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ABSTRBCT 

The long Kelvin waves observed in the equatorial lower stratosphere transport sufficient 
westerly momentum upwards to account for the westerly acceleration of the quasi- 
biennial oscillation, provided that this momentum is absorbed in the westerly shear 
zone of the mean wind. The behavior of linearized Kelvin waves as they propagate 
through such a shear zone is deduced by scaling the wave equations with the ratio of 
the latitudinal scale to the zonal scale (the aspect ratio) which is a small parameter for 
the observed waves. The resulting system is reduced to a single elliptic equation which 
is solved numerically for various configurations of the mean zonal wind. 

It is found that passage through a westerly shear zone with no critical level modifies 
the waves as follows: 

(1) Both the latitudinal and vertical scales of the waves decrease. (2)  The upward 
momentum transport becomes concentrated towards the equator. (3)  The latitudinally 
averaged vertical momentum transport remains nearly constant. 

If the zonal wind profile contains a critical level the waves are nearly totally absorbed 
a t  that level. Furthermore, the wave amplitude has a pronounced maximum a t  the 
equator just below the critical level. For cases in which the zonal wind has lateral as 
well as vertical shear it was found that the Kelvin waves are effectively absorbed a t  the 
height of the critical level at the equator even when the critical level height rises rapidly 
away from the equator. 

1. Introduction 

Holton & Lindzen (1968) have shown that the 
linearized wave equations for the equatorial 
beta-plane with a constant basic state zonal 
flow have a special solution with the following 
characteristics: 

1.  The perturbation meridional velocity is 
identically zero. 

2. The perturbation pressure and zonal veloc- 
ity distributions are symmetric about the equa- 
tor and are in geostrophic equilibrium. 

3. Amplitude decays exponentially away from 
the equator. 

4. In the longitude-height plane the structure 
is that  of an  internal gravity wave in which 
phase propagates eastward and downward. 

An analogous solution for a barotropic at- 
mosphere was discussed by Matsuno (1966) who 
called this solution an atmospheric Kelvin wave. 
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The meteorological importance of equatorial, 
long period, vertically propagating gravity 
waves, such as the Kelvin wave, has been 
stressed by Lindzen & Holton (1968) who showed 
that such waves can provide the momentum 
source necessary to  explain the downward prop- 
agating quasi-biennial oscillation in the zonal 
winds of the equatorial stratosphere. I n  Lindzen 
& Holton's model i t  was assumed that the 
momentum of the waves is absorbed by  the 
zonal wind at a critical level where the zonal 
wind speed equals the horizontal phase speed 
of the waves. Such a critical level absorption 
was demonstrated theoretically by Booker & 
Bretherton (1967) for two dimensional vertically 
propagating gravity waves in a nonrotating 
system. The theory was extended by Jones 
(1968) to include inertia gravity waves on a 
rotating plane. However, attempts to  study the 
critical layer problem analytically for waves on 
an equatorial beta-plane have been unsuccessful 
due to  the nonseparability of the resulting par- 
tial differential equation. 
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In  the present paper a numerical model is used 
to examine the propagation of long Kelvin 
waves in the presence of both vertical and hori- 
zontal shear of the mean zonal wind. Lindzen 
(1970) has used a similar model to study Kelvin 
waves aa well aa the mixed Rossby-gravity 
wave mode. However, his model permits only 
vertical shear of the mean zonal wind and as- 
sumes that the Richardson number is very large. 

It can be easily shown that a true Kelvin 
wave (with meridional velocity identically zero) 
can not exist if there is vertical shear of the basic 
zonal flow. However, as will be shown below, 
only a small meridional velocity component is 
required to maintain the characteristic Kelvin 
wave structure of the zonal wind, temperature, 
and pressure oscillations when a pure Kelvin 
wave encounters shear of the mean wind. Such 
waves will be referred to here as Kelvin Wavm, 
even though they don’t exactly meet the crite- 
rion of zero meridional velocity. 

Observational studies by Wallace & Kousky 
(1968) indicate that oscillations resembling 
Kelvin waves do exist in the equatorial strato- 
sphere, even at levels where the vertical shear 
of the mean zonal wind is quite strong. These 
oscillations are particularly strong in the lower 
equatorial stratosphere during the easterly 
phase of the quasi-biennial oscillation, and have 
their maximum amplitude in the shear zone 
below the descending westerlies. The observed 
oscillations have a period on the order of 15 days 
an amplitude of about 10 m sec-l in the zonal 
wind component, but no detectable meridional 
wind component. 

