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ABSTRACT 

A series of simple models of the albedo feedback mechanism and its effect on the global 
climate are solved analytically. All of the models are similar to  one considered by 
Budyko. The seasonal variation in incident solar radiation is ignored. Emphasis is 
placed on the parameter dependence of the models’ sensitivity to  changes in the solar 
constant. It is found in all cases that increasing the efficiency of the poleward transport 
of energy increases this sensitivity. It is also suggested that knowledge of the parti- 
tioning of the transport between the atmosphere and the oceans is of considerable 
importance for estimating sensitivity. The stability of equilibrium states is determined 
from the properties of small perturbations away from equilibrium. It is observed that 
relaxation times of perturbations can be increased considerably by the albedo feedback 
mechanism. The effect of variations in the obliquity of the planet’s orbit onsensitivity 
and stability is also analyzed. The results indicate that albedo feedback may increase 
the significance of obliquity variations on Mars, as well as on the Earth. 

1. Introduction 

The fact that ice and snow have much larger 
albedos than bare soil or water must play an 
important role in any theory of ice ages. The 
sensitivity of the global climate to changes in 
the solar constant, orbital parameters of the 
Earth, atmospheric composition, or transport 
efficiency of the ocean-atmosphere system is 
enhanced by a feedback mechanism produced 
by this difference in albedos. The mechanism, 
which has been discussed frequently in the past 
(for example, Croll, 1897; Budyko, 1968; Eriks- 
son, 1968; Kukla, 1972; and Budyko, 1972), 
works essentially as follows: 

larger icecap +less solar radiation absorbed by 

*cooler temperatures, 
*favorable conditions for further 

growth of icecap. 

the Earth, 

Budyko (1969) has considered a very simple 
model of this effect which he finds to be remark- 
ably sensitive to changes in the solar constant. 
I n  this paper, several models similar to Budyko’s 
are analyzed in some detail to understand this 
sensitivity more fully. 
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Despite the fact that  seasonal variation may 
be of crucial importance for questions of cli- 
matic sensitivity, incident solar radiation has 
been given its annual mean values in this paper. 

I n  our opinion, quantitative results on the 
sensitivity of climate derived from models as 
crude as thosa below have little significance. 

2. The model 

Budyko’s model expresses the zonally aver- 
aged energy balance at the top of the atmos- 
phere in terms of the zonally averaged surface 
temperature. When made time dependent in the 
most straighforward way, it takes the form: 

+ Y ( T ( ~ )  - T(o, 8 ) )  (1) 

T(0, t )  is the surface temperature (“C) at latitude 
0. If the system is taken to be an atmosphere 
over a zero heat capacity surface, then C is the 
heat capacity at constant pressure of an atmos- 
pheric column of unit cross section. I f  C is 
increased to include some of the heat capacity 
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Fig. 1. Normalized, annual mean solar radiation at 
the top of the atmosphere at an obliquity of 23.5". 

of the oceans, all time scales are simply increased 
proportionately. 

The first term on the right-hand side of eq. 
(1) is the net incoming solar radiation: 

A(T) = 1-planetary albedo, 
Qs(0)  =annual mean incoming solar radiation 

per unit area a t  the top of the atmos- 
phere, 

Q =global average of incoming radiation, 
= 114 of the solar constant, 

so that  

s(0) is symmetric about the equator, and one 
need consider only a single hemisphere, as above. 
Tho function s (0 )  is shown in Fig. 1 for the 
present obliquity1 of the earth's orbit. 

The second tcrm is the ontgoing infrared 
radiation linearized about T = 0°C. A and B are 
constants. The third term is the energy gained 
due to meridional transport. y is a constant. 
T(6) is defined to be tho global average of sur- 
face temperature: 

1 The obliquity is the angle between the axis of 
rotation and the normal to the orbital plane. 
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Note that T is controlled primarily by  tempera- 
tures in low latitudes,3o that heating due to  
transport at high latitudes is roughly propor- 
tional to the temperature difference between 
high and low latitudes. This transport term 
provides for interaction between latitudes in a 
very simple way. Some such interaction, along 
with a temperature dependent albedo, is required 
for the feedback mechanism to be present in t,he 
model. 

1/B is a measure of the sensitivity of surface 
temperatures to changes in incident radiation, 
in the absence of albedo variations and trans- 
port. y is a measure of the efficiency of the 
model in transporting energy poleward. We 
shall see that the sensitivity of the model is 
strongly dependent on the size of the dimen- 
sionless ratio 6 = y / B .  Budyko (1969) chose para- 
meters equivalent to 8 - 2.4 .  If one plots annual 
mean, zonally averaged infrared emission at 
different latitudes in the northern hemisphere 
(from Nimbus 3 measurements, Raschke et al. 
(1973)) versus annual mean, zonally averaged 
1000 mb temperatures (from Oort 6: Rasmus- 
son (1971)), one obtains B - 4 . 2  ly day-' "C-'. 
From a similar plot of zonal radiation deficit 
versus 1000 mb zonal mean temperaturos on3 
obtains y - 8 . 8  ly day-' "C-', or 6-2.1. I n  Sec- 
tion 5 we shall discuss alternate ways of evaluat- 
ing 6. 

