth order method is approximately 3 /2  times 
that of the fourth order method. The fourth 
order method has approximately twice the 
operation count of the second order method. 
The table above clearly illustrates the superior- 
ity of the fourth and sixth order schemes over 
the second order scheme. The superiority is 
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much more pronounced for smaller errors. 
However, considering the additional effort the 
sixth order method requires over the fourth 
order method, the table above illustrates that 
little is gained by using the sixth order scheme. 
However, it should be noted that if we only al- 
low errors much smaller than e = 0.01 then 
the sixth order scheme is definitely superior 
to the fourth order scheme. This is a rare situa- 
tion. The superiority of the higher order meth- 
ods is even greater when the computations 
are extended over long time intervals since N ,  
grows like jl/a, N ,  like i l l4 and N ,  like j1/6.  

For large j the sixth order scheme is again 
superior to the fourth order scheme. 

3. Asymptotic estimates for higher 
order methods 

In this section we consider even higher order 
approximations to the differential operator 
alax. 

We define the operators D ,  and D- by 

w ( 2  + h )  - v(2) 
h 

D+v(x) = 

We begin with 

Lemma 3.1. The coefficients i n  the formal ez- 
pansion 

00 

a / a z = D , ( h )  2 ( -  l )”azv (hZD+ D-)” (3.1) 
F 1 0  

are given by the expunsion 

Therefore, 
1 

v+m 2v 
lim (u,,,) - = .$ ( 3 . 3 )  

Proof .  We a.pply (3 .1 )  to the function efznw* 
and obtain 

Introducing 6 = 2nwh and observing that 

(3.4) 
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02 

x 2 U2"4" sin2" ([/2) 
" = O  

Therefore, if t = sin ([/2), 

I d  
- - (arcsin t)2 = arcsin t (1 - t2)-* 
2 dr 

m 

= t 2 uzv4vtZY 
" = O  

(3.2) follows easily. The radius of convergence 
of the power series for (arcsin t)' is 1 and the 
coefficients one positive. 

Therefore 

and (3.3) follows. 
Let us now approximate the problem (2.1), 

(2.2) by 

av 
- =  - cD["'(h)v, v(z, 0) = eianZw 
at 

where 
m-1 

DrZm1(h) = D,(h) 2 ( - 1)"u2,(h2D+ D- 1" 
"=l 

Remark. DrZm1(h) can also be written 

- 2( - l)"(m!)2 
(m + Y)! (m - Y)! 

m 

DCzm'(h) = 2 yyD0(vh) ,  yv = 
"=l 

When n ~ =  1,2,3 we have the second, fourth 
and sixth order schemes of section 2. 

In this case the phase error is given by 

(3.5) 

From (3.4) and (3.5) we obtain 

sin(2nwh) * 
2nwh v s n  

2 uav q2' sin2' (nwh) en= 2ncwt 

We now estimate the sum on the right. Lemma 
3.1 implies that for large n 

We then have for d,  max c, 
12 n 

m 

Pn < n 2 (1 + d,)"'sin2""(wh) < d (1 + d J 2 ,  
Y =  n 

x sin'" (nwh) (1 - (1 + d,)* sin' (nwh))-' 

and 

lim By" G 71-+00 lim (1 + d,) sin (nwh) =sin (nwh) 
n+m 

Alternatively, 

m 

B n  > 2 (1 - d,y' sin" (nwh) 
v =  n 

and 
lim by" > sin (nwh) 
n-+m 

Therefore, 

lim ,!?:, =sin (nwh) 

Consequently, letting N, = (wh)-' denote the 
number of points per wave length as before, we 
have for every en = e > 0 

n+m 

n 
1 = lim sin - 

n+m N ,  

and therefore that N,-2 as n + m .  Thus we 
must always have at  least 2 points per wave 
length. 

