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ABSTRACT
This article investigates two different methods for perturbing sea surface temperature 
(SST) in a convection permitting ensemble prediction system based on the AROME-
Arctic NWP model. The methods are one that results in perturbations that are purely 
randomly located and one in which the perturbations are targeted towards locations 
where the SST errors are thought to be largest. The impact of the magnitude of the 
perturbations is also tested by scaling the randomly located perturbations to have a 
similar L1 norm to the targeted perturbations. The impact of the SST error estimate is 
tested by comparing the method of targeting SST perturbations based on different SST 
uncertainty estimates. The methods are tested for four high impact weather events 
over the European Arctic – a polar low, two cold air outbreaks and a severe storm and 
are verified against near surface observations over land, scatterometer wind speeds 
over the ocean and against the operational analyses of the model under investigation. 
It is shown that targeted perturbations generally result in better verification scores 
when compared with randomly located perturbations. Especially over the ocean it 
appears that targeting the locations of largest uncertainty can lead to an increased 
spread without impacting the route mean square error. The results suggest that 
the impact of SST perturbations over land may be more related to the magnitudes 
of the perturbations regardless of location, while over the ocean the location of the 
perturbations becomes more important.
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1 INTRODUCTION

Human activity, such as oil and gas exploration, fishing 
and maritime cargo transport, as well as tourism have 
all increased dramatically over recent years in the Arctic 
and that trend is likely to continue as sea ice coverage 
continues to lessen. While oil and gas exploration in the 
Arctic is a controversial topic where political as well as 
environmental factors could play a decisive role in its 
future, for maritime transport, for example, the Northern 
Sea Route opened to international shipping in 2010 
and cuts transit time between northwest Europe and 
northeast Asia by 14–20 days compared to the Suez 
route. Although transiting traffic has been lower than 
expected due to economic and political factors as well 
as the availability of suitable container ships, destination 
voyages have increased in the years to 2019 (Gunnarsson 
and Moe, 2021). Moreover, shipping traffic as a whole has 
increased markedly in the Arctic Ocean in recent years 
with tens of thousands of ships operating there in 2014, 
the majority in the Norwegian and Barents Seas (Eguíluz 
et al., 2016). In terms of tourism, the Arctic archipelago 
Svalbard, for example, has experienced an approximate 
doubling in tourist numbers in the 10 years from 2010 
to 2019 accompanied by a shift from seasonal to year-
round tourism (Hovelsrud et al., 2021).

This increased activity in the Arctic means that the 
provision of accurate and reliable weather forecasts is 
becoming increasingly important. However, numerical 
weather prediction (NWP) models for high latitudes 
generally show lower forecast capability compared to 
other regions (Jung et al., 2016). The challenges are 
many – NWP models have typically been developed to 
maximise forecast accuracy over mid-latitude regions; a 
relative scarcity of in situ observations make it difficult 
to provide accurate initial states for the forecasts and 
to determine comprehensive verification statistics; and 
the physics and dynamics of high latitude extreme 
weather systems are less well understood. Furthermore, 
the challenging environment of the region with less 
infrastructure and difficult conditions for search and 
rescue means that forecast misses can have dramatic 
consequences both for local communities and those 
operating in the region.

Since 2015, the Norwegian Meteorological Institute 
(MET Norway) has provided high resolution, short range 
(up to 66 hours lead time) operational weather forecasts 
for an area that includes the coast of northern Scandinavia, 
parts of the Norwegian-, Greenland- and Barents 
Seas, and the Svalbard archipelago (Figure 1) using the 
AROME-Arctic model. AROME-Arctic is a non-hydrostatic 
convection permitting deterministic NWP model with 

Figure 1 The AROME-Arctic domain shown by the blue rectangle.
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a grid length of 2.5 km in the horizontal and 65 terrain 
following vertical levels (Køltzow et al., 2019; Müller et al., 
2017a). AROME-Arctic is a specific implementation of the 
HARMONIE-AROME configuration of the ALADIN-HIRLAM 
numerical weather prediction system (Bengtsson et al., 
2017), with a setup that closely follows developments 
made with the AROME-MetCoOp operational model 
(Müller et al., 2017b), which runs operationally for a 
domain that covers the Nordic countries.

The relative scarcity of observations in the Arctic region 
means that it is to be expected that there is considerable 
uncertainty in the forecasts that AROME-Arctic produces. 
It is therefore important to model that uncertainty so 
that users and stakeholders can make better informed 
decisions in a risk based environment where the 
consequences of weather hazards can be extremely 
damaging, both economically and in the potential for 
severe injury or loss of life. The development of ensemble 
prediction systems (EPS) has enabled uncertainties 
that stem from many parts of the NWP model to be 
estimated (Lewis, 2005). Considerable work has been 
done on the development of global EPSs by estimating 
uncertainties in the initial conditions (e.g. Buizza and 
Palmer, 1995; Toth and Kalnay, 1993), uncertainties in 
observations (e.g. Isaksen et al., 2010) and uncertainties 
in model physics parameterizations (e.g. Ollinaho et al., 
2017; Palmer et al., 2009). As computational power has 
increased the development of convection permitting 
limited area ensembles has become possible whereby 
uncertainty estimation also includes boundary and initial 
condition uncertainty emanating from the host model 
(e.g. Bouttier et al., 2016; Frogner et al., 2019; Hagelin et 
al., 2017; Wang et al., 2011).

The AROME-Arctic domain is approximately 85% 
ocean (although more than half of that could have some, 
or complete, sea ice cover depending on the time of year) 
so it would be reasonable to expect that energy fluxes 
between the ocean surface and the atmosphere play an 
important role in the evolution of weather parameters, 
particularly in the atmospheric boundary layer. Sea 
surface temperature (SST) is an important component in 
the computation of the fluxes of sensible and latent heat 
between the ocean and the atmosphere so inaccuracies 
in the SST at the lower boundary of the NWP model could 
have significant impacts on the forecasts. Indeed Donlon 
et al. (2012) showed that Operational Sea Surface 
Temperature and Sea Ice (OSTIA) product, which is used 
to provide SST in AROME-Arctic, exhibits an average root 
mean square error (RMSE) over the Arctic Ocean of 0.72 
K when compared with satellite observations and 0.46 
K when compared with in situ observations for a period 
covering 1 January 2007 to 31 December 2010.