Averaging eq. ( 1 )  over the hemisphere, one 
obtains 

d T  
dt 

c- = - ( A + E T ( t ) )  

Jo 

I f  one fixes the albedos, perturbations in T' will 
decay exponentially with a time constant equal 
to C / B ,  the radiative relaxation time scale. 
Returning to eq. (1) and holding and the 
albedos fixed, pertiirbations in T(0)  will decay 
with a time constant equal to  C / ( O  -t y ) ,  the 
"energy redistribution time scale". I n  this time 
dvpendent framework, 6 is the ratio of the 
dynamic and radiative contributions to the 
decay of local temperatiwe perturbations. 

For simplicity, we choose the albedo to be a 
discontinuous function of temperatnre: 

A(T) = (x = 1 -ice albedo, for T < To, 
=/I = 1 -ice-free albedo, for T > To 
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The sensitivity and stability of the resulting 
model are discussed in Section 3. In  Section 4, 
we attempt to remove some unrealistic features 
of this model by adding a small diffusive 
transport term to the energy balance. The 
importance of the parameter 6 is stressed in 
Section 5 ,  where we discuss a “two-level” model 
which is mathematically equivalent to the 
model of Section 3 but which leads to different 
estimates of 6. The extent to which sensitivity 
estimates are affected by the assumption of 
constant “transport efficiency” is examined in 
Section 6, where models with linear and with 
non-linear diffusive transport are compared. 
The possible significance of obliquity variations 
for the size of icecaps on Earth and on Mars is 
discussed in Section I .  

3. Equilibrium states and perturbation 
analysis 

We consider only equilibrium states for which 
T(0)  is a monotonic function of 8. Therefore, 

~ ( 0 )  < T ,  for e > eo 
T(0)  P To for 0 ‘0, and 

for some 8,. 
In equilibrium, from eq. (2),  

(3)  

Solving eq. (3 )  for F, substituting into eq. ( 1 )  
with aT/at = 0 and rearranging terms, 

+6[mo(O,) + B ( 1  - d O o ) ) I  

T(0) must be discontinuous a t  O0, much like 
the solid line in Fig. 2. 

we must have T(0, + E )  < To and 
A(T(0, + F ) )  = m, so that 

For small 

( A  + BT,) > ~ ( l +  8,  ( A  + BT(0, + &)) 
Q Q 

I I 
EQU 

0 0  
POLE 

LATITUDE 

rc 

Fig. 2. Schematic representation of the latitudinal 
distribution of temperature for different valucs of p. 

(1+s) ( A  +BT,) < ~ ( l  ( A  + BT(O,-&)) 
Q Q 

Taking the limit e+O, 

where q -&/(A + BT,) is the normalized solar 
constant. 

These inequalities give the range of q,  
q-(O,) <q < q + ( 0 , ) ,  for which equilibrium solu- 
tions to eq. (1) exist with the icecap extending 
down to latitude 0,. When q =q-(O,) or q = q + ( 0 , )  
the equilibrium temperature distribution has 
the form of the dotted lines labelled q =q-  or 
q =q+ in Fig. 2. 

If the transport equals zero ( y  = 6  =0) all 
latitudes are independent of each other and no 
feedback is possible. Fig. 3 is a plot of q-(O,) 
and q+(Oo) for 8 = 0, a! = 0.4, and B = 0.7. The two 
lines and the region between them corraspond 
to equilibrium states of the system. For q 2 I/ 
Bs(n/2) an ice-free earth is a possible equilibrium 
state. For q < l / m s ( O )  an ice-covered ecrth is a 
possible state. For 
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q 

Pig. 3.  Equilibrium diagram for the case with no 
transport 6 = 0  ( y = O ) .  The area between lines q- 
and p+ represents possible equilibrium states. 

there exist eqnilibrium states for a whole range 
of ice covers. 

With 6 40 ,  the feedback is allowed to operate. 
The diagram of equilibrium states for 8 = 2.1 ( a  
and B as bcforo) is shown in Fig. 4. Note that 
the lines q- and q+ turn around as functions of 
On, For 

the earth can be ice-free, while for 

the earth can be ice-covered. 
Suppose the system is in equilibrium at some 

point P (or P') in Fig. 4 with an icecap extending 
down to e,, and then suppose q decreases. The 
icecap need not move until q =q-(s,). A further 
decrease in q forces the cap to search for a new 
equilibrium state. Budyko (1972) has argued on 
intuitive grounds that if 

a small perturbation of the kind described will 
result in a small increase in  the icecap size, 

while if 

such a perturbation will result in unstable 
growth of the cap. 

Similarly, for equilibrium states on the line 
q =q+(Oo), a small increase in q will result in a 
slight retreat of the cap i f  

* I  > O  
io 

and will result i n  an  unstable retreat if 

These perturbations can be treated analyti- 
cally and relaxation times calculated. As 
expected, the relaxation times become infinite 
at tho critical latitudes where dq+/dO, = 0. 

