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ABSTRACT
The impact of two cumulus convective schemes on the simulation of the precipitation over China is investigated 
using the Weather Research and Forecasting (WRF) model. Simulations for the period of 1982–2004 are performed 
at a horizontal resolution of 30 km and forced by NCEP Reanalysis II data. Results show precipitation simulated 
with the WRF model is quite sensitive to the choice of Kain–Fritsch and Grell cumulus schemes. Both the schemes 
have distinct skills in predicting the seasonal mean pattern, annual cycle and interannual variation in precipitation. 
The results show that the Kain–Fritsch scheme tends to overestimate the magnitude of the summer and annual mean 
precipitation over the main rain-belts, while the Grell scheme tends to underestimate these effects, particularly the 
simulation of the summer extreme precipitation. However, the Kain–Fritsch scheme is more skilful in capturing the 
seasonal mean pattern and annual cycle with higher spatial correlations in the main rain-belts. The Grell scheme shows 
some advantages for northern China and the Tibetan Plateau, especially in representing the interannual variation. The 
optimal ensemble approach is used to determine the best combination of the two schemes, with the results giving 
a better overall performance than the individual schemes alone in predicting summer precipitation. The temporal 
correlation coefficient of precipitation for the ensemble is significantly higher, while the root mean square error of 
extreme precipitation is reduced compared with the Kain–Fritsch and Grell results. This shows that the ensemble 
approach based on the optimal ensemble weight combines the advantages of the two cumulus schemes efficiently. 
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1.  Introduction

General circulation models (GCMs) have proven to be capable 
of simulating large-scale circulation and the global climate, but 
are limited in resolving regional-scale features of the climate, 

especially in the accurate simulation of precipitation (Kang 

et al., 2002; Zhou and Yu, 2006; Zhou et al., 2008; Huang  

et al., 2013; Kitoh et al., 2013). A more applicable technique 

is dynamic downscaling, which uses regional climate models 

(RCMs) forced by global reanalysis data or GCMs. It is widely 

accepted that RCMs can improve the simulation of precipita-

tion compared with GCMs, because of the more comprehensive 

representation of the important physical processes at a finer 
resolution (Giorgi and Bates, 1989; Giorgi and Mearns, 1999; 
Cocke et al., 2007; Gao et al., 2012; Gao et al., 2017).

However, it is still a significant challenge for RCMs to ac-
curately represent the characteristics of precipitation, arising 
from the complexity of representing the physical process-
es of precipitation, including cumulus convection, planetary  

boundry-layer turbulence, cloud microphysics and radiative 
forcing (Dai, 2006). Amongst these processes, cumulus convec-
tion plays a particularly important role in regulating the pattern 
and temporal variation in precipitation in RCMs, especially in 
summer. Many studies have documented that the simulation of 
precipitation by RCMs is sensitive to the choice of the cumu-
lus schemes. For example, Giorgi and Shields (1999) tested a 
series of cumulus schemes at a resolvable scale within a col-
lection of RCMs to conclude that the simplified explicit mois-
ture and Grell schemes capture the precipitation best at both a 
regional spatial scale, and monthly to seasonal temporal scale, 
throughout the United States. Using the MM5 model, Gochis  
et al. (2002) showed the superiority of the Kain–Fritsch cumulus 
scheme over the Betts–Miller–Janjić, Grell and Kuo schemes 
in representing the precipitation during the North American 
monsoon in 1999. However, Xu and Small (2002) argued that 
the Grell scheme performs better than Kain–Fritsch scheme 
in depicting the intraseasonal and interannual variations in 
North American monsoon (NAM) rainfall. Liang et al. (2004) 

Tellus A: 2017. © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Tellus A: 2017, 69, 1406264, https://doi.org/10.1080/16000870.2017.1406264

1

*Corresponding author. e-mail: shibogao@126.com

http://creativecommons.org/licenses/by/4.0/
mailto:shibogao@126.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2017.1406264&domain=pdf


2 D. Huang and S. Gao

This approach shows some improvements over the other two 
schemes in terms of precipitation over China.

In this paper, the model design, observational data used 
for model verification and the method of optimal ensemble 
weighting from these cumulus schemes is present in Section 2. 
The WRF downscaling results for the two cumulus schemes, 
and the results of the optimal ensemble approach is given in  
Section 3. The results and conclusions are summarized in the 
final Section.