A number of studies have been done to determine 
the impact of including uncertainty estimates for SST 
in EPSs. Tennant and Beare (2014) used both global and 
regional implementations of the MOGREPS model to 

investigate the impact of perturbing SST fields with the 
spatial scaling properties of perturbations derived from fast 
Fourier transforms (FFT) of daily differences in SST, further 
scaled by the mean daily difference in SST for the month. 
They found that this led to an increased spread for 2 m 
temperature of ~0.5–1 K over the European Arctic ocean. 
Where observations were available over land they found 
negligible impact on the RMSE in terms of global average. 
However, they did note that in some regions increases 
in spread of 2 m temperature over the ocean were 
compensated by decreases in spread over land. Lavaysse et 
al. (2013) perturbed SST in the Canadian regional ensemble 
prediction system using spatially smoothed random fields 
with a decorrelation length scale of 500–1000 km. They 
found a similar impact on 2 m temperature over the ocean 
to Tennant and Beare (2014), but also noted increases in 
spread for precipitation and 10 m wind speed in precipitating 
areas. Bouttier et al. (2016) and Frogner et al. (2019) use a 
similar stochastic method to perturb for their convection 
permitting EPSs with decorrelation length scales of ~400 
and ~150 km respectively, though they do not discuss the 
impact of the SST perturbations acting alone.

The aforementioned studies make the case for 
perturbing SST in EPSs, but what is not clear is to what 
extent the location and magnitude of SST perturbations 
matter. In this article we aim to address that question, 
specifically for high impact weather events over 
the AROME-Arctic domain. A comparison is made 
between purely stochastic, but spatially correlated SST 
perturbations and SST perturbations that are designed to 
target the locations where the uncertainty is largest, for 
a number of high impact weather events using an EPS 
implementation of the AROME-Arctic NWP model.

Following this introduction, the article is organised as 
follows: Section 2 describes the EPS implementation of 
the AROME-Arctic model, the methods used to generate 
the SST perturbations, the high impact weather events 
and the verification metrics used. Section 3 presents 
the results of the experiments and a discussion of those 
results and conclusions follow in Section 4.

2 METHODS

2.1 MODEL DESCRIPTION
The model used for this study is based on the AROME-
Arctic model (Køltzow et al., 2019; Müller et al., 2017b); 
the operational implementation of the Harmonie-AROME 
model (Bengtsson et al., 2017) for the Arctic region 
around Norway used at MET Norway. The model is set up 
similar to the Harmonie EPS system (Frogner et al., 2019) 
to provide ensemble forecasts. It runs with a 2.5 km 
horizontal grid length and 65 terrain following vertical 
hybrid layers. The domain the experiments were run on 
covers parts of the northern Scandinavian mainland and 
European Arctic and is shown in Figure 1.
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The control member of the ensemble used three 
dimensional variational (3DVAR; Brousseau et al., 
2011) to assimilate upper air observations from 
radiosondes and satellites with three hour cycling, and 
optimal interpolation to assimilate observations of 2 m 
temperature and 2 m humidity (Giard and Bazile, 2000). 
The data assimilation used three-hour cycling and the 
control member was spun up for 10 days prior to each 
experiment. In addition to the data assimilation the 
model included a blending of large spatial scales from 
the global model providing boundary conditions in order 
to obtain a more accurate first guess.

The Integrated Forecasting System High Resolution 
(IFS HRES) from the European Center for Medium-Range 
Weather Forecasts (ECMWF) was used to perturb the 
lateral boundary and initial conditions for forecasts 
initialised at 00 UTC. Perturbations were generated using 
the scaled lagged average forecast (SLAF) approach 
(Ebisuzaki and Kalnay, 1991; Kalnay, 2019), where 
differences between lagged forecasts from IFSENS with 
the same validity time are added to or subtracted from 
the control member of the model. The perturbations 
were scaled using the total energy norm (Keller et al., 
2008) to ensure that each perturbation has roughly the 
same impact on the forecast. The model was run with 10 
perturbed members in addition to the control member.

Surface processes were modelled using SURFEX 
(Masson et al., 2013), which included a sea ice model 
that uses a simple thermodynamic scheme (Batrak et 
al., 2018). For all experiments surface parameters were 
perturbed at the forecast initialization time following 
Frogner et al. (2019). These parameters include the 
following physiographic variables: vegetation index, 
vegetation heat coefficient, leaf area index, land albedo 
and land roughness length; as well as the prognostic 
variables: soil temperature, soil moisture and snow 
depth. In addition surface fluxes over the ocean are 
perturbed with the same pattern at each time step to 
simulate the perturbation of roughness length of the sea. 
The perturbations were applied multiplicatively except 
for the soil temperature, which was applied additively. 
The perturbation patterns were generated by applying a 
recursive filter to a normalised field of stochastic noise 
sampled from a uniform distribution until a correlation 
length scale of ~150 km was achieved. The normalisation 
is scaled according to a prescribed standard deviation 
for each of the perturbed parameters. The seed for the 
stochastic noise generation is derived from the forecast 
start date.

2.2 SST PERTURBATIONS
We wish to compare SST perturbations that are randomly 
located with those with locations targeted towards 
regions where the uncertainty is thought to be greatest. 
For the randomly located SST perturbations we followed 
the method for the other surface perturbations described 

above. Following Frogner et al. (2019) a standard 
deviation of 0.25 K was used and the perturbations 
were applied additively. Additionally, the perturbation 
fields were clipped to have minima and maxima of twice 
the standard deviation. We refer to these experiments 
as OPERATIONAL since they use the same settings as 
operational implementations of HARMONIE-AROME EPS.