Observe that the amount of work the above 
2nth order method requires is approximately n 
times the work of the second order method if 
the work is performed conventionally. (This 
factor can be reduced to O(1og n )  by using the 
FFT.) In light of (2.22) it  is doubtful that 
difference methods of order greater than six 
have any practical advantage. 
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4. The Fourier method 

Let N be a natural number, h = l / ( 2 N  +1) 
and xv  = vh, v = 0,  1, ..., 2N. Consider a 1-  
periodic function w(x) ,  i.e., w(x) =u(z + l),  whose 
values we know a t  the gridpoints xu, uu = v ( x v ) .  
A very accurate method of approximating 
du(xv) /dx  is to interpolate the function values 
v(zv)  by a trigonometric polynomial 

and to differentiate this polynomial obtaining 

This can be achieved by two fast Fourier trans- 
forms (FFT) and 2N multiplications. We 
introduce the vectors v = (u,,, ..., vzN)’ and w = 

(dv,/dx, ..., dvzN/dx)’. Then we can write the 
above process in operator form 

w - s v  

where S is a (2N + 1) x (2N + 1) matrix. Let LL 

scalar product and norm be defined by 

where 0, denotes the complex conjugate of u,. 
We have 

Lemma 4.1. S is skew-hermitian and llSllN = 

2nN. 

Proof. Let 

w 7  , 9 ..., )‘, e2niwh e2niw(2h) e2niw(2Nh) 

w=O, k l , . . . ,  + N  

It is obvious that 

S ew = 2 ~ i w  e,, (4.3) 

i.e., 2niw are the eigenvalues and ew the cor- 
responding eigenfunctions of S. 
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Also 

and, therefore, the eigenfunctions form an 
orthonormal basis. Observing that the eigen- 
values are purely imaginary and their absolute 
values bounded by 2nN the lemma follows. 

We now replace the differential equation 

a q a t  = -C aulax (4.4) 

u(x ,  0) = f(4,  4 = Nl,  t )  

by the system of ordinary differential equations 

dyldt = - c S V ,  (4.5) 

v ( x ,  0) = g ( x )  

g is defined in the following way. Let 

j ( x )  = z f ^ ( w )  e2niws 
W 

and 

It follows from (4.3) that the solution of (4.5) 
is given by 

Thus the first 2N + 1 frequencies, Iw I < N ,  are 
represented exactly. 

Therefore, using this method we need only 
two points per wave length to represent the 
wave exactly, compared to seven points for the 
fourth order scheme allowing an error of lo%, 
and thirteen points allowing 1% error. 

Now approximate (4.5) by the leap-frog 
scheme 

~ ( t  + k )  = v(t - k )  - 2ckSv(t) (4.8) 

It follows from lemma (4.1) that the approxima- 
tion (4.6) is stable for J2nNckl < 1. 

Since each FFT on 2N + 1  points requires 
approximately N logz(2N) complex multiplica- 
tions and 2N log, 2N complex additions, the 
number of operations per time step for (4.6) 
is approximately 

8N log, 2N real multiplications and 

8N log,(2N) real additions (4.7) 
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0 

8 

6 

> L  

2 

0 L l l  I 
-20 1 2  i !  I a !  L \ ! o  

X 

Fig. 1. v(z, 0) =g(z). 

The fourth order scheme requires 4 N  real 
multiplications and 6 N  real additions. We need 
approximately 4-7 times as many points for 
the fourth order scheme. Thus we must com- 
pare (4.7) with 

16N-28N real multiplications and 

24-42 N real additions. 

Therefore, the Fourier method is, in this case, 
at least as economical as a fourth order scheme 
as long as we compute no more than 16 wave 
numbers. The advantage of the Fourier method 
is more evident for longer time integrations. 
Furthermore, the storage requirements are re- 
duced by a factor of 4-7 for every space di- 
mension. The dissipation and data filtering 
problem is also much more easily handled by 
the Fourier method. 

For equations with constant coefficients the 
above method is equivalent to the so-called 
spectral method. For equations with variable 
coefficients it is not. Therefore, some additional 
difficulties arise when this method is applied 
to equations with variable coefficients. Consider, 
for example, the equation 

0 

8 

6 

> L  

2 

0 

- 2 0  1 2  3 4 5 6 7 E 9 1 0  
X 

Fig. 2. w(z, 0) =h(z). 

Let the L, scalar product and norm be defined 
by 

( u , ~ )  = tivdx, Ilul12=(u,u) (4.8) s: 
Then (4.7) implies 

a 
at 
~ I I u I 1 2 = ( u , T u ) + ( T u , ~ ) = ( ( T t  T*)u,u) 

= - ( v , E v )  (4.9) 

where T*u= - (a/az)cu is the adjoint of T. 
Therefore 

is a bounded operator. This is precisely the 
reason that the problem is well posed. 