2.  Model, data and methodology

2.1.  Experiment design and observation

The RCM used is the WRF-ARW (Advanced Research WRF) 
model version 3.4.1 (Skamarock et al., 2008) developed at the 
National Center for Atmospheric Research (NCAR). The initial 
and lateral boundary conditions for the WRF model are sourced 
from the National Centers for Environmental Prediction- 
Department of Energy (NCEP-DOE) global reanalysis (Reanal-
ysis II; Kanamitsu et al., 2002) and updated at 6-h intervals. 
The sea surface temperature (SST) is obtained from the daily 
National Oceanic and Atmospheric Administration (NOAA) 
optimum Interpolation SST (OISST; Reynolds et al., 2002)  
data-set. Both the Reanalysis II data and SST have a resolution 
of 2.5° × 2.5°.

The model domain centred at (35.17°N, 110°E) covers the 
whole of China using the Lambert conformal map projection 
(see Fig. 1). The horizontal grid resolution is 30  km, with 
231  ×  171 horizontal grid points and 37 vertical levels ex-
tending up to 50 hPa. The vertical resolution is about 550 m. 
The buffer zones are located along the four domain edges with 
widths of 14 grid points as that of Chen et al., (2016), where the 
dynamic relaxation technique (Davies and Turner, 1977) is used 
to avoid sharp gradients resulting from the difference between 
reanalysis data and the inner WRF simulation domain. Figure 1 
includes the geographic terrain height over China, which gen-
erally increases from east to west. The Tibetan Plateau is found 
to the west with the highest mountains extending to 5500 m, 
and various mountain chains within the northern and central re-
gions with heights ranging from 500 to 3000 m. Eastern China 
is marked with plains and hills with heights less than 500 m. 
The borders in Fig. 1 demarcate seven sub-regions with dif-
ferent climate characteristics, including Northeast China (NE), 
North China (NC), the Yangtze River (YZ), Southeast China 
(SE), Northwest China (NW), the Tibetan Plateau (TB) and 
Southwest China (SW), for which detailed modelling results 
will be presented below.

The physical parameterizations chosen include the WRF 
Single-Moment 6-class (WSM6) microphysical scheme 
(Hong and Lim, 2006), Dudhia shortwave radiation (Dudhia, 
1989), the Rapid Radiative Transfer Model (RRTM) longwave  

demonstrated that Kain–Fritsch cumulus scheme is superior in 
reducing the summer precipitation bias in the NAM region and 
along the East Coast of the United States, but the Grell scheme 
has more advantages in representing the rainfall in Midwest 
and Atlantic Ocean. Recently, similar intercomparison studies 
have been conducted on the effectiveness of cumulus schemes 
for simulating precipitation, including the summer mean pat-
tern, annual and diurnal cycles, interannual variation and the 
frequency of precipitation on a daily time scale (Ratnam and 
Kumar, 2005; Qiao and Liang, 2014; Ratna et al., 2014).

Although many numerous cumulus schemes have been de-
veloped, each has its own advantages and disadvantages, de-
pending highly on the weather and climate patterns. An optimal 
ensemble of multiple cumulus schemes has been developed by 
Liang et al. (2007) to combine the superiority of different cu-
mulus schemes for the improvement of the skill of precipitation 
forecasting, whereby an ensemble of two members using differ-
ent cumulus schemes are generated and the optimal weight is 
calculated by minimizing the root mean square errors (RMSE) 
and maximizing the temporal correlations with observations. 
Liang et al. (2007) demonstrated that both the interannual var-
iability and climate mean of the summer precipitation over the 
United States and Mexico are improved significantly by the op-
timal weight ensemble, compared with the member using only 
the Kain–Fritsch or Grell schemes.