For the SST perturbations targeted towards regions 
where the uncertainty is thought to be greatest, a method 
based on nonparametric noise generation described in 
Seed et al. (2013) and Pulkkinen et al. (2019) is used. This 
method is similar to that of Tennant and Beare (2014) 
in that the power spectrum of an error field is used to 
determine the spatial scales of the perturbations and a 
further field that estimates the location and magnitude 
of the errors is used to scale the perturbations. We refer 
to this method as targeted SST perturbations (TSSTP) and 
describe its implementation in detail below.

TSSTP requires an estimate of the error, ε, of the initial 
SST field to derive the spatial correlations from, as well as 
an SST scaling field, s to derive the magnitude of the SST 
perturbations for the domain of interest. The generation 
method consists of the following steps:

1.	 Generation of a white noise field, w.
2.	 Fast Fourier Transformation of the white noise field w 

and the SST error estimate, ε.
3.	 Filtering of the fourier transform of the white noise 

field, F(w), with the modulus of the fourier transform 
of the error estimate, |F(ε)|, to obtain a perturbation 
field, F(p), with the spatial correlation structure of the 
error estimate.

4.	 Inverse FFT of the perturbation field, F(p), to 
transform it from Fourier space to physical space, p.

5.	 Normalisation of the perturbation field, p, to a mean 
of zero and standard deviation of one.

6.	 Scaling of the normalised perturbation field by 
multiplication with a scaling field, s, to obtain the 
scaled perturbation field.

7.	 Addition of the scaled perturbation field, s, to the SST 
field of the NWP model.

The SST error field, ε, was estimated by comparing SST 
data from the ECMWF IFS HRES operational analysis 
to the Multi-scale Ultra-high Resolution Sea Surface 
Temperature Analysis (MUR). Note that the SST from 
ECMWF IFSHRES is OSTIA data interpolated to the model 
grid.

The ECMWF HRES operational model is run four times 
a day with analysis times at 00, 06, 12 and 18 UTC. 
These data were further interpolated to a global 0.1 x 
0.1 degree grid from the IFSHRES grid. The MUR dataset 
provides global and daily SST data derived from a range 
of satellites with microwave and infrared sensors with a 
spatial resolution of 0.01 degrees. The dataset spans 1 
June 2002 to the present. The MUR dataset represented 
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the best proxy of the high resolution SST patterns and 
thus errors in the IFSHRES SST data.

MUR SST and sea ice concentration (SIC) data were 
cropped and projected to match the extent, resolution 
and projection of the IFS HRES data. Then the difference 
of IFS HRES SST to MUR SST was calculated for each grid 
point. Grid points over landmasses or grid points with a 
sea ice concentration (SIC) greater than zero in either IFS 
HRES or MUR were excluded.

The error estimation field, ε, was derived by calculating 
the mean absolute differences for the week covering 
the experiment periods as described in Table 1. The 
experiments based on these datasets are called TSSTP_

weekly_pert in the following. A second error estimation 
field was calculated from a dataset spanning the period 
from 1.1.2018 to 31.12.2018, using the same method 
as described above, to test the impact of the underlying 
estimation fields on the perturbation generation and 
consequently the model. These experiments are labelled 
TSSTP. The error estimation field, ε, was reprojected to fit 
the model projection and resolution in a final step. The 
resulting fields are displayed in Figure 2.

For simplicity we choose to use the error estimation 
field, ε, as the scaling field, s, in this study. However, this 
is not a general requirement and both ε and s can be 
different fields.

DATE NAME EVENT PERIOD FOR ERROR ESTIMATION

2019-10-29 to 2019-10-31 PL Polar low 2019-10-28 to 2019-11-03

2020-01-04 to 2020-01-05 CAO I Cold air outbreak 2019-12-30 to 2020-01-05

2020-02-04 to 2020-02-05 STR Storm over northern Norway 2020-02-03 to 2020-02-09

2020-03-10 to 2020-03-12 CAO II Cold air outbreak 2020-03-09 to 2020-03-15

ALL All case studies together

Table 1 Case study periods and periods used for SST error estimation.

Figure 2 Error estimation fields, ε – a) 2018; b) 2019-10-28 to 2019-11-03; c) 2019-12-30 to 2020-01-05; d) 2020-02-03 to 2020-02-09; 
e) 2020-03-09 to 2020-03-15.



276Grote and Singleton Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.27

Following an analysis of the perturbations generated 
for the OPERATIONAL and TSSTP experiments (not shown) 
it was found that the L1 norm of the perturbations was 
smaller for OPERATIONAL (~0.3 K) than for TSSTP or 
TSSTP_weekly_pert (~0.5 K). A further experiment was 
done with the same setup as OPERATIONAL, but with the 
standard deviation of the SST perturbations inflated to 
0.55 K, such that the L1 norm of the perturbations was 
roughly equal to that for TSSTP or TSSTP_weekly_pert. We 
refer to this experiment as REFERENCE as it provides a 
fairer reference against which to assess the TSSTP and 
TSSTP_weekly_pert experiments.

2.3 PERIODS USED FOR CASE STUDIES
The impacts of the different SST perturbations were 
studied in four case studies. The periods of the case 
studies are listed in Table 1. The model was run with 
lead times up to 48 hours from 00 UTC for each day in 
the case study periods for the OPERATIONAL, TSSTP, 
TSSTP_weekly_pert and REFERENCE experiments. The 
case studies were mostly chosen for meteorological 
situations in which SST plays an important role. These 
include a Polar low case and two cold air outbreak cases. 
A fourth case consisted of the passage of a storm low 
over northern Norway, which is not particularly tied to 
SST, but should give an indication of the EPS performance 
for a typical situation of high impact weather.