Most of the energy of the observed waves ap- 
pears to be in zonal wave number one. Thus, for 
a period of 15 days these oscillations must have 
a westerly phase velocity of > 30 m sec-1 rela- 
tive to the ground. Wallace and Kousky point 
out that these Kelvin waves carry sufficient 
westerly momentum upward to account for the 
westerly accelerations which must occur as the 
westerly shear zone of the quasi-biennial oscil- 
lation descends. However, the zonally averaged 
westerlies in the quasi-biennial oscillation rarely 
exceed 15 m sec-l. Therefore, it would appear 
that no critical level exists for the Kelvin waves 
in the lower stratosphere. It is thus of some 
importance to determine theoretically whether 
Kelvin waves require a critical level in order to 
exchange momentum with the mean flow. 

2. A theoretical model €or linearized, long 
Kelvin waves 

It is convenient to choose a coordinate system 
which moves at the zonal phase speed of the 
waves. The perturbation equations of motion, 
the hydrostatic approximation, the continuity 
equation, and the thermodynamic energy equa- 
tion may then be written as follows (asterisks 
denote dimensional variables): 

au* aa* ati* 
ax* ay* az* ax* 

fi* - +v* - + w* - = - - ag*+j3y*v*-xu* (1) 

ag* - RT* 
az* H 
- _ _ _  (3) 

au* av* a 
ax* ay* az * - + -+ee*iH- (e-a*iffW*)=O (4) 

xT*(5) 
aT* ti* - 
ax* 

Here ti * is the basic state zonal velocity relative 
to the phase speed of the waves; u*, v*, w* are 
the perturbation zonal, meridional and vertical 
velocities respectively; 4 * is the perturbation 
geopotential, T * is the perturbation tempera- 
ture, and T* the zonally averaged temperature. 
The coordinates x*, y*, z* are directed east- 
ward, northward, and upward respectively, 
with z* = - H l n  (plp,)  where H is the scale 
height, p is the local pressure, and p s  is a stan- 
dard reference pressure. Constants included in 
these equations are the gas constant for dry air, 
R; specific heat at constant pressure, cp; and 
j3 = 2n/a where n is the angular velocity of the 
earth and a the radius of the earth. The rate 
coefficients for Rayleigh friction and Newtonian 
cooling are set equal for simplicity, and de- 
signated by x .  Thus, dissipation is included in 
the model without raising the order of the dif- 
ferential equations. 

Equations (1)-(5) may be nondimensionalized 
by scaling the variables as follows: 

x* =xk-l 

Y* =y(c/B)”* 
z* = z l - l  

u* =uu 
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v* =vU6 
w* =wUkl - '  

T* = T c U l H R - '  

4 *  =4cu 
a* = - cu 

Here k is the zonal wave number and ( C / ~ ) I / ~  is 
the latitudinal half width of the Kelvin wave 
(Matsuno, 1966), so that 6 -k(c//?)'/* is the ratio 
of the latitudinal scale to the zonal scale; i.e., 
th0 horizontal aspect ratio. Also, 

is the vertical wavelength of a gravity wave 
whose horizontal phase speed is c, and U is the 
amplitude of the zonal wind perturbation. In  
the following development 1 is assumed to be 
constant, i.e., spatial variations of the static 
stability are neglected. 

By applying the thermal wind equation for 
the basic state, 

(7)  

the horizontal derivative of the basic state tem- 
perature may be eliminated from ( 5 ) .  

Substituting from (6) into (1) through ( 5 ) ,  
eliminating T *  between (3) and ( 5 ) ,  and as- 
suming solutions of the form 

leads to the following nondimensional set: 

ac ati 
ay az 

i(ti -iD) U' -+ V' - + W' - =a+' +YV' (9) 

where D = X ~ - ~ ( / ? C ) - ~ ' ~  is nondimensional dissi- 
pation. 

For zonal wave numbers one and two, a 1 .  
Therefore, from (lo),  it is apparent that for 
long waves the zonal wind oscillation is geo- 
strophic correct to O ( P )  even when ti =ti(y, z) ,  
provided that 4' is symmetric about the equator 
(i.e., (ad'lay) 3 0 for y = 0). 