The precipitation features over China are mainly controlled 
by the East Asian monsoonal system, where the rainfall in the 
summer season accounts for the majority of the total annual pre-
cipitation. RCM simulations show a large variability, with the 
uncertainty of monsoonal precipitation related to deficiencies 
in the performance of the cumulus scheme. Lee et al. (2005) 
found that Anthes-Kuo and Grell schemes more realistically 
reproduced the summer flood in 1998 than the Kain–Fritsch 
scheme over China. Yu et al. (2011) showed that Grell scheme 
performed better than Kain–Fritsch and Betts–Miller–Janjić 
schemes in simulating the overall summer monsoon precipi-
tation over China. Liu et al. (2009) investigated four different  
cumulus schemes over China using the Regional Climate Mod-
el Version 3, and found the ensemble always produces a smaller 
bias in precipitation than the individual schemes in both 1991 
and 1998. As this study was only carried out for the summer of 
1991 and 1998, more work is needed to be able to evaluate the 
performance for long-term simulations.

Our aim is to investigate the impact of different cumulus 
schemes on the simulation of precipitation over China for the 
period 1982–2004 using the Weather Research and Forecasting 
(WRF) model. To quantify the possible causes of any deficien-
cy in downscaling by the WRF model, we adopt reanalysis data 
as the forcing data, since it is considered to provide ‘perfect’ 
lateral boundary conditions (Chen et al., 2016). We first com-
pared the performance of the Kain–Fritsch and Grell cumulus 
schemes, after which the optimal ensemble approach obtained 
the optimal localized weights of these two cumulus schemes. 



3Different Cumulus Convective Parameterization Schemes over China

radiation (Mlawer et al., 1997), Yonsei University (YSU) plan-
etary boundary-layer scheme (Noh et al., 2003), and the Noah 
land surface model (Chen and Dudhia, 2001). Two experiments 
were integrated continuously during 1982–2004 because both 
the OISST and Reanalysis II data are available for this period. 
The first month is regarded as a spin-up period and not account-
ed in the analysis. These two experiments differ in their use of 
the Kain–Fritsch (Kain, 2004) and Grell cumulus (Grell, 1993) 
schemes for studying the sensitivity of the summer precipita-
tion to the cumulus schemes.

To validate the results of the dynamical downscaling, we 
use daily surface air temperature and precipitation data from 
a high-quality daily gridded CN05.1 data-set, which has a 
resolution of 0.25° × 0.25°. It was generated by interpolating 
2400 observation stations from the China Meteorological Ad-
ministration using the anomaly approach (Xu et al., 2009). The 
anomaly approach first calculates a gridded climatology, then 
the final data-set is obtained by adding a gridded daily anomaly 
to the climatology. These data have been shown to be reliable 
and widely used in the evaluation of model performance over 
China (Yu et al., 2011; Bao et al., 2015; Yu et al., 2015; Yang 
et al., 2016). The CN05.1 data-set is interpolated to the WRF 
grids using the objective analysis interpolation (Barnes, 1964).

2.2.  Extreme precipitation indices

As used in previous studies (Zhang et al., 2011; Li et al., 2013; 
Jiang et al., 2015), three common extreme precipitation indices 
calculated from daily data were selected for studying extreme 
precipitation (Table 1). The simple daily intensity index (SDII) 
describes the mean rainfall amounts of daily precipitation larger 

than 1 mm, and the annual account of days with daily precip-
itation greater than 10 mm (R10) represents the frequency of 
heavy precipitation. The R95p index refers to the annual precip-
itation amount of the daily precipitation greater than 95th per-
centile of wet days, which describes very extreme precipitation 
based on the threshold.

2.3.  Ensemble optimization solution

The optimal ensemble solution is assumed to be a linear combi-
nation of the two cumulus schemes, which is defined following 
Liang et al. (2007) as
 

for
 

(1)P
ENS

(s, �, t) = �(s)P
GR
(s, t) + [1 − �(s)]P

KF
(s, t),

(2)0 ≤ � ≤ 1,

Fig. 1. Model domain and topography (units: m) over china. Boxes represent the selected regions: Northeast China (NE), North China (NC), Yangtze 
River (YZ), Southeast China (SE), Northwest China (NW), Tibetan Plateau (TB) and Southwest China (SW).

Table 1.  Indicator, acronym and definition of three precipitation  
extreme indices used in the study.