We approximate (4.7) by 

dV 
dt  
- _  - c s v  (4.10) 

where 
C ( Z J  0 ......... 0 .=( 0 C ( Z I ) O . . . O  1 
........................ 
0 ............ 0 C(XaN) 

Then 

In  general CS - SC is not bounded independent 
of N. An easy calculation shows that 

if we choose c(z)  = 1 - 2 cos x and v = ezniNr.  Thus 
we cannot use (4.9). This difficulty is easily 
avoided. We write (4.7) in the form 
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a 

0 

8 

6 

> L  

2 

0 

u 
- ' O  1 2  3 L 5 6 7 8 9 1 0  

b 
X X 

Fig. 3. Results with w(z, 0) =g(z). (a) w(z, 1 )  using 2nd order method; (b) v(z,  1) using 4th order method. 

and approximate it by Ut -uut = 0 (5.1) 

dv 1 1 d  
dt 2 2 dx 
- = - ( C S + S C ) v - - v - C  

CS + SC is skew-hermitian and therefore 

which is the same equality as (4.9). 
There are other better ways to stabilize this 

method which will be discussed in a subsequent 
paper. 

It is a t  the present time not clear what the 
accuracy of the Fourier method is for equa- 
tions with variable coefficients, particularly 
when discontinuities are present. Some pre- 
liminary calculations have shown that if the 
solution is discontinuous, then the number of 
necessary frequencies must be increased sub- 
stantially. 

5. A nonlinear equation 

In this section we look at a centered fourth 
order scheme for the quasi-linear equation 

0 

0 

6 

> L  

2 

0 

- 2 0  u 1 2  3 6 5 6 7 8 9 1 0  a 

Quasi-conservative schemes, such as those de- 
veloped by A. Arakawa (1966), are popular for 
t.he integration of equations of this type. Such 
schemes have been noted to be less prone to 
instabilities. The scheme 

with truncation error O(h2+k') is of this type. 
The subscript j denotes the space coordinate 
z ,= jh .  It can be shown that the differential- 
difference equation 

(5.3) 

conserves first and second moments. 
If (5.3) is differenced in time using the im- 

plicit Crank-Nicolson method, the resulting dif - 
ference method is conservative and stable. 
However, it should be noted that the scheme 

0 

B 

6 

- 4  

1 

0 

-'O 1 2  3 4 5 6 7 8 4 1 0  
b 

X X 

Fig. 4. Results with w ( r ,  0) = h ( z ) .  (a) v(z, 1) using 2nd order method; (b) v(z, 1) using 4th order method. 
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0 

0 

6 

> l  

2 

0 

- 2 0  1 2  3 1 5  6 7 8 9 1 0  
a 

X X 

Fig. 5. Results with a(z, 0) =h(z) .  (a) a(z, 5 )  using 2nd order method; ( b )  a(%, 5) using 4thordermethod. 

(5.2) is not stable. Consider the following scc- 
tions of the vectors w(0) and w(k): 

~ ( 0 ) :  d - C  0 c - d  0 
w(k): - b  - w  0 u b 0 

io i o + 3  

d -C 0 c - d  
- b  - a  0 n b 

If (5.2) is used to calculate w(nk),  n = 2 ,  3 ,  ..., 
then w,.(nk) = ~ , ~ + ~ ( n k )  = O  for n = 2, 3, ... We 
can therefore restrict our attention to the points 
~ , , + ~ ( n k )  and w,,+,(nk). Using (5.2) to calculate 
wjo+l(nk) and w,,+,(nk) for n = 2, 3 we find 

w(2k): 0 c’ - d  0 

w(3k): 0 a’ b‘ 0 

io j o + l  i 0 + 2  j 0 + 3  

where, letting 1 = k / 3 h ,  

c‘ = c + I b ( a + b )  

d’ = d + 1 a ( a  + b )  

a’ = a - ld’(c’ - d’ )  

b’ = b - AC‘(C‘ -d ’ )  

If we choose d > c > O  and a > b  > O ,  thcn 
d’ >c‘ > O  and a‘ b‘ > O .  Since 1 > 0 we also 
have c‘ > c ,  d’ > d ,  a‘ >a, and b’ > b. It easily 
follows from this that ~ , , + ~ ( n k )  and wto+, (nk) 
grow without bound as n + 00. Therefore, the 
scheme (5.2) is unstable. 