We first consider the case in which q is decrc- 
ased below q-(O0). The following set of coupled 
equations is derived for this case in Appendix A: 

01 ' 
1.4 1.6 /,+ ), 1.8 2.0 2.2 2.4 

i ? q T s  os lo l t " '  

9 

Fig. 4 .  A typical equilibrium diagram for the case 
of non-zero transport (6 = 2.1). Unlike 6 = 0 (Fig. 3), 
there is n critical value of Q (turn around point of 
line q-)  beyond which any decrease in q causes self- 
sustained growth of the ice to a completely ice- 
covered state. 
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where p' = T' - T and 8; = 8, - 8, are perturba- 
tions which result from a decrease in the solar 
constant away from equilibrium states on the 
left-niost line p =q-(B,). The hatted quantities 
refer to the unperturbed equilibrium values. 
The interaction terms in eqs. (5) describe the 
feedback. In the absence of these interactions 
Ii' decays with the radiative equilibrium time 
scale, CIB,  while 0: decays with the energy 
redistribution time scale C / B (  1 + 6). The re- 
sponse of T', to an advance of the icecap is pro- 
portional to the radiation lost to the system 
because of the change in albedo, 

while the response of the icecap to a decrease in 
T is proportional to B6 = y,  and also is inversely 
proportional to the temperature gradient in 
front of the ice, 

Eriksson (1968) obtains equations similar to 
eqs. (5) in his treatment of the ice age problem 
by assuming that T and 8, are the most im- 
portant variables in the problem and working 
t o  obtain semi-empirical relations between them. 

Requiring that T' and 8; are proportional to 
e-xt  and solving the quadratic equation for x, 
one obtains 

x* = (1 -I ;) i: 

where 

( 7 )  

Note that p4 > 0  so that xi are real.' 

Also, 

pc < 1 * x + > 0 ,  

pcJ. = 1 * x - = 0 ,  
~~ 

1 ,uc~.(6~) is greater than zero for all 6, only if the 
obliquity is less than 45 degrees (see section 7). 
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Pig. 5. The parameter p~ and the relaxation time 
scale l / k -  refer to perturbations which decrease p 
below q- (Fig. 4), and ,LL~ t o  perturbation which 
increase q above line q+ (Fig. 4). 

and pu~. > 1 a x -  < O+instability. 

From eq. (7) and eq. (4) we affirm that 
(1  - p ~ )  and dq-/d8,(6,) have the same sign. pc~. 
is, in fact, the product of the strengths of the 
two legs of the feedback mechanism: the effect 
of the larger icecap on the global mean tempera- 
ture through the increased albedo, and the 
effect of lower global mean temperature on 
further growth of the icecap. 

A plot of ,LLJ is shown in Fig. 5 for 6 =2 .1 ,  
a =0.4, and ,9=0.7 .  We emphasize that the 
shape of this curve depends on none of these 
parameters but only on s(8) which, in turn, 
depends only on the obliquity. As 8, --t 0, dsld0 --f 0 
and ,UJ -f 00. Therefore, there will exist some 
unstable states for 8,  sufficiently close to the 
equator as long as (/? - a )  6 +0. We note also 
that p ~ ( 8 , )  has a shallow minimum at 65" in- 
dependent of 8, CI and /?. Thus, in this simplest of 
models, the stablest icecap extends to 65" lati- 
tude; i.e., for an icecap of this size a decrease 
in solar constant results in a perturbation with 
the smallest possible relaxation time. As 0, 
retreats poleward, ph increases slightly and 
approaches a finite, non-zero limit as 8, + 90". 
As shown in Appendix C, this limit is 

( B  - a )  2 sinz(@) 

where @ is the obliquity. We see that the feed- 
back mechanism can be significant even for a 
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very small icecap, since temperature gradients 
are also very small near the pole. 

The relaxation time, I/%-, obtained from eq. 
(6) is also shown in Fig. 5 .  In the stablest 
region, for the parameters chosen, the time 
scale is increased above the radiative equilib- 
rium time scale ( = 1 j by a factor of 1.5-2. The 
enhancement of relaxation times by an order of 
magnitude occurs only within a few degrees of 
the critical latitude. 

If the same analysis is performed for the 
equilibrium states on the line q =q+(O,) by 
increasing, q, p~ is replaced by 

sinca it is the temperature gradient poleward 
of the retreating icecap, 

d T  ds 
-Ka- 
d0 d0 

which is now relevant. The new stability para- 
meter, p ~ ,  and the new relaxation times are 
also plotted in Fig. 5.  Relaxation times are al- 
ways larger for a retreating cap than for an 
advancing cap of the same size in this model. 

In a preliminary experiment on the sensitivity 
of a general circulation model of thc atmosphere 
to changes in the solar constant, Manabe and 
Wethcrald (personal communication) have ob- 
served that the relaxation time of the model 
increases as the icecap is forced to advance 
into mid-latitudes. The simple arguments given 
above should help in understanding this enhance- 
ment. 

4. Elimination of the region of equilibrium 
states 

One can remove the unrealistic discontinuity 
in thc equilibrium temperature distribution and 
the resulting “region” of neutrally stable 
equilibrium states by adding a small diffusive 
transport term to the energy balance. Other 
models such as those of Sellers (1969) and 
Faegre (1972), contain diffusive transport. Some 
of the effects of replacing the model of Section 3 

with one containing only diffusive transport are 
considered in Section 6. In this section, how- 
ever, we retain Budyko’s parameterization of 
heating due to transport and include in addition 
a small amount of diffusive transport in order to 
consider the limit of zero diffusion-that is, in 
order to consider large temperature gradients a t  
the ice boundary rather than discontinuous 
temperature distributions. 

The energy balance equation is 

D is a constant. The boundary conditions are 

aT aT 
- (oj = - ( T L / ~ )  = o ae ae 

As shown in Appendix B, the equilibrium dia- 
gram is now determined by the equation 

1 even 

where P,(z) is the Zth Legendre polynomial, 

and 

1 if I = O  
0 if Z + O  

The Legendre polynomials satisfy the boundary 
conditions naturally. 