Indicator Acronym Definition Units

Simple daily 
intensity

SDII Annual precipitation 
amount on wet days (daily 
precipitation larger than 
1 mm)

mm/day

Heavy precip-
itation days

R10 Number of days with daily 
precipitation above 10 mm

days

Extreme 
precipitation 
amount

R95p Annual precipitation 
amounts of daily precip-
itation above the 95th 
percentile of wet days

mm
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produces an overall more realistic spatial pattern than the Grell 
scheme. As shown in Fig. 2b, precipitation reaches its peak with 
the largest areal coverage during summer, which is associated 
with the typical East Asian monsoonal period, and appears as 
two major rainbands. One rainband is located in southern China 
and the other in the Yangtze River basin, with the maximum 
value of 12 mm. These two rainbands are generally overesti-
mated by Kain–Fritsch scheme, while underestimated by Grell 
scheme. The observed annual mean precipitation shows similar 
distribution patterns as in winter, but with greater values. The 
precipitation amounts are also relatively high in southern China 
and Yangtze River (wet region), and low in northern China and 
Tibetan Plateau (dry region). The Kain–Fritsch scheme produc-
es excessive rainfall in the Yangtze River basin, but with a dry 
bias of 2  mm in southeastern China, while the Grell scheme 
once more generates weaker precipitation over these regions.

Figure 3 presents the annual cycle of precipitation according 
to the observations and WRF simulations with Kain–Fritsch and 
Grell schemes over the seven sub-regions (Fig. 1). The seasonal 
cycle in the dry regions (NE, NC, NW and TB) is generally bet-
ter captured by the Grell scheme, and the wet regions (SE, SW 
and YZ) is better captured by the Kain–Fritsch scheme, with 
the exception of the Yangtze River region. For example, for the 
northeast and northern regions, the Grell scheme reduces the 

wet bias by about 40 and 45% from KF scheme, respectively. 
In the Tibetan Plateau region, both schemes overestimate the 
precipitation by 30–80% in the cold season (from October to 
April), but the Grell scheme matches better with observations 
than the Kain–Fritsch scheme in summer. In the northwestern 
region, both schemes produce a wet bias in the cold season and 
a dry bias in summer, but Grell scheme reduces the wet bias 
by 3% from KF scheme. In the Yangtze River region, the Ka-
in–Fritsch scheme overestimates the precipitation from April to 
September by 10–25%, while Grell scheme underpredicts by 
9–15% with an excellent match with observations from April 
to June. However, Kain–Fritsch scheme is better in predicting 
the annual cycle phase than the Grell scheme with higher corre-
lation coefficients (0.996, 0.971, see Fig. 3). The Kain–Fritsch 
scheme has the most realistic simulation over the rainy south-
east region, with a significant improvement over the Grell 
scheme from May to September. In the southwest region, the 
observed peak precipitation in both experiments shows a phase 
shift; however, the Kain–Fritsch scheme produces more real-
istic rainfall in terms of magnitude. The Grell scheme is close 
to the Kain–Fritsch scheme from January to April, but a sub-
stantial underestimation by 38–75% is found in the following 
month. Both schemes cannot well represent the annual cycle 

where P
ENS

(s, α, t) is the variable to be estimated, here denoting 
the daily precipitation. The variables in the parentheses are the 
dependent variables, with s for space and t for time, α  is the 
optimal weighting to be determined and is a function of s. Here, 
P

GR
(s, t) and P

KF
(s, t) represent the WRF simulated precipitation 

based on the Grell and Kain–Fritsch cumulus schemes.
The main goal is to find the optimal weight assigned between 

the Kain–Fritsch and Grell schemes for each WRF grid point 
for determining the model forecast variables that represent the 
observations most accurately. A feasible sequential quadratic 
programming algorithm is an effective method for minimizing 
a set of smooth objective functions, which are constrained by 
equality and inequality equations, are linear and nonlinear, and 
have constant bounds on the variables (Zhou et al., 1997). An 
objective function F(s, α) also needs to be designed prior to the 
performing of the minimization procedure within the optimiza-
tion solver in estimating

 

where
 

and
 

Here, RMSE(s, α) and COR(s, α) are the root mean square error 
and correlation coefficient between the variables simulated by 
the WRF model with Kain–Fritsch or Grell scheme, and the 
observations P

OBS
(s, t) at each gird cell, where 23 years (1982–

2004) of daily precipitation data during summer are used to 
train the optimizing weight, N is total number of daily data, and 
the overbar (–) represents a temporal mean.