This result shows that a smoothing operator 
of some sort must be used with the scheme 
( 5 . 2 ) .  

We next show that a centered fourth order 
scheme with the addition of a small dissipa- 
tive term satisfies the inequality a/at11~11~ < 0 
where w is a solution to the corresponding dif- 
ferential-difference equation. 11 is the L,- 
norm defined by (4.8). In fact, an obvious 
choice of this term will establish a/atllwlla = 0, 
the quasi-conservative condition; however, 
this term is not dissipative. 

Since 

where I is the identity operator, we can write 
the fourth order centered scheme for (5.1) as 

X X 

Fig. 6. Results with w(z, 0 )  = h ( r ) .  (a) w(z, 1) using Fourier method; (b)  w(z, 5 )  using Fourier method. 
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b 

Fig. 7. u velocity component of the Haunvitz initial function. ( a )  5" grid; ( b )  2.5' grid. 

vUt =vDo I - - D ,  D _  v -- hSD+ D _  yD,  D- v ( :  
where y is to be determined. We consider either 
the Cauchy problem or the periodic boundary 
problem. Using (5.4) we have 

I )  h2 
- 1 ~ l l v I I '  = (v ,v  [. - ; DoD+ D- v 
2 at 

- hs(v, D+ D- yD, D-  V) 

- hs(D+ D- v ,  yD,  D- vj 

Expanding the first term on the right yields 

v = (v2 ,D0v)  I )  
h2 
6 

- - (v', Do D+ D.. V )  

We now expand each of these terms 

(v', D,v) = (v*, Do V) + (v', Do V) 

= - ~ ( D o ~ 2 , ~ ) + ~ ( ~ 2 , D o ~ )  

ha 
3 

h2 
3 

= - - ( [ D ~ v ]  [D+ D- v], V )  

= - - ( v D ~ v ,  D, D- V )  

and 
h2 h2 
6 3 

- - (v', Do D ,  D-  V )  == - ( v D ~ v ,  D+ D-  V )  

h4 
6 

+ - (D+ D- V ,  [Do V ]  [D+ D- v ] )  

Combining these equalities we have 

l a  h4 
- - - - ) )vIla=-  (D+D-v ,[D,v][D+D-v])  
2 at 6 

- hS(D+ D- v, yD,  D -  V )  

We can conclude from this last equation 
that if 

h 
6 

y -  -D,v>O 

then 

clearly satisfies this condition. 
The work of Fornberg (1969) with the equa- 

tion (5.1) using centered (leap-frog) time dif- 
ferencing as we are here, indicates that non- 
linear instability will only occur in regions where 
u is nearly zero. For this reason we chose uni- 
formly distributed sequences of random num- 
bers between -0.1 and 0.1 as initial functions. 
We used the scheme (5.3) with centered time 
differencing, as used in (2.18) and (2.19), with 
periodic boundary conditions on the interval 
0 $z < 1 and y =h/6 I Dov I. This scheme was 
run to time T = 10 for 10 different random 
initial functions. In each instance the scheme 
was stable and the bounds on the perturbations 
about 0 were decreasing as the integrations 
progressed. 

This dissipative term is quite small. The ac- 
curacy of the computations is not severely af- 
fected. Furthermore, the additional computa- 
tions required by the averaging operators of 
quasi-conservative schemes are avoided. 
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2 
0.3 

(I - 0.5) + 1 0.5 <I < 0.66 - _  

0 0.65 < x i 1 (6.1) 

Fig. 8. u field computed using the 2nd order method on the 5" grid with Y = 4 x lo8. (a )  t = 1 day; ( b )  t = 2 
days; ( c )  t = 3 days; (d )  t = 4 days; (e) t = 5 days. 