2.4 VERIFICATION METHODOLOGY
The verification and comparison of the SST perturbation 
methods was done against point observations using 
the harp software package developed for the HIRLAM 
and ALADIN consortia (https://harphub.github.io/harp). 
Forecasts were verified against observations from SYNOP 
stations for the surface parameters mean sea level 
temperature, 2 m temperature, 2 m specific humidity and 
10 m wind speed. The AROME-Arctic domain covers for 
the most part ocean and the SYNOP stations are mainly 
on the Scandinavian mainland and on the Arctic islands, 
which limits their representativeness. The verification of 
10-m wind speed was therefore repeated with Advanced 
Scatterometer (ASCAT) data with a resolution of 12.5 km. 
Additionally, the root mean square error (RMSE) and 
spread was calculated for the whole domain by verifying 
against operational analyses from the AROME-Arctic 
model (Müller et al, 2017a).

The verification metrics used in this study are: mean 
bias as a measure of the average forecast error; spread 
as a measure of the difference between the ensemble 
members, represented by the square root of the mean 
variance of the ensemble members; spread-skill-ratio as 
the ratio of ensemble spread to the root mean square error 
the value should be approximately one for a well calibrated 
ensemble system; and continuous ranked probability 
score (CRPS) as a measure of the difference between the 
forecast and observed cumulative distribution function 
and the general quality of the ensemble.

The statistical significance of the differences between 
the TSSTP, TSSTP_weekly_pert, OPERATIONAL and 
REFERENCE experiments with regards to the different 
scores was determined by Kolmogorov-Smirnov testing 
on a 1000 replicate bootstrap sample. Scores were 
computed independently for each experiment and 
parameter at each lead time from the pool of forecast/
observation data. Samples were then drawn randomly 
with replacement from the computed scores. This was 
done separately for the TSSTP, TSSTP_weekly_pert, 
OPERATIONAL and REFERENCE experiments. Pools with 
fewer than 10 items were ignored. A Kolmogorov – Smirnov 
test was then used to determine if the samples of the 
various experiments came from different distributions. 
The null hypothesis was tested for 1%, 5% and 10% 
significance levels. The mean of the sampled scores was 
used to determine the quality of the experiments relative 
to each other. An experiment was considered to be better 
than a reference experiment if it had a mean bias or CRPS 
closer to zero, and if it had a larger spread compared to 
the reference experiment. The spread skill ratio should 
ideally approach one. Therefore an experiment was 
considered better if the distance of its spread skill ratio 
was closer to one compared to a reference experiment.

3 RESULTS

3.1 PERTURBATIONS COMPARISON AND 
SYNOPTIC SITUATION
Histograms of the SST perturbations generated for 
each experiment were constructed using data from 
the initial SST for each perturbed ensemble member 
(Figure 3). Approximately half of the perturbations lie 
in a range between –0.125 to 0.125 degrees C for each 
of the methods. The methods for OPERATIONAL and 
REFERENCE limited the magnitude of the maximum and 
minimum perturbations, which is apparent in a sharp cut 
on both ends of the histograms, while there is no limit 
to the magnitude of perturbations in TSSTP and TSSTP_
weekly_pert. The limit for perturbations in OPERATIONAL 
was smaller resulting in a larger number of perturbations 
being in the range between –0.375 and 0.375 degrees 
C compared with REFERENCE, TSSTP and TSSTP_weekly_
pert. Both REFERENCE, TSSTP and TSSTP_weekly_pert are 
very similar for perturbations up to +/– 0.875 degrees C.

Figure 4 shows a direct comparison of the mean 
magnitudes of the perturbations for the various 
experiments and case study periods. Since each 
experiment uses the same seed to generate the random 
numbers, the initial white noise field is the same for 
each experiment. Both OPERATIONAL and REFERENCE 
show rather homogeneous perturbation fields since the 
locations of the perturbations are fully governed by the 
initial white noise field. In fact the only difference between 
OPERATIONAL and REFERENCE is the perturbation 
amplitude due to the inflated standard deviation used 

https://harphub.github.io/harp
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Figure 4 Mean absolute SST perturbations for OPERATIONAL (top left panel), REFERENCE (top right panel), TSSTP (bottom left panel) 
and TSSTP_weekly_pert (bottom right panel) for each experiment period individually.

Figure 3 Histograms of perturbations for each experiment.
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in the generation of the perturbations for REFERENCE. 
Both TSSTP and TSSTP_weekly_pert show perturbations 
with comparable magnitude as REFERENCE, as intended 
by the design of the REFERENCE perturbations, but do 
not display the same homogeneity since the scaling 
field has a large influence on the locations of the 
strongest perturbations. This is especially apparent for 
the perturbation fields of TSSTP_weekly_pert. The error 
estimation field, used in the perturbation generation and 
scaling, of TSSTP, is based on the mean absolute error of 
a longer period when compared to TSSTP_weekly_pert. 
This results in a smoothing of the perturbation fields for 
TSSTP. TSSTP shows areas with stronger perturbations 
mainly west of Svalbard, while TSSTP_weekly_pert shows 
additional strong perturbations over the whole domain 
as these represent the uncertainties in the SST in the 
week preceding each of the weather events.

Satellite cloud observations and synoptic analyses 
for the case study period for the polar low case from 
29–31 October 2019 showed the development of a polar 
low southwest of Svalbard, which moved eastwards 
eventually hitting the coast of northern Norway (Figure 
5). The polar low developed in the wake of a low pressure 
system that moved from Greenland to the Norwegian 
mainland during 29 October 2019 and the first half of 
30 October 2019. TSSTP and especially TSSTP_weekly_
pert show the largest perturbations in the area of the 
developing polar low.

The two case study periods covering cold air outbreaks 
were from 4 January 2020 (CAO I, Figure 6) and from 10–
14 March 2020 (CAO II, Figure 7). In both cases the cold 

air outbreak developed after the passage of a low pressure 
system south of Svalbard. In both cases cold air masses 
were transported from the polar region west of Svalbard 
towards the Norwegian coast, leading to the development 
of snow showers. For the COA I case, both TSSTP and 
TSSTP_weekly_pert show the largest perturbations west 
of Svalbard, the region of the cold air outbreak. The 
perturbations were not as large for both TSSTP and TSSTP_
weekly_pert in the CAO II case. TSSTP shows a rather 
homogeneous field, while TSSTP_weekly_pert displays the 
largest perturbations further south of Svalbard.