Formally, the variables in (9)-(12) can be 
expanded in a perturbation series in a2. The 
resulting zero order equations may then be 
combined by eliminating u', v', and w' to give a 
single equation in 4': 

where 

A(y, Z) f y-' + S,/S - ytizz -+ yG,S,/S 

B(y, z )  5 - 2y%i2tiz2 - ytiua i yeti: Sz/S i ytizS,/S 

C(y, 2 )  = ys, /s  - y%zz + y'ti,S,/S 

and 

S(y, z )  = y -a, -yti: 

Terms of order *AH have been neglected in (13) 
since they are small for motions of interest here. 

The zero order velocity components may then 
be expressed in terms of 4' as follows: 

u'= -&y (14) 

v1 = i(+' - ti+,/y - titi. +J/S 

W ' = Y V ' ~ ~ ~  - i(ti - iD)  $2 

(15) 

(16) 

For realistic distributions of a(y, z )  in the 
equatorial stratosphere the discriminant of (13) 

y'( 1 - ti: - tiu/y) (17) 

is greater than zero. Thus (13) is elliptic and 
either 4' or its normal derivative must be spe- 
cified along a closed boundary region. I f  D = O  
there is a singularity in (13) for ti = 0 (i.e., at the 
critical level). The purpose of introducing dissi- 
pation in the form of Rayleigh friction and 
Newtonian cooling with equal rate coefficients 
is primarily to remove the singularity in a 
simple manner without raising the order of the 
equations. From a mathematical point of view 
this type of dissipation is equivalent to adding 

Tellus XXII (1970), 2 



INFLUENCE OF MEAN WIND SHEAR 189 

a small negative imaginary part of ti which 
is often done purely as an artifice to remove 
the singularity. Eq. (13) is also singular for y - 

However, this condition of vanishing absolute 
vorticity is dynamically unstable and would not 
occur for the mean zonal currents in the tropical 
stratosphere. 

(aqay) = 0. 

3. Numerical solutions and  discussion 

The primary goal of this study is to deduce 
the behavior of linearized Kelvin waves as they 
propagate through a region with mean wind 
shear. Thus, it is appropriate to choose as the 
lower boundary condition a perturbation geopo- 
tential field which corresponds to a pure Kelvin 
wave incident from below. 

The pure Kelvin wave is obtained from (9)- 
(12) by letting v' = 0 and ti be a negative con- 
stant (which corresponds to a westerly phase 
velocity). It is then easily verified that the 
solution corresponding to upward energy prop- 
agation (downward phase propagation) is 

9' = exp [yp/2ti + iz/ti] (18) 

In  the special case ti constant, D = 0, (18) is the 
solution of (13) corresponding to upward energy 
propagation, provided that the following bound- 
ary conditions are applied: 

& = o  at y = o  (19) 

q + o ,  y + m  

For the more general situation with ti =ti(y, z) ,  
a finite difference analogue to (13) with bound- 
ary conditions (19) was solved for +' using the 
direct inversion technique discussed by Lindzen 
& Kuo (1969). 

For most of the results reported here a grid 
network of 32 pointa in the lateral direction 
with spacing of 1.5" latitude, and 100 points in 
the vertical with spacing of 125 m or 250 m was 
used. The smaller vertical spacing was used for 
critical level caaes since it appeared to be ne- 
cessary to properly represent the wave ampli- 
tude near the critical level. In  order to prevent 
spurious reflection from the upper boundary 
(where the condition +' = O  waa imposed) the 
dissipation parameter D, was allowed to in- 
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Fig. 1. Meridional cross section of the amplitude 
(solid lines) and phase (long dashes) of the perturba- 
tion zonal wind oscillation for Case I. Amplitude in 
m sec-l and phase in radians. The critical level is at 
9.25 km height. 

creaae linearly with height in the region below 
the top boundary for cases with no critical level. 
This insured that the wave energy was absorbed 
before reaching the top boundary. 

For the purpose of discussion it is convenient 
to divide the numerical experiments into two 
classes: 

(a) Cases where the mean wind profile con- 

(b) Cases with no critical level. 
tains a critical level; and 

I n  each class experiments were run with only 
vertical shear, and with both verical and hori- 
zontal shear of the mean wind. 