6 .  Numerical results 

The color problem 
To illustrate the phenomena discussed in 

section 2, we have used second and fourth order 
centered schemes to compute approximate solu- 
tions to the one-dimensional color problem. 
The problem: 

u*= -ul, 0 < ~ < 1 ,  O i t G T  

u(0, t )  = u( 1 ,  t )  

u(x,O) = g ( x )  
0 ~ ~ 4 0 . 3 5  Io  

2 1 ~ ( x - 0 . 3 5 )  0.35 G X  < 0.5 

Fig. 1 is a plot of g(x). Consider the finite 
Fourier expansion (4.1) of g(s )  with N = 5 0  and 
truncate this series at N' = 10. Let h ( x )  denote 
this truncated series for future reference. Fig. 
2 is a plot of h ( x )  

We use the scheme 

W(X, t +k) = W ( X ,  t ~ k )  - 2k D,v(z, t )  

+ 2 ~ k h  D+D-v(x, t - k )  (6.2) 

for z=jh ,  j = O ,  1 ,  ..., 99; h = l O - e ;  t = k ,  2k ,...; 
k = A t  = w(0, t )  =w(l, t ) .  Equation (6.2) has 
local truncation error O(ha + k e )  and corresponds 
to (2.4).  The scheme corresponding to (2.8) 
with local truncation error O(h4 + k 2 )  is 

V ( X ,  t + k )  = W(Z, t - k )  - 2k [$ D,(h)  - & D,(2h)]  W ( I ,  t )  

(6 .3 )  

where X, h,  t ,  k and w(x, t )  are defined as they 
were for the scheme (6.2.) 

- 2dchS(D+ D_)'v(x,  t - k )  
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Pig. 9. u field computed using the 2nd order method on the 2.5' grid with v = l  x loo. (a) t =  1 day 
( b )  t = 2 days; ( c )  t = 3 days; (d )  t = 4 days; (e) t = 5 days. 

Fig. 3 shows v ( r ,  1 )  calculated using the 
schemes (6.2) and (6.3) with the initial function 
g f r ) ,  E Fig. 4 shows v(z, 1) calculated 
using the schemes (6.2) and (6.3) with the ini- 
tial function h ( z ) ,  E = O .  Fig 5 shows v(z, 5 )  
for the schemes (6.2) and (6.3) with the initial 
function h ( z ) ,  E = 0. 

To illustrate the Fourier method of section 
4, we use the scheme of that section to calculate 
an approximate solution to the problem (6.1). 
Let S denote the Fourier differentiation opera- 
tor of section 4. The scheme is 

V ( Z ,  t + k) = V ( Z ,  t - k) - 2k S V(Z, t )  (6.4) 

Pig. 6 shows the results of this integration using 
N = 10, k = 

Shallow water wave equations 
We compare second and fourth order schemes 

for the nonlinear shallow water wave equations 

Tellus XXIV (1972), 3 

and the initial function h ( z ) .  

to illustrat,e the relevance of the conclusions 
obtained using linear theory in a typical non- 
linear setting. 

Our integrations are carried out in spherical 
polar coordinates on a quarter-sphere, 0 < A  <n, 
0 GO 4 ~ 1 2 ,  where A is longitude positive east- 
ward and O is latitude positive northward. 

The second order scheme we use is the centered 
scheme used by J. Gary (1969), patterned after 
the scheme of W. Washington and A. Kasahara 
(1970). We refer the reader to Gary's paper for 
details. Our integrations differ slightly from 
those of Gary. Firstly, we have integrated the 
equations in their dimensional form, while Gary 
non-dimensionalized the equations. Due to 
this we include the dimensional form, of the 
differential and difference equations here. 
Secondly, we have used a slightly different grid. 
We use a grid which, like the grid Gary used, is 
not uniform in AA. However, we have altered 
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Latitude j N ( j )  

5" grid 
90" 18 1 
85" 17 4 
80" 16 8 
75" 15 16 
70" 14 26 
65' 13 36 
60" 12 36 

0" 0 36 

Fig.  10. u field computed using the 4th order method on the 5" grid with v = 4 x los. (a) t = 1 day; (b) t = 2 
days; ( c )  t = 3 days; (d )  t = 4 days; (e) t = 5 days. 