Figure 5 Synoptic situation during PL case study. Satellite image and mean sea level pressure. From left to right: 2019-10-30 21 UTC 
and 2019-10-31 12 UTC.

Figure 6 Synoptic situation during the CAO I case study. Satellite 
image, mean sea level pressure (solid lines) and thickness 500 – 
1000 hPa layer (dashed lines). 2020-01-04 12 UTC.
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The period from 4–5 February 2020 (STR) showed the 
development of a low pressure system over the Barents 
Sea (Figure 8), which led to strong winds and snow 
showers over large areas along the northern Norwegian 
coast, caused by cold air being transported from the north 
over the Norwegian sea and towards the Norwegian 
mainland. TSSTP shows the largest perturbations west 
of Svalbard and in the area east of Greenland, while 
TSSTP_weekly_pert shows large perturbations south and 
southwest of Svalbard, and along the ice-edge east of 
Svalbard.

3.2 COMPARISON OF PERTURBATIONS 
METHODS BASED ON SYNOP OBSERVATIONS
The results of the comparison of the various experiments 
regarding mean sea level pressure is displayed in Figure 
9. The results are mixed for the mean bias. REFERENCE 
and TSSTP show in general a worse mean bias compared 
to OPERATIONAL, while TSSTP shows a better mean bias 
compared to REFERENCE. TSSTP_weekly_pert seems 
to improve mean bias in comparison to all of the other 
experiments.

There is no significant difference in spread between 
REFERENCE and OPERATIONAL. TSSTP however seems to 
improve spread, while TSSTP_weekly_pert reduces spread 
when compared to all other experiments. There are only a 
few significant differences between TSSTP_weekly_pert and 
OPERATIONAL or REFERENCE for day one of the forecast.

Both TSSTP_weekly_pert and TSSTP improve the spread 
skill ratio during the first 27 and 21 hours, respectively, 
and predominantly show a worse spread skill ratio 
thereafter. There is only little significant differences 
between REFERENCE and OPERATIONAL. REFERENCE 
shows a better spread skill ratio from hour 36.

The CRPS of REFERENCE is worse than that of 
OPERATIONAL. TSSTP shows a better CRSP when compared 
to REFERENCE, and less significant differences and 
mainly a worse CRPS when compared to OPERATIONAL. 
TSSTP_weekly_pert shows a periodic change between 
improvement and degradation compared to all other 

experiments, where improvement occurs mainly during 
daytime and degradation mainly during night hours.

The results of the comparison regarding 2 m 
temperature are shown in Figure 10. There is only 
little significant difference in mean bias between 
OPERATIONAL, REFERENCE and TSSTP, apart from 
REFERENCE showing a better mean bias compared to 
OPERATIONAL from hour 33. TSSTP_weekly_pert shows a 
worse mean bias compared to all other experiments for 
the entire forecast period.

REFERENCE shows mainly a larger spread compared 
to OPERATIONAL. TSSTP has higher spread compared 
both to REFERENCE and OPERATIONAL, while showing a 
lower spread when compared to TSSTP_weekly_pert. The 
comparison of TSSTP_weekly_pert to OPERATIONAL and 
REFERENCE shows mainly an increase in spread during 
the first 24 hours and mainly degradation thereafter.

Figure 7 Synoptic situation during the CAO II case study. Satellite image, mean sea level pressure (solid lines) and thickness of the 500 – 
1000 hPa layer (dashed lines). From left to right: 2020-03-10 00 UTC, 2020-03-11 06 UTC and 2020-03-12 09 UTC.

Figure 8 Synoptic situation during the STR case study. Satellite 
image and mean sea level pressure. 2020-02-05 03 UTC.
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The differences of the spread skill ratio reflect 
the differences in spread when comparing TSSTP, 
OPERATIONAL and REFERENCE due to a similar mean bias 
in all those three experiments. This is as well the case for 
the differences of the spread skill ratio of TSSTP_weekly_
pert compared to the other three experiments. Even 
though TSSTP_weekly_pert shows a worse mean bias in 
all comparisons.

CRPS shows almost no significant differences between 
REFERENCE and OPERATIONAL. TSSTP seems to improve 
CRPS when compared to REFERENCE and OPERATIONAL. 
TSSTP_weekly_pert generally improves CRPS when 
compared to the other three experiments with some 
degradation during the last 6 to 15 hours.

The comparison of the experiments regarding 2 m 
specific humidity show similarity to the differences of 2 
m temperature, and are displayed in Figure 11. Again, 
TSSTP_weekly_pert shows mainly a worse mean bias 
compared to all other experiments. REFERENCE seems 

to improve mean bias compared to OPERATIONAL from 
forecast hour 33 on, but shows a worse mean bias when 
compared to TSSTP for the same period.

TSSTP shows a larger spread and spread skill ratio when 
compared to both OPERATIONAL and REFERENCE. While 
REFERENCE shows improvement over OPERATIONAL for 
both those metrics. TSSPT_weekly shows a mainly larger 
spread when compared to REFERENCE and OPERATIONAL, 
but a smaller spread when compared to TSSTP. This is, 
however, not reflected in the spread skill ratio, where 
TSSTP_weekly_pert shows improvement over all other 
three experiments suggesting a lower RMSE.

In the case of CRPS, both TSSTP, REFERENCE and 
OPERATIONAL show less significant differences, and 
mainly improvement of TSSTP over both REFERENCE and 
OPERATIONAL. TSSTP_weekly_pert shows improvement 
over all three experiments in the period between 12 and 
39 hours, and predominantly degradation before and 
after that period.

Figure 10 Comparison of the experiments regarding 2 m temperature.