For the parameters used in Fig. 4 and with 
d = 0.006 the equilibrium diagram has the form 
shown in Fig. 6. Note the destabilizing effect of 
diffusion for a small polar icecap. As d + 0 this 
destabilization occurs in a smaller and smaller 
vicinity of the pole. In  fact, it  is shown in 
Appendix B that as d -0, 
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or 

In Appendix B it is also shown that the 
relaxation time l/x, is determined by the 
following relation 

m 

&s(Oo) cos (0,) (B -  a )  1 = 0  
1 even 

Of the many solutions for ~t, we are only inte- 
rested in the smallest. From the results in the 
Appendix one can also show that 

O0 (21 + 1)  [P1(sin (6,))12 
- (’ s(eo) ZO 1+8(1 -A,,) + dZ(Z + 1)  

1 even 

Therefore, x = 0 i f  and only if dq/d6, = 0. Further 
(see the Appendix), x + O  as d+O, i.e., as the 
temperature gradient at 8, steepens. 

As d + 0, this perturbation theory is only valid 
for smaller and smaller displacements of 8, 
since perturbations in T ( 8 )  for all 8 must 
remain small. To obtain results analogous to 
those for d -0-such as small restoring forces 
to larger displacements of 8,  within some well- 
defined region in the q - 8 ,  plane and an asym- 
metry of restoring forces to the left and right 
of this region-one would have to consider 
finite amplitude perturbations in the tempera- 
ture field. 

In any case, if d is very small, it is intuitively 
clear that within the “region” the system will 
slowly relax to equilibrium on a time scale 

Tellus XXVI (1974), 6 
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Fig. 6. Equilibrium diagram with a small diffusive 
transport (d = 0.006), the dashed line is the limit of 
zero diffusion, while the area between the light 
lines represents the equilibrium states of eq. (1) 
with the same parameters. 

determined by the diffusive term, while outside 
the “region” the time scales will more or less 
be those calculated in Section 3. I f  d is suffi- 
ciently small one can argue that there is no 
physically significant distinction between true 
equilibrium states and those states in the 
“region” which are almost in equilibrium, since 
natural fluctuations can easily overcome the 
small restoring forces, and large excursions from 
equilibrium can be expected. 

In the following discussion of sensitivity we 
consider only the limiting function, qm(8,,), de- 
fined in eq. (10). 

5. Sensitivity and the parameter 6 

The sensitivity of the icecap in the model 
discussed above is strongly influenced by the size 
of the parameter 6. Fig. 7 shows a plot of 
qm(8,) for 6 = 1 . 2 ,  1.5, 1.8, 2.1 and 2.4. The 
effect of increasing 6 is to reduce the amount of 
ice while at  the same time making the icecap 
more sensitive to changes in solar constant. Note 
also that the parameter ,u in Section 2 is pro- 
portional to 6; therefore, the larger d the less 
stable the equilibrium states of the system. 
From Fig. 5 and eq. (7) we see that increasing d 
moves the critical latitude poleward (the point 
where p = 1).  

6 is a non-dimensional measure of the effi- 
ciency of the model in transporting energy pole- 
ward. The geophysical significance of this 
dependence of sensitivity on transport efficiency 
could conceivably be tested with numerical 
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general circulation models of the coupled 
ocean-atmosphere-cryosphere system, such as 
Manabe (1969) and Bryan (1969). A model in 
which the atmospheric energy flux accounts for 
all of the poleward energy flux, and in which 
the occans serve only as a source of water vapor, 
can be compared to a coupled ocean-atmos- 
phere model in which the oceans contribute to 
the transport. The joint model should be more 
efficient transporting energy poleward and so 
should bc more sensitive. 

Although sensitivity experiments with such 
models have not been performed to date, ex- 
amination of the one joint numerical experiment 
of Manabe and Bryan reveals that the situation 
is in reality a complex one. When oceanic 
transport is included in the model, warming 
occurs at  high latitudes and cooling a t  low lati- 
tudes, as one would expect. However, the cooling 
at  low latitudes extends throughout the tropo- 
sphere while the warming at  high latitudes is 
confined to the lowest few kilometers of the 
atmosphere. At 65" N the zonally averaged sur- 
face temporature increases 8°C while the zonally 
averaged 500 mb temperature increases 2°C. 
One suspects that the strength of the coupling 
of this atmospheric tomperature (controlling the 
outgoing infrared flux) and the surface tempera- 
ture (controlling the changes in albedo) will 
have an important effect on the sensitivity. 
Therefore, it is quite probable that the results 
from such experiments will not be understand- 
able in terms of the simple one Ievel model 
considered above. 

In order to discuss this effect in the context 
of Budyko's model we consider the following 
set of two equations: the first, an energy balance 
of the atmosphere; the second, an energy balance 
a t  the surface, 

Ta = 500 mb temperature ("C) 
T,  =surface temperature ("C) 
At + Bt T, =upward infrared flux a t  the top of 

AJ. + BJ. T,=downward infrared flux reaching 

y,( !Fa - T,) =heating due to transport in the 

H =sensible and latent heat fluxes, 
A, + B, T ,  =upward infrared flux from the sur- 

the atmosphere, 

the surface, 

atmosphere 

face. 