Latitude j N ( j )  

2 4" grid 
90" 36 1 
87.5" 35 4 
850 34 8 
82.5" 33 12 
80" 32 16 
77.5O 31 24 
750 30 32 
72.5" 29 42 
70" 28 52 
67.5" 27 62 
65" 26 72 
62.5" 25 72 

O0 0 72 
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the number of points on the latitude circles 
near the pole so that the grid is more nearly 
uniform in d ,  = a  AA, cos Or, AA, =n/(N,  - 1) and 
N ,  is the number of points on the latitude circle 
at e j  =jAO. The functions N ,  we use are given 
in Table 1. 

The differential equations are 

and 

h denotes the free surface height, and u and v 
are the velocity components in the A and 8 
directions, respectively. The coriolis parameter, 
f, is given by f = 2C2 sin 8. We have used the 
following constants: !2 = 7.292 x radians/ 
sec, a = 6.371 x lo8 cm, g = 980.6 cm/sec'. 

We write the difference equations, using the 
difference operators defined previously, with 
the addition of superscripts to indicate the co- 
ordinate direction in which the operator acts. 
We also use superscripts and subscripts to de- 
note particular net points, ( . ) ; f j  denotes the 
variable ( . )  a t  the point (iAA, jA0, nAt)  where 
AA, AO, At, denote increments in the coordinates 
A, 0, and t ,  respectively. We write Dt = Dt(AA), 
D! = D!(AO) and D: = D:(At) .  We use the nota- 
tions S, d and h to denote the solutions of the 
difference equations as opposed to the solutions 
of the differential equations. 

The second order difference equations are 

and 

- 
where 6;) = f (S/+,,j + 6:-lvj + 6E,+1 + 

We have added the dissipative terms FA, Fe and 
H which are defined by 

FA = vD(h.li)[j 

Fe= vD(hd)t t  

H =vD(h)?j 
where 

Dw[ j = -7- cos e,, w t  j+l 

(8.11) 

A0 
2 

- 2 cos 0, COB - w;f;1 

Tellus XXIV (1972), 3 
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d 

Pig. 11. u field computed using the 4th order method on the 2.5' grid with v = 1 x lo9. (a )  t = 1 day; ( b )  t = 2 
days; ( c )  t = 3 days; (d )  t = 4 days; ( e )  t = 5 days. 

D is consistent with the operator A defined by 

l a  a 1 a2 
a cos' 0 a0 a0 a' cos2 0 a12 

A = -  - C O S ~  - + ~ - (6.13) 

as A,I, AO, At+O. We note that the operator D 
is different than that used by Gary. 

For the integrations shown here we have 
used linear interpolation to fill our computa- 
tional stencil in the irregular portion of the 
grid as Gary did. The scheme is obviously only 
first order in this region. However, we have 
performed the same integrations on a net which 
is not staggered in time with quadratic inter- 
polation, and the results differed only very 
slightly. We also performed these integrations 
on a grid uniform in AA with the very small 
time step necessary for stability and found no 
significant difference. This is probably due to 

the fact that our initial function has a very 
simple structure in the polar region. 

We have used the same wave number six 
Haurwitz wave, Haurwitz (1940), for our ini- 
tial function that Gary used (see Fig. 7 ) .  

The results of our computations using the 
second order centered scheme are shown in 
Figs. 8 and 9. Fig. 8 shows the u-field of an 
integration using the 5" grid with At = 300 sec, 
v =4.0 x 109 cm' sec-1. Gary concluded that 
v = 4.0 x 100 crn2 sec-' was the smallest coefficient 
for which this scheme was stable for an ex- 
tended integration, using this initial function. 
Fig. 9 shows the u-field using the 2)' grid, 
At = 150 sec., v = 1.0 x lo9 cm*sec-'. We notice 
that for up to three days the approximate 
solutions are quite similar. However, at four 
days the two approximations differ consider- 
ably in a fundamental way. Instead of having 
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Fig. 12. u field computed using the 4th order method on the 2.5" grid with v = 0. (a) t = 1 day; (6) t = 2 
days; (c) t = 3 days; (d )  t = 4 days; (e) t = 5 days. 

a dominant system of lows a t  midlatitude, the The fourth order difference equations corre- 
5" case has a dominant bandof highs. We believe 
this to be a striking departure from the solu- 
tion to this problem. 