Figure 9 Comparison of the experiments regarding mean sea level pressure.
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The results of comparing the experiments regarding 
10 m wind speed can be seen in Figure 12. The 
differences in mean bias show some similarity to those of 
2 m temperature and specific humidity. TSSTP_weekly_
pert shows a worse mean bias compared to the other 
three experiments, while TSSTP shows no differences 
compared to OPERATIONAL, but degradation when 
compared to REFERENCE. REFERENCE however shows 
some improvement compared to OPERATIONAL.

Both spread and spread skill ratio show a variation 
of improvement and degradation, depending on the 
forecast hour for most of the comparisons. TSSTP_
weekly_pert predominantly seems to perform worse 
compared to the other three experiments. TSSTP 

shows little differences during the first 12 hours when 
compared with REFERENCE and OPERATIONAL. There 
is some indication that TSSTP shows larger spread and 
better spread skill ratio during the first half of the forecast 
compared with OPERATIONAL. REFERENCE in general 
seems to increase spread and thus improve spread skill 
ratio when compared to OPERATIONAL.

CRPS shows almost no significant differences for 
any of the comparisons, apart from TSSTP_weekly_pert 
showing consistently worse CRPS during the first 6 hours 
of the forecasts, and both TSSTP and TSSTP_weekly_
pert showing some isolated cases of improvement 
over the other experiments during the last half of the 
forecasts.

Figure 11 Comparison of the experiments regarding 2 m specific humidity.

Figure 12 Comparison of the experiments regarding 10 m wind speed.



282Grote and Singleton Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.27

3.3 COMPARISON OF PERTURBATIONS 
METHODS BASED ON ASCAT WIND 
OBSERVATIONS
The comparison of the experiments based on ASCAT 
wind observations is displayed in Figure 13. REFERENCE 
and TSSTP generally increased the mean bias compared 
to OPERATIONAL. The comparison of TSSTP to REFERENCE 
indicated tendencies of a worse mean bias during the first 
half of the forecast periods and improvement thereafter. 
TSSTP_weekly_pert predominantly improved mean bias 
compared with the other experiments.

Both REFERENCE, TSSTP and TSSTP_weekly_pert 
improved spread when compared to OPERATIONAL. 
REFERENCE showed increased spread compared to TSSTP 
for almost the entire forecast period, and increased 
spread for the majority of the period when compared to 
TSSTP_weekly_pert. The comparison of TSSTP_weekly_
pert and TSSTP regarding spread shows mainly decreased 
spread during the first half of the forecast period and 
mainly increased spread thereafter.

The results for spread skill ratio indicate improvement 
for both TSSTP_weekly_pert, TSSTP and REFERENCE 
over OPERATIONAL. TSSTP_weekly_pert shows clear 
improvement for the whole period apart from the 
first 9 forecast hours over all other experiments. The 
comparison of TSSTP and REFERENCE shows a better 
performance and spread skill ratio for REFERENCE.

CRPS mirrors the differences of spread skill ratio in the 
case of TSSTP_weekly_pert. TSSTP shows a worse CRPS 
when compared to OPERATIONAL, and a worse CRPS 
during the first half of the forecast period followed by 
improvement when compared to REFERENCE. REFERENCE 
shows improvement of CRPS during the first half of 
the forecast period and degradation thereafter when 
compared to OPERATIONAL.

3.4 COMPARISON TO OPERATIONAL ANALYSES
The verification against operational analyses is split into 
scores for all grid points, for grid points over land, for 
grid points over open sea (sea ice concentration < 0.5 in 
the analysis) and for grid points over both sea and sea 
ice. As for the verification against SYNOP stations and 
ASCAT wind speeds, the scores were computed over all 
of the weather events in this study combined. Only the 
ensemble spread and RMSE are shown as they succinctly 
summarise the performance of the ensemble and of the 
differences between experiments discussed in this section 
are statistically significant by the bootstrap method.

Figure 14 shows the spread and RMSE for mean sea 
level pressure for all experiments, with the spread and 
RMSE for 10 m wind speed displayed in Figure 15. For 
both of these parameters, all experiments show only 
small differences in spread and RMSE both over land 
and sea. With regard to mean sea level pressure, all 
experiments have a spread that exceeds the RMSE, which 
is a known feature of the Harmonie EPS ensemble and 
SST perturbations have little impact overall on improving 
that.

Spread and RMSE for 2 m temperature are shown in 
Figure 16. Again, all experiments show rather similar 
RMSE and spread over land. Over the sea, however, the 
spread is biggest for TSSTP_weekly_pert, followed by 
TSSTP, REFERENCE and OPERATIONAL in that order. With 
the inclusion of grid points over sea ice TSST_weekly_pert 
shows a smaller RMSE on the first day of the forecast.

The differences for 2 m specific humidity (Figure 17) 
show, similar to 2 m temperature, similar RMSE and 
spread for all experiments over land, and differences 
in spread over sea as described for 2 m temperature. 
Though the differences seem to be overall smaller for 
2 m specific humidity.

Figure 13 Comparison of the experiments regarding 10 m wind speed based on verification with ASCAT wind data.
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Figure 14 Spread and RMSE for mean sea level pressure.

Figure 15 Spread and RMSE for 10 m wind speed.
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Figure 16 Spread and RMSE for 2 m temperature.

Figure 17 Spread and RMSE for 2 m specific humidity.
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4. DISCUSSION

In this research we aim to determine to what extent the 
location and magnitude of SST perturbations in a limited 
area EPS over the European Arctic impacts forecast 
performance for high impact weather. This question was 
addressed by running experiments with SST perturbations 
located randomly (OPERATIONAL and REFERENCE), and 
with SST perturbations targeted towards locations where 
the SST uncertainty was thought to be largest (TSSTP 
and TSSTP_weekly_pert). For the randomly located SST 
perturbations, the magnitudes of the perturbations 
were different in the two experiments. For the targeted 
perturbations, the experiments used different time 
periods for the estimation of SST uncertainty. Ensemble 
verification scores for the different perturbation setups 
were compared for near surface weather parameters 
observed at SYNOP stations over land, wind speed derived 
from ASCAT scatterometer observations over the ocean, 
and for parameters derived from operational analyses.