3.  Results

3.1.  Precipitation of individual cumulus schemes

Figure 2 compares the geographic distribution of the observed 
1982–2004 winter (DJF), summer (JJA) and annual (ANN) 
mean precipitation, with WRF simulations using the Ka-
in–Fritsch and Grell cumulus schemes. In winter, the observed 
precipitation decreases from the southeast to the northwest, with 
a maximum value of 3 mm (Fig. 2a). Both the Kain–Fritsch and 
Grell schemes exhibit similar patterns, but with a dry bias over 
the southeast region and a wet bias over northwest and west 
regions, respectively. Although both schemes underestimate the 
precipitation in southeast, it is clear that the Kain–Frisch scheme 
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is 0.547 and 0.523, respectively, and 0.487 and 0.435 for the 
Grell scheme, respectively. For the other regions, including the 
northeast, northern, northwest, southeast and Tibetan Plateau 
regions, the Grell scheme has higher correlation coefficients 
than the Kain–Fritsch scheme.

Figure 5 shows Taylor diagrams that compare summer pre-
cipitation simulated by the Kain–Fritsch and Grell schemes 
with respect to the observations. The Taylor diagrams statis-
tically summarize the differences between simulations and 
observations according to the correlation coefficient, RMSE 
and the ratio of variances between the models and observations 
(Taylor, 2001). The reference (REF) point indicates a perfect 
simulation, in which the spatial correlation and ratio of the spa-
tial standard deviations are equal to 1, and the centred pattern 
RMS error (RMSE) is equal to 0. For the northeast, northwest 

phase over southwest, northwest and Tibetan Plateau regions, 
which may be attributed to the topographic effect (Duan et al., 
2012).

Figure 4 compares the observed and simulated interannual 
anomalies of area-averaged summer precipitation for the sev-
en sub-regions over China. Amongst these regions, the south-
east region produces the largest interannual variations, ranging 
from −0.8 to 1.2 mm. Both schemes simulate the interannual 
variations in the northwest region well, with correlation coef-
ficients above 0.84. The region with the worst simulated inter-
annual variations for the two schemes is the Tibetan Plateau 
region, where the Grell scheme produces a relatively higher 
correlation of 0.424 compared with the Kain–Fritsch scheme. 
For the Yangtze River and southwest regions, the correlation 
coefficients with observations for the Kain–Fritsch scheme 

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Fig. 2. Spatial distributions of seasonal mean (DJF (a, d, g), JJA (b, e, h), ANN (c, f, i)) precipitation (units: mm) during 1982–2004 from observation 
(a–c), WRF model with Kain–Fritsch (d–f) and Grell (g–i) cumulus schemes. Note that the colourbar scales are different.
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Fig. 3. Annual cycle of precipitation (units: mm) over sub-regions during 1982–2004 from observation (solid black line), and WRF model with 
Kain–Fritsch (dotted red line) and Grell cumulus (dashed green line) schemes. The annual cycle correlation coefficients of the result of Kain–Fritsch 
and Grell cumulus schemes with observation are labelled at the top of each panel.

Fig. 4. Interannual anomalies of area averaged summer precipitation (units: mm) over sub-regions during 1982–2004 from observation (solid black 
line), and WRF model with Kain–Fritsch (dotted red line) and Grell cumulus (dashed green line) schemes. The interannual correlation coefficients 
of the result of Kain–Fritsch and Grell cumulus schemes with observation are labelled at the top of each panel.
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Fig. 5. Taylor diagrams for the summer mean precipitation over dry (left panel) and wet (right panel) regions from WRF model with Kain–Fritsch 
(red circles) and Grell (blue circles) cumulus schemes.

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Fig. 6. Spatial distributions of summer extreme precipitation indices (SDII (a, d, g), units: mm/day; R10 (b, e, h), units: days; R95p (c, f, i), units: 
mm) from observation (a–c), WRF model with Kain–Fritsch (d–f) and Grell (g–i) schemes. Note that the colourbar scales are different.
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correlation coefficient of 0.3, but is improved by the Kain–
Fritsch scheme with a higher correlation coefficient of 0.7. The 
RMSE is also reduced by Kain–Fritsch scheme from 1.1 to 0.75. 
For the southwest region, the Kain–Fritsch scheme improves 
the correlation coefficient from 0.45 to 0.58 over the Grell 
scheme, with the normalized standard deviation being closer 
to one. For the southeast region, the two schemes provide sim-
ilar spatial variances, but with the correlation coefficient of the 
Grell scheme relatively higher than the Kain–Fritsch scheme.