We take the linear relationship 

H =o(T, - (Fa  + A ) ) ,  

where 1 is a constant temperature difference 
between 500 mb and the ground, and u a con- 
stant of proportionality. This, of course, is not 
a good approximation for sensible and latent 
heat fluxes, but it allows us to solve the equa- 
tions simply while including their effects quali- 
tatively. The "window" radiation emitted a t  
the ground and escaping to space, and the 
absorption and reflection of solar radiation by 
the atmosphere are ignored. 

Integrating eq. (12a) over the hemisphere 
one can solve for T, in terms of T,; substitution 
into eq. (12a) gives T,  in terms of T,  and p,. 
Further substituting into eq. (12b) and arrang- 
ing terms gives the model of the preceeding 
feztion: 

Tellus XXVI (1974), 6 
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Note that, although eqs. (12) reduce to eq. 
(l) ,  the physical interpretation of the terms 
given in Section 2 and under eqs. (12) result in 
physically distinct models. For example, while 
in eq. ( 1 )  we let A t. BT, represent the outgoing 
infrared radiation at  the top of the atmosphere 
and chose A and B accordingly, in eqs. (12) 
A t  + Bt T, is the outgoing infrared radiation. 
From the definitions (13) it is easy to verify 
that 

Bt - 
BJ 

At +Bt Ta= A+ BT, + - (T, - T,) 

so that part of what is now outgoing infrared 
radiation was previously included in the trans- 
port. We may view eqs. ( 1 2 )  as a distinct and yet 
physically meaningful way of choosing the 
constants in eq. (1 ) .  

More physically, the important difference be- 
tween eqs. (12) and eq. (1) is that in eqs. (12) 
we have slightly decoupled the outgoing radia- 
tion and the surface albedo by making them 
functions of different temperatures, connected 
only by the infrared radiation and the heat flux 
H .  

One expects the major portion of the out- 
going infrared flux to be better expressed as a 
function of the 500 mb temperature than of the 
surface temperature. This is clear from Fig. 8, 
where, in the upper half, we plot seasonally 
varying outgoing infrared flux versus scasonally 
varying surface temperature (both zonally aver- 
aged) at  different latitudes in the Northern 
Hemisphere. If the data at  each latitude is 
separately fitted by a straight line, the slopes 
are strongly dependent on latitude. In  the lower 
half of the figure 500 mb temperatures are used 
rather than surface temperatures, and the data 
is well fitted by one line with slope 7.0 ly day-1 
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Pig. 8. Note the strong latitudinal dependence of 
the parameters A and B when the outgoing infrared 
radiation is plotted versus surface temperature 
(upper figure). The dependence disapears when the 
same values are plotted versus 500 mb temperature 
(lower figure). The plotted points for each latitude 
are zonal means at four times of the year. (Data 
from Raschke et al. (1973) and Oort & Rasniusson 
( 197 l ) . )  

“C-’. B f  is therefore given this value.’ (Data is 
again taken from Raschke et al. (1973) and 
Oort & Rasmusson (1971).) ya can be estimated 
from a plot of annual mean radiation deficit 
versus 500 mb temperature. We obtained ya N 11 
ly day-1 “C-’. Assuming blackbody radiation 
and linearizing about O°C gives B, N 9.5 ly day-‘ 
“C-’. Finally, from Smagorinsky’s (1963) radia- 
tion model we may estimate B J . I B ~  - 1.6. 

From eq. (14) we see that in the limit u --f 00 

(T ,  - !Fa = const.), that is, when the coupling 
between the two temperatures is maximum, 

That this linear dependence (as opposed to the 
fourth power dependence in the Stefan-Boltzmann 
law) is a very good approximation must partly be 
due to the increase in absolute humidity with in- 
creasing temperature, as discussed by Manabe and 
Wetherald (1967). 
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y a / B t  N 1.6-a somewhat smaller value than 
that obtained in Section 2 using surface tem- 
peratures only. Decreasing u decreases 6; there- 
fore, in the present model, sensitivity of the 
icecap to solar constant variations decreases as 
the coupling between T ,  and T, is reduced. 
Trying to estimate 0 makes little sense because 
of the crudeness of the parameterization. With- 
out this estimate we can only say that (without 
including oceanic transport) the appropriate 
value of 6 is probably less than 1.6. The differ- 
ence in sensitivity of a model with Budyko’s 
value of 6 = 2.4 and the value 6 = 1.5 is appreci- 
able, as the reader can see from Fig. 7. 

Also from eq. (14) we can see that increasing 
ya does not increase 6, or the sensitivity, in- 
definitely, but that  6 tends to the limit 

6+- 
B& +cT 

Bt 

(It is important to realize that it is the non- 
dimensional equilibrium temperatures, BT(8)/ 
( A  + BT,) which are functions of the non- 
dimensional parameters, q, a,  and /3; so one can 
more or less fit a given temperature distribution 
with different values of B as long as one varies B 
appropriately.) 

The sharply decreased sensitivity of the two 
level model with atmospheric transport only is 
due to the inefficiency of the atmospheric 
transport in changing the ground temperature. 
Part  of the transported energy is radiated away 
before it can affect the surface heat budget and 
the albedos. 