sponding to  (6.14), (6.15) and (6.3) are 

DtC:j= - __ "j d"& - ~~ 6:j d e ccj 
We have differenced the so-called advective a cos 8, a 

form of the equations (6.5) and (6.6) for OUT 

fourth order scheme. These equations are 

- 
~ 

9 ah 
X'---- - 

a cos 8 a3, 
and 

dAh,. t Fi (6.16) 
a cos 8, 

av - =  a' a' ( f - k  :tanO) 
at acose  a~ n a6 

(6.15) - !deh;f j+F;  (6.17) 
a 
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and 

x [d'(hG);, + de(hzi cos 0 )  ; j ]  + H' (6.18) 

where 
dJL4DZ o (Aa) - D:(2Aa) (6.19) 

The dissipative terms F;,FL, and H' are de- 
fined by 

F; = vD'G;fj 

FL = vD'C;f j 

H' = V D ' ~ ~ , ~  
and 

where 

(6.20) 

1 

+ 1 6 ~ ; - ~ , ~ - 3 0 w ~ ; ~ +  1 6 ~ E . , . ~ - w ; , ~ , ~ }  
(6.21) 

D' is consistent with the operator A of (6.13) 
and has fourth order truncation error in AA 
and AO. 

In the regions where the grid is irregular we 
use essentially the same procedure as for the 
second order scheme, but use a quartic inter- 
polating polynomial. There is an additional 
difficulty: Our scheme, as written above, re- 
quires five points in the 0-direction and the 
equations are not defined a t  the pole itself. 
The following procedure was worked out in 
collaboration with David Williamson: In a 
small neighborhood of the pole, we denote by 

U(Z, Y, t ) ,  V(z, y, $ ) 9  

where 

the velocity components in polar stereographic 
coordinates. Then it is obvious that U(O,O,t) 
3 V(0, 0, t )  = 0 and 

U =  -usinA-vcosl, 

V =u  cos A-v sin A 

in all other points. Therefore, we can use the 
relations 

au - (  a - U sin A +  V cos A )  
ae ae 
- =  

av a 
~ = - ( -  U cos A -  V sin A) 
ae ae 

to derive the difference approximations in the 
neighborhood of the pole. 

Fig. 10 shows the u field computed using the 
fourth order scheme on the 5" grid with v = 

4 x 108 cmzsec-1, At =300  sec. Fig. 11 shows 
the u field computed by the fourth order scheme 
using the 24" grid, v = 1 x lo0 cm2 sec-1, At = 150 
sec. A comparison of Figs. 9 and 10  shows that 
the fourth order scheme at 5" resolution is com- 
parable to the second order scheme using Z j O  
resolution. We have also run the fourth order 
scheme at 5" resolution with v = 0 for 5 days. 
Fig. 12 shows the u field from these compu- 
tations. These computations illustrate the phe- 
nomenon discussed in section 5 ,  i.e., the fourth 
order centered schemes have very nice stability 
properties. 
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CPABHEHHE METOAOB PA3JII49HOFO n O P R A K A  T09HOCTLI AJIR 
HHTEFPMPOBAHHR FHrIEPBOJIHYECHHX YPABHEHLIm 

H C T O p H Y e C K H  B A H H a M U 4 e C K O n  MeTeOpOJIOrHH H TOAbI Y e T B e p T O r O  IIOpHJ(Ka TOYHOCTEI HBJIHIOTCH 
O K e a H O I ' p a $ l H A  HCnOJIb30BaJIHCb p a 3 H O C T H b I e  M e -  B HeKOTOPOM CMbICJIe OnTHMaJIbHbIMH.  TOT 
TOAbI BTOpOrO IIOpRJ(Ka TOYHOCTII. MbI npOBOJ(HM IIOCJIeAHHfi MeTOA C p a B H A B a e T C H  C HeKOTOPbIM 
T W a T e J I b H O e  ACCJIegOBaHHt? 6 O J l e e  aKHJ'PaTHbIX B a p H a H T O M  C n e K T p a J l b H O r O  MeTOAa.  
Pa3HOCTHbIX MeTOnOB H n O K a 3 b I B a e M ,  ' IT0 M e -  
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