A bootstrap approach with 1000 replicates was 
performed to test the similarity of the verification 
results. The Kolmogorov-Smirnov test was chosen to find 
significant differences between the bootstrap samples 
of the experiments in this study. A property of the test 
is that it is sensitive to all types of differences between 
the distributions being compared, i.e. different medians, 
different variances, or different distributions, and as a 
result tends to have a smaller power compared to other 
significance tests. However, it has been shown that the 
power of the test can become very large when using large 
sampling sizes (Larson, 2018), leading to false rejections 
of the null hypothesis that both experiment scores stem 
from similar underlying distributions.

Since the only difference between the experiments is 
the structure and magnitude of the SST perturbations, 
it would be reasonable to expect an impact on the 
temperature over the sea. Verification against analyses 
from the operational AROME-ARCTIC model was done 
to assess the impact of the different SST perturbation 
strategies over the sea. Operational analyses were chosen 
as a reference against which to verify the experiments 
due to the lack of direct observations over the sea. Whilst 
an analysis cannot be considered to be as accurate as 
direct observations, it can provide a reasonable estimate 
against which to compare different modelling setups in 
the absence of in situ observations.

An increase in the spread for 2 m temperature over 
sea grid points (Figure 16) is seen as the magnitude of 
the perturbations increases from the OPERATIONAL 
to the REFERENCE experiments. As the locations of the 
perturbations become more structured in the TSSTP 
experiment a further increase in ensemble spread for 
2 m temperature is observed, and finally as the locations 
of the SST perturbations become more targeted towards 
to the actual uncertainty in the SST in the TSSTP_weekly_

pert experiment another increase in the 2 m temperature 
spread is seen. These increases in spread do not lead to 
any degradation of the RMSE for 2 m temperature and 
thus an improved spread-skill relationship is achieved 
over the sea. This means that both TSSTP and to a 
larger extent TSSTP_weekly_pert are generating SST 
perturbations in areas where the atmosphere is more 
sensitive to changes in the SST. An added advantage is 
that TSSTP_weekly_pert ensures that no perturbations 
occur in grid squares with sea ice concentration greater 
than zero, meaning that the RMSE over sea grid squares 
including sea ice is greatly reduced. Changes in sea 
surface temperature are also likely to impact evaporation 
and a similar, albeit smaller, increase in spread is seen 
for 2 m specific humidity as the perturbations increase 
in magnitude and become more structured towards 
specific locations (Figure 17).

The increases in ensemble spread for 2 m temperature 
and 2 m specific humidity suggest that there may be an 
impact on the sensible and latent heat fluxes which could 
influence the development of weather systems and have 
a downstream effect over the land. With this in mind, 
the impact of the different SST perturbation strategies 
was investigated against satellite derived observations 
of wind speed over the sea using scatterometer derived 
wind speeds and over land using observations from SYNOP 
stations. On the whole, small, but statistically significant 
differences for verification scores were found between 
the different SST perturbation methods suggesting that 
the chosen case studies were sensitive to changes in SST.

The verification against scatterometer winds (Figure 
13) suggests that proper targeting of the SST perturbations 
has a positive impact on the ensemble forecast of 10 
m wind speeds over the sea, with TSSTP_weekly_pert 
verifying better than the other perturbations for most 
lead times except for the first 9 – 12 hours of the forecast. 
In general increasing the magnitude of the perturbations 
improves the performance of the ensemble, with 
REFERENCE outperforming OPERATIONAL at the expense 
of a worsened bias, but targeting those perturbations 
towards areas of general SST uncertainty derived from 
annual estimates appears to have a detrimental effect 
(TSSTP vs REFERENCE). This means the way that the latent 
and sensible heat fluxes interact with the wind speed over 
the sea for the weather systems included in this study is 
sensitive to the locations of the SST perturbations.

The four weather events included in this study 
developed and were mostly active over the sea. This means 
that the impacts of SST perturbations on verification 
scores for SYNOP stations over land were either related to 
downstream effects from the large scale weather system, 
or more localised atmospheric responses.

The results showed a variation of improvements in the 
case of mean sea level pressure. While it appears that 
TSSTP and REFERENCE increased the mean bias of the 
model, they also had a positive impact by increasing the 
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spread. However, the increased spread was not able to 
outweigh the degradation due to the increased mean 
bias. This becomes also apparent in a general poorer 
CRPS for both experiments. TSSTP_weekly_pert showed 
slightly different results where mean bias showed some 
improvement while spread was decreased, leading 
generally to an improvement of the spread skill score. 
Further, it showed a periodic behaviour of improvement 
and degradation for CRPS, where improvement seems 
to be connected to daytime and degradation to night 
time. Although statistically significant, the magnitudes of 
these changes are very small as suggested by the RMSE 
for mean sea level pressure over land (Figure 14).

For 2 m temperature and 2 m specific humidity, the 
experiments with increased perturbation amplitudes 
(REFERENCE, TSSTP, TSSTP_weekly_pert) seemed to 
increase the spread, which led to an improved ensemble 
performance as indicated by the spread skill ratio and the 
CRPS for TSSTP. In the case of REFERENCE the increased 
spread did not necessarily lead to an improved spread 
skill ratio or CRPS. TSSTP_weekly_pert also showed a 
statistically significant increase of mean bias at all lead 

times for 2 m temperature and most lead times for 2 m 
specific humidity. This suggests that the targeted SST 
perturbations may be unbalanced. Over infinite ensemble 
members a well balanced perturbation strategy should 
tend towards a value of zero at each grid point. The mean 
perturbations for each of the SST perturbation methods 
(Figure 18) suggest that there is a tendency towards 
warmer perturbations around the north Norwegian coast, 
and it may be this that is impacting the bias. However, 
given that this is a limited number of cases and only ten 
ensemble members it may not be the case if more time 
periods were included in the analysis. Additionally, there 
may be a disconnect between the SST perturbations and 
the soil temperature perturbations over the land that 
results in a bias. The SST perturbations in REFERENCE and 
OPERATIONAL use the same perturbation pattern as the 
soil temperature perturbations over land following Bouttier 
et al (2016) whereas there is no relationship between the 
SST perturbations and the soil temperature perturbations 
over land for TSSTP and TSSTP_weeklyy_pert. However, if 
this disconnect were the source of the poorer mean bias it 
would also be reflected in the mean bias for TSSTP.