To see the effectiveness of transport done at 
the ground in increasing the sensitivity of the 
model, we can include the term y,( p, - T,) in the 
surface energy balance, eq. (12b), 

O =  -(A,+B,T,) + ( A &  + B J  Ta)  +&s(O)d(T,) 

I n  this case the parameter 6 of the equivalent 
one level model is: 

ys( p, - T,) may be viewed as a crude way to in- 
clude the effects of oceanic transport in the sur- 
face energy balance. Since for realistic condi- 
tions B? + BJ. > B,, an  increased coupling will 
decrease the sensitivity due to the surface 

transport while increasing tho sensitivity due to 
the atmospheric transport. Also, by increasing 
the transport efficiency a,t the surface one may 
increasc the sensitivity indefinetely, as in the 
original one level model. 

The coupling between “radiative” and “al- 
bedo” temperatures is also important in con- 
sidering the sensitivity of the ice extent to 
variations in meridional transport (rather than 
to solar constant variations as discussed thus 
far). A case where the two are relatively de- 
coupled (as the polar latitudes of the Manabe- 
Bryan model seem to be) would have an ice 
boundary more sensitive to variations in surface 
(i.e. oceanic) transport and less sensitive to 
variations in atmospheric transport than a case 
where the two temperatures are more strongly 
coupled. 

These observations suggest that  knowledge of 
the partitioning of transport between the atmos- 
phere and oceans may be necessary in estimating 
the strength of the albedo feedback. 

6. Linear and non-linear diffusive models 

A common criticism of simple “climate” 
models with constant transport efficiency (i.e., 
constant S in Budyko’s model) is that  they over- 
estimate sensitivity by not taking into account 
the negative feedback inherent in the transport 
of energy by large scale eddies in the Earth’s 
atmosphere (Stone, 1973). The transport effi- 
ciency of the large eddies increascs as the meri- 
dional temperature gradient increases, so that 
meridional temperature gradients should be less 
sensitive to perturbations in external parameters 
than the results of models with constant trans- 
port efficiency suggest. We investigata the 
importance of this effect by comparing a model 
with linear diffusive transport 

D = const., 

with a model with non-linear diffusive transport 
-the same as eq. (15) but with D = D* ldT/d8 1 .  
Neither model can simulate the transport of 
heat due to the mean meridional circulation in 
the tropics. 
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The equilibrium diagram and the relaxation 
rates of pert,urbations away from equilibrium 
for the linear m ode1 can be obtained from eq. 
(9) and eq. (11) of Section 4 by setting 8 = 0. 
The sensitivity of the model is again effectively 
determined by the size of the "transport effi- 
ciency", d = D / B ;  the larger d the more sensitive 
the model. The more common "Austausch coeffi- 
cient" used in the literature is 

(Radius of earth)' 
(Radiative relaxation time of atmosphere) 

d x  ~ 

d = 0.28 gives a reasonable pole-to-equator 
temperature difference of 38.8"C when Oo is 65". 
The equilibrium diagram for d =0.28 (with 
a =0.4 and B =0.7)  is shown in Fig. 9. Note the 
existence of two critical latitudes, one below 
which the icecap grows unstably until covering 
the whole Earth, and the other above which the 
icecap recedes unstably until disappearing com- 
pletely. 

The non-linear diffusion model is solved by a 
straightforward numerical iteration procedure. 
The equilibrium states found are plotted in Fig. 
9 for the case d* = D*/B =0.01, which yields 
essentially the same pole-to-equator tempera- 
ture difference, 38.5'C at Oo =65", as the linear 
case with d = 0.28. In  both cases, B = 4.3 ly day-l 
'C-1. 

Except for very small caps, the two models 
have essentially the same sensitivity. This 
similarity is due to the fact that the sensitivity 
of these models is determined by the strength 
of the albedo feedback mechanism. As discussed 
in Section 3, the response of the icecap to per- 
turbations in solar constant should be dependent 
only on the size of the icecap and.the unper- 
turbed temperature gradient a t  the ice boundary, 
the later being controlled by the strength of the 
transport. Very small icecaps are stabilized in 
the non-linear case because the local strength 
of diffusion is relatively small (since dT/dO is 
small). For Oo - 50°, the local strength of diffu- 
sion a t  the ice boundary is larger than in the 
linear case (d* IdTldO I -0.37) and the equilib- 
rium state is, in fact, somewhat more sensitive 
than the corresponding state in the linear 
model. Thus, non-linear diffusion affects the 
sensitivity primarily through its effect on the 
unperturbed temperature gradients. 

These results suggest that for models in 
which the ice and snow albedo feedback controls 
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1.65 1.70 1.75 1.80 

q 
Fig. 9. The equilibrium diagranis for models with 
comparable magnitudes of linear and non-linear 
diffusion. Note that the non-linear diffusion stabi- 
lizes the polar latitudes where the temperature 
gradient is small. 

sensitivity, the negative feedback in the 
transport of heat by large scale eddies does not 
have an important stabilizing effect, except, 
possibly, for very small caps. Whether the sensi- 
tivity of the Earth's climate is controlled by this 
albedo feedback mechanism is an open question. 

7. Obliquity variations 

Calculations indicate that the Earth's obliq- 
uity varies N 1.5' from its present value of 
23.5" on time scales of the order of 40 000 years 
(for example, Vernekar, 1968). Since 

s - - - sin(@) (3 : 
where @ is the obliquity, an increase in @ of 
1.5' from its present value results in an increase 
of - 6 %  in the radiation incident a t  the pole. 