To further evaluate extreme precipitation characteristics, 
Fig. 6 compares the distribution of the 1982–2004 summer 
mean extreme precipitation indices, including SDII, R10 and 
R95p over China with observations, and WRF simulation 
with the Kain–Fritsch and Grell schemes. The largest values 
of SDII in observation are mainly found in the Yangtze Riv-
er basin, over Southeast China and in the Sichuan basin (Fig. 
6a). A significant overestimation with the maximum value 

and Tibetan Plateau regions, the precipitation is better simulat-
ed by the Grell scheme, with higher correlation coefficients and 
lower RMSE. For the northern region, differences in the RMSE 
and correlation coefficient between the two schemes is not ob-
vious, but the normalized standard deviation between the Grell 
scheme and observations is closer to one. The Grell scheme 
performs quite poorly in the Yangtze River region with a  

(a) (b)

(c) (d)

Fig. 7. Spatial distributions of ensemble summer mean precipitation (a), (Pr, units: mm) and extreme precipitation indices (b–d) (SDII (b), units: mm/
day; R10 (c), units: days; R95p (d), units: mm). Note that the colourbar scales are different.

Table 2.  RMSE of summer precipitation and extreme precipitation  
indices between Kain–Fritsch, Grell, Ensemble and observation.

KF GR Ensemble

Pr 3.42 3.48 3.40
SDII 3.39 2.89 2.73
R10 6.35 6.29 6.01
R95p 14.54 11.39 10.48

Note: Figures in bold indicate improvement (lower RMSE) compared 
to KF and GR.
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the amount by 18 mm and with a much wider coverage that  
extended to southeastern China. It is also found that the large 
value of R95p over the southern coast is poorly simulated by 
the two cumulus schemes.

The above analyses show that the Kain–Fritsch and Grell 
schemes have distinctive skills in the simulation of the summer 
precipitation characteristics, with a strong regional dependence. 
Because of the large uncertainty in the WRF simulation de-
pending on the cumulus scheme used, it is necessary to use an 
optimal ensemble technique to improve the WRF downscaling 
skill of summer rainfall over China.

3.2.  Optimal ensemble results

The ensemble summer mean precipitation as well as three ex-
treme precipitation indices based on the optimal weight are 
illustrated in Fig. 7, where it is clear that the ensemble is su-
perior to both the Kain–Fritsch and Grell schemes in most of 
the regions for the summer mean precipitation. As shown in 

of 18 mm over these regions is apparent in the Kain–Fritsch 
scheme (Fig. 6d). The Grell scheme produces, in general, a 
smaller bias than the Kain–Fritsch scheme, with a tendency 
to underestimate the SDII over the Yangtze River basin and 
northeast China (Fig. 6g). As shown in Fig. 6b, observations in 
the southeast and southwest regions of China reveal a high fre-
quency of heavy precipitation (R10), with the maximum value 
of 25 days. The high R10 over the southeast coast is simulated 
well by the two schemes, but the amount and distribution are 
better captured by Kain–Fritsch scheme. However, the Ka-
in–Fritsch scheme produces a more realistic magnitude of pre-
cipitation in the southwest region than the Grell scheme (Fig. 
6e). A further anomalously large value of R10 as found over 
the Yangtze River basin is overestimated by the Kain–Fritsch 
scheme, but underestimated by the Grell scheme. The R95p 
index according to the observations has similar distribution 
patterns with the SDII index (Fig. 6c). The Grell scheme 
captures the locations of the larger values, but with insuffi-
cient amounts, while the Kain–Fritsch scheme overestimates 

(a) (b)

(c)

Fig. 8. Spatial distributions of 1982–2004 temporal correlation coefficient of summer mean precipitation for WRF model with Kain–Fritsch (a), 
Grell cumulus schemes (b) and their ensemble result (c).