Caaea with a critical level 
In  Case I the zonal wind profile 

ti = - 0.4 + 0.6 tanh ( z  - 3) 

was specified, so that a critical level occurred 
at z - 3.8. D was set equal to 0.05, corresponding 
to a 40 day damping time. Fig. 1 shows a merid- 
ional cross section of the amplitude and phase 
of the density weighted perturbation zonal mo- 
mentum oscillation for this case. Amplitude haa 
been dimensionalized by assuming that the 
incident Kelvin wave at the lower boundary 
has a zonal wind amplitude of 4 m sec-1 at the 
equator. The vertical scale has been dimensional- 
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Pig. 2. Vertical profiles of the mean zonal wind 
(short dashes), latitudinally averaged vertical mo- 
mentum flux (solid line), and vertical momentum 
flux at the equator (long dashes) for Case I. 

ized by letting c = - 50 m sec-l, H = 7 km, and 
assuming an isothermal atmosphere so that 
1 - I  =2.5 km. The lower boundary ( z  =0) is 
assumed to be at the tropopause. Fig. 2 indi- 
cates the profile of ii for this case. In  addition 
the zonally averaged momentum flux, u'w', is 
plotted in Fig. 2. The solid line is momentum 
flux averaged in latitude from 0" to 30°, while 
the dashed line is the momentum flux profile 
at the equator. 

It is evident from these figures that the 
Kelvin wave is nearly completely absorbed a t  
the critical level. Moreover, the latitudinal half 

~ 
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Fig. 3. Meridional cross section of the mean zonal 
wind for Case 11. 
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Fig. 4. Meridional cross section of the amplitude 
(solid lines) and phase (long dashes) of the perturba- 
tion zonal wind oscillation for Case 11. 

width and vertical wavelength decrease as the 
wave approaches the critical level. This decrease 
in the lateral and vertical scales is qualitatively 
consistent with the pure Kelvin wave solution 
(18) in which both scales are proportional to fi. 
Associated with the decreaae in lateral scale, 
and consequent increase in the meridional gra- 
dient of d', is a maximum in the pertubation 
zonal wind a t  the equator just below the critical 
level. The plotted amplitudes are scaled by the 
square root of density so that the maximum in 
perturbation wind velocity would be larger than 
the plotted values by a factor of e z * / * H .  

In  Case I1 the zonal wind profile was specified 
as 

ii(y, z )  - -1.0 +(0.6 +0.6 tanh ( z  -3))e-"' 

so that the vertical shear a t  the equator was the 
same as in Case I but decreased rapidly poleward 
as shown in Fig. 3. It should be recalled that ii 
is the zonal velocity relative to the horizontal 
phase speed of the waves. Thus for the observed 
Kelvin waves with phase speeds of -30m 
sec-l, ii = -50 m sec-l corresponds to a zonal 
wind relative to the ground of -20 m sec-1. 

Figs. 3 and 4 contain the same information 
for Case I1 as was presented for Case I in Figs. 1 
and 2 respectively. The results for these two 
cases are surprisingly similar despite the fact 
that in Case I1 the critical level curves upward 
rapidly away from the equator, and extends 
laterally little more than 4" from the equator. 
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Pig. 5. Vertical profiles of the mean zonal wind at 
the equator (short dashes), latitudinally averaged 
vertical momentum flux (solid line), and vertical 
momentum flux at the equator (long dashes) for 
case 11. 

Physically it appears that the tight lateral 
coupling imposed by geostrophy, and the con- 
sequent exponential decay of amplitude away 
from the equator, force the Kelvin waves to be 
absorbed at approximately the height of the 
critical level at the equator. Therefore, even a 
narrow westerly jet centered a t  the equator can 
nearly completely absorb the momentum of the 
Kelvin waves provided that a critical level 
exists in the jet. 

Cases with no critical level 
I n  Cases I11 and IV the zonal wind profile 

wm fi = -0.65 +0.35 tanh(z -3). For Case I11 
the damping parameter, D, was set equal to 
zero below z = 6 (i.e., 15 km). Above z = 6  the 
damping increased linearly with height to a 
value D = 0.2 at the top boundary. This damping 
layer effectively absorbed all the energy of the 
waves well below the upper boundary. For 
Case IV D was set equal to a constant value of 
0.05, corresponding to a 40 day damping time. 
Fig. 6 shows a meridional cross section of the 
amplitude and phase of the density weighted 
perturbation zonal momentum for Case 111. 