The strength of the albedo feedback mecha- 
nism for a small polar icecap is sensitive to the 
curvature of s(e) ,  or to the value of s ( 0 )  cos(O)/ 
(dsld6) near the pole. (See the discussion of p in 
Section 3.) 

In Appendix C we show that 

From this result one can show that increasing 
@ by 1.5' from 23.5' increases p at the pole by 
19%-which would seem to be a substantial 
decrease in stability. 
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9 m  

Fig. 10. Dependence of the equilibrium states on 
the obliquity. Like the dependence on 6 an increase 
in obliquity at fixed q causes the ice to receed and 
become more sensitive to  q. Again the lines plotted 
are q,(O,) (see eq. (10)). 

The effect of obliquity variations on the 
equilibrium diagram, qm(Oo) for the discontinu- 
ous model (8 = 2.1, oc = 0.4, @ = 0.7) is shown in 
Fig. 10. Changes in B0 due to changes in @ (at 
fixed solar constant) become larger as the ice- 
cap boundary nears the pole. The changes in 
critical latitude are negligible. 

Recent calculations by Ward (1973) indicate 
that the obliquity of Mars varies between the 
extremes of 15’ and 35”, the present value being 
25.1”. For CD - 35.0”, the curvature of s(0)  a t  the 
pole will be severely reduced, and a,ny icecap 
which exists should be less stable than the 
present one. I n  an attempt to be a bit more 
quantitative, we refer to calculations by Stone 
(1972) which indicate that on Mars 

- 1.3 - 1.4 ~ 

I n  thc models used above, this ratio equals 
(1 + 8 )  over a constant albedo surface. For 
arguments sake, we choose 8 =0.35, c( =0.4, 

=0.85. Then, with @ =35” ,  p ~ .  =0.31 and 
p t  =0.65 at the polo-values comparable to 
those on Earth. 

Of course there will be important differences 
between models of the Martian icecaps and 
models of the icecaps on Earth, mostly due to 
the fact that the condensate on Mars is the 
major constituent of the atmosphere (Leighton 
& Murray, 1966). The considerations above are 

meant only to suggest that  the albedo feedback 
mechanism may, at times, be as important on 
Mars as it is on Earth, despite the smaller value 
of 8. 

Conclusions 

We emphasize a few of the points brought out 
by the detailed analyses of the several models: 

The sensitivity of the icecaps to changes in 
solar constant is strongly increased by the al- 
bedo feedback mechanism. The strength of this 
effect is dependent on the parameter 6(or d ) ,  a 
non-dimensional measure of the efficiency of the 
system in transporting energy poleward-the 
greater this efficiency the more sensitive the 
model. 

A critical latitude beyond which an icecap will 
grow unstably until the earth is ice-covered al- 
ways exists and moves poleward as the para- 
meter 6 (or d )  increases. 

Stability of equilibrium states is conveniently 
discussed in terms of relaxation times of per- 
turbations away from equilibrium. Relaxation 
times are invariably increased by the feedback 
mechanism, particularly as one approaches the 
“critical latitude”. 

The parameter p, which determines the 
stability of the icecap in the simple model of 
Section 3, has an appealing physical intcrpreta- 
tion as the product of the strengths of the two 
legs of the feedback mechanism. The importance 
of the temperature gradient in front of an 
advancing cap or behind a retreating cap is thus 
emphasized. 

The models which allow a discontinuous equili- 
brium temperature distribution have the intrigu- 
ing property that, for a given solar constant, 
the system is capable of being in equilibrium for 
a whole range of ice extents. We conjecture that 
this “region” of neutrally stable states is replaced 
by a “quasi-region” of almost neutrally stable 
states when the temparature discontinuity is 
replaced by a sharp temperature gradient. 

Because surface temperatures are less strongly 
coupled to atmospheric temperatures in polar 
latitudes than in lower latitudes, it  appears that  
the vertical distribution of heating due to meri- 
dional transport, in particular, the partitioning 
of transport between ocean and atmosphere, 
must be considered when estimating the impor- 
tance of albedo feedback. 
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Partly for this reason, estimates of the sen- 
sitivity of the terrestrial climate based on mo- 
dels of the type discussed above should be 
treated with extreme scepticism. However, the 
models do help us understand the albedo feed- 
back mechanism-a mechanism which we feel 
must be considered when analyzing the sensi- 
tivity of the Earth's climate, and possibly the 
climate of Mars. 
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Appendix A: Perturbation theory with a 
discontinuous albedo 

Start from an equilibrium state with QI 
( A  + B T o )  = q  =q-(8 , )  and denote the corre- 
sponding equilibrium temperatures by !i!'(O): 

o = - ( A  +B+(B)) + y(6 - + l o ) )  +&s(e)A(+(e)) 

(A 1) 

Now decrease Q slightly to Q - A Q  and define 

T'(0, t )  = T(0,  t )  - ?(O), and T'(t)  = T( t )  - 6, 
e&) = e,(t) - 8,. 