10 D. Huang and S. Gao

respectively, to 3.40 for the ensemble approach. For the extreme 
indices, the ensemble approach has the lowest RMSE, followed 
by the Grell scheme. The ensemble reduces the RMSE by 19, 5 
and 28% with respect to the Kain–Fritsch scheme for the SDII, 
R10 and R95p indices.

Figure 8 shows the distribution of temporal correlation coef-
ficient of summer mean precipitation for the Kain–Fritsch and 
Grell schemes and the ensemble of 1982–2004. The ensemble 
shows the highest correlation coefficients along the southern 
Tibetan Plateau and northwestern China with the maximum 
value of 0.5, followed by the Grell scheme. The ensemble ap-
proach also performs better than the two schemes, with a larger 
area of correlation coefficient above 0.2 in Southwest China 
and the Yangtze River basin, with the Grell scheme producing 
the lowest correlation coefficient over these regions (Fig. 8b). 
The correlation coefficient of the ensemble is also relatively 
better than the two schemes in Northwestern China, which is 
increased by 10 and 15% for Kain–Fritsch and Grell scheme, 
respectively. On average, the correlation coefficient of the  

Fig. 2(e, f), over the Yangtze River basin and southern Chi-
na, the Kain–Fritsch scheme yields excessive rainfall, but is  
underestimated by the Grell scheme. In contrast, the ensemble 
generates a substantially improved precipitation amount and 
pattern over these regions, as well as a more realistic magnitude 
over southern and northeast China (Fig. 7a). The overestima-
tion by the Kain–Fritsch scheme and the underestimation by 
the Grell scheme are more evident for the three extreme indices, 
especially for SDII and R95p. The ensemble shows some ad-
vantages over the individual schemes, with the magnitude fall-
ing between the Kain–Fritsch and Grell schemes (Fig. 7b, d). 
However, some spurious precipitation in northwest and Tibetan 
Plateau also exist in the ensemble, which are carried from its 
individual member scheme.

To assess their performances quantitatively, the RMSE of 
summer precipitation and extreme indices between the three 
datasets and observations over continental China are listed in  
Table 2. For the summer mean precipitation, the RMSE decreas-
es from 3.42 to 3.48 for the Kain–Fritsch and Grell schemes, 

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Fig. 9. Spatial distributions of 1982–2004 biases of summer mean precipitation (a, d, g) (Pr, units: mm) and extreme precipitation indices (b, c, e, 
f, h, i) (SDII (b, e, h), units: mm/day; R10 (c, f, i), units: days) from WRF model with Kain–Fritsch (a–c), Grell (d–f) cumulus schemes and their 
ensemble result (g–i). Note that red colours represent a dry bias and blue colours represent a wet bias and the colourbar scales are different.
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in southeastern China, but tends to overestimate the summer 
and annual mean precipitation in the Yangtze River basin, and 
Southern and Northeastern China regions, which are underesti-
mated by the Grell scheme. The WRF downscaling skill reduc-
tion in winter for precipitation may be associated with model 
deficiencies in representing the snow feedback processes (Hall 
and Qu, 2006).

For the annual cycle of regional mean precipitation, the Grell 
scheme produces lower correlations with observations than the 
Kain–Fritsch scheme in most regions, but reduces the wet bias 
in the Northwest, Northern China and Tibetan Plateau regions. 
In the wet regions, including Southeast and Southwest China, 
the Kain–Fritsch scheme performs better than the Grell scheme 
with a higher correlation and smaller bias. The precipitation in 
the Yangtze River basin is better captured by the Kain–Fritsch 
scheme with higher correlation, but overestimates the precip-
itation in summer. These features are also confirmed by nor-
malized Taylor diagrams. The interannual variation in summer 
precipitation is better represented by the Grell scheme in most 
of the regions except for the Yangtze River basin and Southwest 
China.

For the simulation of extreme precipitation, the two schemes 
are able to capture the observed features, but the overestimation 
by the Kain–Fritsch scheme in the Yangtze River basin, North-
ern and Northeast China, and underestimation by the Grell 
scheme over Southern China is evident, especially for the SDII 
and R95p indices. However, the Grell scheme exhibits a lower 
RMSE with respect to the observations than the Kain–Fritsch 
scheme.