Figure 18 Mean SST perturbations for each of the perturbation methods averaged over all forecasts.
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The results for 10 m wind speed based on SYNOP 
observations indicated an increased mean bias for TSSTP 
and TSSTP_weekly_pert but no consistent improvement of 
spread, leading to very mixed results for the spread skill 
ratio and almost no significant differences for the CRPS. 
Only the REFERENCE experiment showed improvement 
in mean bias and spread, but lacked any improvements 
in CRPS. However, the comparison based on ASCAT wind 
observations indicated improvement in mean bias and 
some improved spread for TSSTP_weekly_pert, leading to 
an overall better EPS performance as indicated by spread 
skill ratio and CRPS. The same observation could not be 
made for TSSTP and REFERENCE. Both show an increased 
spread as well, but due to increases in mean bias, the 
improvement in spread did not lead to improvement of 
the spread skill ratio or CRPS in the case of TSSTP, or to 
consistent improvements of CRPS in the case of REFERENCE.

The improvement of REFERENCE, TSSTP and especially 
TSSTP_weekly_pert over OPERATIONAL suggest that for 
the Arctic Ocean, larger SST perturbations are needed 
for forecasts of 2 m temperature, 2 m specific humidity 
and wind speed than for other domains for which the EPS 
had been optimised (Frogner et al., 2019). Additionally, it 
seems that the increased amplitude of the perturbations 
rather than the exact placement of uncertainty is of more 
importance for coastal areas, since all three experiments 
showed improvement for the mainly land based SYNOP 
observations and TSSTP_weekly_pert did not perform 
better compared to TSSTP or REFERENCE.

5. CONCLUSIONS

Two general methods to perturb SST in an ensemble 
prediction system (Harmonie EPS) were compared for a 
domain over the Nordic Arctic using four weather events 
that were thought to be influenced by SST. One method 
distributes the perturbations randomly and the other 
attempts to target the perturbations towards areas where 
the SST is thought to be most uncertain derived from 
comparisons between a high resolution SST product that 
is not available in real time and the SST analysis used in 
the model. Four experiments were done: OPERATIONAL, 
which scaled the magnitude of SST perturbations 
following operational implementations of Harmonie EPS; 
REFERENCE, which used the same perturbation pattern 
as OPERATIONAL, but increased the magnitude of the 
perturbations; TSSTP, which used a perturbation pattern 
derived from annual uncertainty estimates of SST and 
is therefore representative of the general uncertainty in 
SST; and TSSTP_weekly_pert, which used a perturbation 
pattern derived from uncertainty estimates of SST for 
the week preceding the forecasts. The magnitude of the 
perturbations in REFERENCE were scaled such that the 
L1 norm of the perturbations was approximately equal 
to that for TSSTP and TSSTP_weekly_pert. In this way 

differences between the results of the REFERENCE, TSSTP 
and TSSTP_weekly_pert experiments were only due to 
the locations of the SST perturbations.

The importance of specific SST uncertainty estimates 
and targeting those uncertainties when generating 
perturbations becomes apparent in the verification of wind 
speed against ASCAT scatterometer observations over the 
sea and the verification against operational analyses over 
parts of the domain. Over the sea, TSSTP_weekly_pert 
was able to outperform all three models by improving 
the spread of the ensemble while not impacting the 
RMSE and improving the bias of the ensemble mean. Over 
land, however, targeting SST perturbations has a more 
mixed impact. The spread is generally increased without 
impacting the RMSE resulting in an improved spread-
skill relationship, but TSSTP_weekly_pert introduces a 
bias in 2 m temperature, 2 m specific humidity and 10 
m wind speed, which may be due to a tendency towards 
warmer SST perturbations upstream of the coast. Further 
investigation over more cases would be required to 
understand whether this tendency is systematic.

Sea surface temperature plays an important role in 
processes involving convection in the Arctic, as is the 
case for the development of polar lows or showers during 
a cold air outbreak. The comparison of perturbations for 
each experiment for the four case study periods shows 
that both OPERATIONAL and REFERENCE had rather 
homogeneous perturbation fields only different in the 
perturbation amplitude, while TSSTP and TSSTP_weekly_
pert showed isolated areas of increased perturbations. 
The comparison of these perturbations with the synoptic 
situations showed that the locations of the largest 
perturbations were collocated with the areas that were 
important for the weather development, that is the area 
where the polar low formed for the PL case; the area 
south of the ice edge where cold polar air masses get 
into contact with the ocean surface in the CAO I case, 
less so in the CAO II case; and the area west of the low 
pressure system where a lot of shower activity developed 
for the STR case. This had probably a positive effect on 
the spread. The areas of largest SST uncertainty do 
not necessarily always collocate with the most active 
weather development, although it was partially the 
case in this study. However, targeting the areas with the 
largest SST uncertainty when generating perturbations 
might have dampened the bias introduced through 
perturbations where the uncertainty is small.

In summary one can conclude that AROME-Arctic 
displayed some improvement in the case studies 
presented through the introduction of targeted sea 
surface perturbations, The choice of uncertainty 
estimates for the generation of SST perturbations has 
an impact on the ensemble system, and situation 
specific uncertainty estimates should be used where 
possible. This study investigated mainly situations that 
are sensitive to sea surface temperature. The effects of 
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targeted sea surface temperature perturbations on the 
model for longer periods including all possible weather 
scenarios should be the topic of future studies.
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