From eq. ( 1 )  and eq. (Al )  one has 

dT' 
dt  

C- = - BT'+y(T'-T ' )  

+ Qs(€') [ A T )  - A(@)] - AQsfo) AT) (A 2) 

Averaging over the hemisphere and keeping 
only first order terms in the small quantities 
AQ and &, one finds 

d p  
dt  

c - = - BT'+ Q ( B  - .) ~ ( 0 , )  cos (4) ei 

-. AQ[ad8^,) + B ( 1 -  d 8 0 ) ) I  (A 3) 

We now derive an equation for dOi/dt. 
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It is clear from eq. (A2) that all temperatures 
must decrease initially-i.e., the ice must ad- 
vance. Evaluate eq. (A2) a t  a latitude slightly 
equatorward of the instantaneous position of the 
ice-boundary, say a t  (O,(t) - 6 ) .  The third term 
on the right-hand side of eq. (A2) then equals 
zero since 

where 

is the temperature gradient equatorward of the 
advancing ice. Eq. (A4) can be derived from 
a simple graphical construction or from the two 
identities 

dT aT do aT(e,, t )  
- (eo(t) ,  t )  = - (e,, t )  -O + ~- 
dt a0 dt o't 

and 

Eq. (A 4) implies, to first order in small quant- 
ities, that 

where, from eq. (A l), 

is the equilibrium temperature gradient equa- 
torward of the ice boundary. Thus 

= -BT'(B)+y(T'-T'(B,))-AQs(e,)B 



626 ISAAC M. HELD AND MAX J. SUAREZ 

But 

= To - !P(Oo) 

where d!?(8,)/dO is again the equatorward gradi- 
ent, given by eq. (A5). 

Thus, 

The homogeneous part of the eqs. (A3) and 
(A6) reduce to the pair of eqs. ( 5 )  of Section 3, 
after introducing T = t / ( C / B ) .  

Note that we have not assumed that T'(0) is 
a small quantity. I n  fact, it  is large over the 
(small) area which is covered with ice by the 
perturbation. 

Appendix B: The diffusive model 

(a) Equilibrium states 

Write 

where 

Expanding everything in eq. (8) in Legendre 
polynomials (we need consider only even I )  

Substituting into eq. ( S ) ,  with aT/at= 0, and 
solving for T,,  

where 

A l o = l  if Z = O  

= O  if Z+O 

Therefore, 

where 

d = DIB. 

or 

which is eq. (9). 

Now, 

Letting d + 0, and using the theorem (Kaplan, 
1959, p. 428) that the Legendre expansion of 
H(O - 0,) converges to the d u e  1/2  at the point 
8 = O o ,  we find 
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1 1  1 

= La + p,(o,,l 
from eq. (4). 

( b )  Perturbation theory 

equation becomes 
Using the variable x = sin ( O ) ,  the perturbation 

a T '  
at 

C-= -BT'+y(T ' -T ' )  

a d A  + D- ( 1  - x2) - + &s(x) - (+(x)) T' 
az ( z) d T  

where 

and aD(z) is the Dirac delta function. Now use 
the completeness rclation, 

6 D , ( Z - 6 0 ) =  2 (21+ 1 ) ~ ~ ( x ) ~ ~ ( ~ o )  
1 even 

Expand eq. (13 1 )  in even Legendre polynomials, 
take T;cce-."', and solve for Ti: 

But T'(g0) = , f l  Ti Pl(g0),  so, for consistency, 

which is eq. (11) .  (The series in eq. (B 2) does not 
converge a t  the pole, where P,(l) = 1.) 

One can show, in a rather formal way, that 
x + 0 as d + 0. Both I d T / d x  1 xo and the series in 
eq. (B 2) become infinite in this limit. From part 
(a )  of this appendix one can show that 

+I" 2 0  

Q&O) ( B  - .c) 

- 1 ps1 - (B -- a )  h,(bo) dP, - - 
S(2J ( p  - a) zo T+ 6 + dZ(Z + 1)  z (%) 

I even 

Therefore, 

While R.H.S. of eq. (B2)+ 

1 
l + 6 - x  

6D($o-20) as d+O. 

Appendix C: Curvature of s(e) near the pole 

Using the standard climatological formulae 
found, for example, in Sellers (1965), and assum- 
ing that the ratio 

(length of day) 
(length of year) 

+ O  

we have 

s(0) =sin (a) sin (0) ( H ( t )  

-tan ( H ( t ) ) )  sin (t)dt (C 1)  

where H is the "half day length", 

cos ( H )  = -tan ( 6 )  tan (0 )  

Tellus XXVI (1974), G 



628 ISAAC M. HELD AND MAX J. SUAREZ 

and w is the  solar declination, 

sin ( w )  =sin (a) sin (t) 

More precisely, H =cos-l (tan (0) tan ( w ) )  when 
ltan (0)  tan ( w )  I < 1 ,  H = n  (polar day)  when 
tan (0)  tan ( w )  > 1 ,  and H = 0 (polar night) when 
tan (0) tan ( w )  < - 1. 
z = O  is the  vernal equinox in the Northern 

Hemisphere. To lowest order in  0’ = n/2 - 0, the  
polar day in the North occurs when 

0‘ 0‘ 
sin (0) sin (0) 

and the  polar night when 

<t<?l- __ 

0’ 
< T <  -- -n + ~ 

sin (Q) sin (a) 
0’ 

One can split (C 1 )  into two integrals-the first, 
over the  polar day, in which H -tan@) = n, and 
the second, over the remainder of the year, i n  
which one can assume w < 1. 

Keeping terms quadratic in  0‘ in  both inte- 
gra.ls, straightforward manipulation leads t o  t h e  
result 

Theref ore, 
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