The e-folding latitude for the perturbation 
amplitude ranges from -21" below the shear 
layer to -12" above the shear layer, which is 
consistent with the fil'* dependence of the lateral 
scale for a pure Kelvin wave given by (18). 
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Fig. 7 contains vertical profiles of the mean 
zonal wind, the latitudinally averaged momen- 
tum flux, and the flux a t  the equator. The lat- 
itudinally averaged momentum flux is approxi- 
mately constant with height in the dissipation 
free region below 15 km. The small1 oscillation 
in the flux profile in the shear zone may be only 
an artifice of the constraints in the model, 
rather than a real effect. However, the mo- 
mentum flux at the equator almost doubles 
between the base and top of the shear zone. 
Thus, the shear zone is an adjustment region in 
which the Kelvin wave narrows in lateral extent, 
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Pig. 7. Vertical profile of the mean zonal wind 
(short dashes), latitudinally averaged vertical mo- 
mentum flux (solid line), and vertical momentum 
flux at the equator (long dashes) for Case 111. Also 
shown is the vertical momentum flux at the equator 
for Case IV  (short-long dashes). 
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Pig. 8. Meridional cross section of the mean zonal 
wind for Case V. 

and decreases in vertical wavelength, while 
maintaining a nearly constant net vertical mo- 
mentum flux. Using (14) and (15) the horizontal 
eddy momentum flux associated with the 
small meridional motion in the shear zone may 
be calculated. This flux turns out to nearly 
balance the divergence of near the equator, 
so that 

a -  a - -  
- (u'w') + - (u'w') fl 0 
aY az 

which is equivalent to the energy equation de- 
rived by Eliassen t Palm (1960) for the special 
case of negligible meridional eddy heat flux. 

The momentum flux profile at the equator 
for Case IV which is also plotted in Fig. 7 indi- 
cates that even a moderate damping rate is 
quite effective in dissipating the waves above 

'I/ i I 
/ I  ' 1 I I I1 I 1  

P P P r l f s * u = n "  
llllRt 

E q .  9. Meridional cross section of the amplitude 
(solid lines) and phase (long dashes) of the perturba- 
tion zonal wind oscillation for Case V. 

16 

I2 

- - E 

€ *  
r' 

4 

0 

)**IENNH FLUX (GM Kl&l 

Pig. 10. Vertical profile of the mean zonal wind 
(short dashes), latitudinally averaged vertical mo- 
mentum flux (solid line), and vertical momentum 
flux at the equator (long dashes) for Case V. 

the shear layer where the doppler shifted period 
is quite long. Thus, even in the absence of a 
critical level, it is unlikely that Kelvin waves 
would be observed to propagate very far into 
the stratospheric westerlies since Newtonian 
cooling should damp out such short vertical 
wavelength waves very effectively. 

Finally, the profile 

C(y, z) = -0.1 +[0.35 +0.35 tanh(z - 3 ) ] e - @  

shown in Fig. 8 together with the profile of D 
for Case I11 was specified as Case V. This case 
bears the same relationship to Case 111 as Case 
I1 bears to Case I. Again the results obtained 
with the inclusion of lateral shear suggest that 
the value of ti at the equator is the crucial 
parameter. Only two significant differences be- 
tween Cases I11 and V are readily apparent: (a) 
the vertical wavelength is longer for Case V, 
and (b) in Case V the average momentum flux 
actually increases as the wave passes through 
the shear zone. However, in the real atmosphere 
this effect would probably be completely masked 
by dissipation due to radiative damping. 

In  conclusion, the results of this study indi- 
cate that linearized Kelvin waves interact with 
the mean flow almost like ordinary two dimen- 
sional gravity waves. I n  the absence of dissipa- 
tion, the waves are absorbed only at a critical 
level. Thus, it appears that a linear wave theory 
can not completely explain the observations of 
Wallace and Kousky discussed in Section 1. 
However, order of magnitude scaling indicates 
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that nonlinear advection can not be neglected 
for the observed waves. Thus the momentum 
exchange between the Kelvin waves and mean 
zonal wind is very likely due to nonlinear distor- 
tion of the waves as they propagate into the 
westerly shear zone. 
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