The ensemble method based on the outcomes of the Ka-
in–Fritsch and Grell schemes, whose relative weighs are op-
timized to yield overall mimimum of the objective function 
of RMSE(1  −  COR) with respect to the observed daily pre-
cipitation during summer, performs better than the individu-
al schemes for precipitation as well as extreme precipitation, 
with the magnitude falling between the Kain–Fritsch and Grell 
schemes. The RMSE is lower than the Kain–Fritsch and Grell 
schemes for both precipitation and extreme precipitation, while 
also producing a lower temporal correlation over all of China, 
especially in the southern Tibetan Plateau, Northwestern Chi-
na, Southwest China and Yangtze River basin. Note that this 
ensemble method can minimize the bias from the Kain–Fritsch 
or Grell schemes. However, the ensemble cannot eliminate the 
biases which simulated by both of the two schemes. The bias 
of the ensemble is between the Kain–Fritsch and Grell schemes 
over the region where a large deficit exists. Therefore, further 
studies are necessary to improve the ensemble performance for 
other solutions to optimize the weights, or use more cumulus 
schemes to minimize the bias. Subgrid-scale cloud-radiation 
interactions within the KF scheme have also been found to be 
important (Alapaty et al., 2012; Herwehe et al., 2014) in the 
simulation of precipitation, and thus should be explored in fu-
ture studies.

ensemble is larger than 0.1 in most regions, confirming the ac-
curacy of the optimized method.

To further highlight the regional differences of the Ka-
in–Fritsch and Grell schemes and the ensemble approach, the 
bias for the summer mean precipitation and extreme precipi-
tation indices are presented in Fig. 9. For the precipitation, the 
Kain–Fritsch scheme mainly shows a wet bias ranging from 2 
to 4 mm, which is mainly located in the Yangtze River basin and 
Northeastern China (Fig. 9a), while the Grell scheme produces 
a systematic dry bias of 2–5 mm over Southern China (Fig. 9d). 
However, these biases tend to become smaller in the ensemble 
approach, suggesting its advantage over the two schemes alone 
in producing the summer mean pattern and amount. For the 
SDII index, the Kain–Fritsch scheme produces a large wet bias 
of approximately 3–5 mm over the Northern China and Yangtze 
River regions (Fig. 9b), which is improved by the Grell scheme 
by more than 1–2 mm (Fig. 9e). In the rainy regions, the Grell 
scheme generally produces a dry bias, with the maximum value 
along the southern coast and Southeast China. The ensemble 
approach corrects some bias from both schemes, especially in 
Northern China for the Kain–Fritsch scheme and Southwest 
China for Grell scheme (Fig. 9h). For the R10 index, the en-
semble reveals a smaller area of wet bias above 4  mm than 
the Kain–Fritsch scheme in the northern China region, which 
is also true for the Grell scheme, but with a large dry bias of 
6–8 mm in the Southwest China and southeast coastal regions, 
while it is reduced by the ensemble approach by 2–4 mm over 
these regions (Fig. 9i). For the R95p index, the two schemes 
show a similar pattern as SDII, but with larger biases exceeding 
18 mm (Figure not shown). The ensemble also showed better 
skill than the individual schemes by reducing the wet bias for 
the Kain–Fritsch scheme over the Yangtze River region and 
the dry bias for the Grell scheme over Southern China (Figure 
not shown). However, the ensemble is not always the best in 
the simulation of precipitation and extreme precipitation, such 
as the larger bias than KF scheme along the southern coast  
(Fig. 9c, f, i).

4.  Summary and conclusion

In this paper, the impact of the Kain–Fritsch and Grell cumu-
lus schemes on the simulation of precipitation is investigated 
through long-term simulations with the WRF model driven by 
NCEP Reanalysis II data at a 30-km horizontal resolution dur-
ing the period of 1982–2004. The model performance is evalu-
ated by comparing the simulations with observations from the 
CN05.1 data-set.

The results indicate that while the Kain–Fritsch and Grell 
schemes capture the location of rain belts, they have distinctive 
skills in the simulation of the precipitation amount and pattern, 
with a strong regional dependence. While the precipitation is 
underestimated by both schemes in winter, the Kain–Fritsch 
scheme improves the simulation of the amount of precipitation 
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