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ABSTRACT

In this paper anewanalytical approximation, concerning the integral | ¢y r(p)dp in the
spectral equations (3), (4) is suggested. It is based on the physical idea about natural
realization of the degree of interaction between the mean and fluctuating fields and is
analytically expressed by the formulae (10, (12) and (13). In the extreme cases of strong
and weak interaction the general expression (13) has (11) as its asymptotes.

The system of spectral equations (14), (15) is solved numerically and the result is
presented in the figure. It is seen that in case of stable stratification, a general inertial
range exists, in the middle of which a buoyancy subrange appears with slopes of the
spectral curves as shown in the figure. The results eliminate the so far unresolved
contradiction between the theories of Bolgiano and Lumley-Shur and agree well with

the experimental data.

In a medium with density fluctuations,
where the gravity force acts, the buoyancy
effect plays an essential role. In the case of
atmospheric air the density fluctuations are
caused mainly by temperature fluctuations, so
that in practice thermally stratified flows
are under investigation.

In a stably stratified medium the vertical
motions, created by the turbulence (which has
dynamic origin), are accompanied by loss of
energy for work against the buoyancy force.
In this way a part of the kinetic energy of the
turbulent vertical motions and therefore a part
of the total turbulent energy transforms into
potential energy of the density stratification.
In other words, the stability suppresses the
turbulence.

Inversely, in unstably stratified medium the
potential energy of the density stratification
releases and transforms into kinetic energy of
the turbulent motion, i.e. the instability stimu-
lates the turbulence.

In the same time, if an energy source exists
supporting the initial stratification, inflow or
draining of temperature energy into or from
the temperature fluctuation field occurs respec-
tively.

The briefly deseribed qualitative picture has
been more or less successfully reflected in both
the Bolgiano’s and Lumley-Shur’s hypotheses

for the spectral energy exchange between the
velocity and temperature fields in case of
stably stratified turbulent flow with no shear
(no production of kinetic energy in the buoyancy
subrange).

Bolgiano (1959) postulates that the speetral
characteristics of the turbulence depend only
on the following dimensional parameters: the
rate of total dissipation of temperature in-
homogeneity N due to molecular diffusivity,
buoyancy parameter 8 =g/T, and wave number
k. The other dimensional parameter ¢ (the
rate of total dissipation of turbulent energy
by molecular viscosity) drops from the list of
determining parameters, since in case of strong
stability as a result of the intensive turbulent
energy drainage the value of ¢ is negligible as
compared to the energy flux in the buoyancy
subrange. For the turbulent kinetic and tem-
perature energy spectra dimensional arguments
give respectively

¢(k)~N2/5ﬂ4/5k'11/5, ¢T(k)~N4/aﬂ—2/5k—7/5 (1)

The experimental work by Shur (1962)
provokes the creation of a new theory for the
buoyancy subrange, developed by Lumley
(1964, 1965). Based onthe extended Kovasznay’s
hypothesis of local dependence and on the
assumption that the heat flux is proportional
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to the mean temperature gradient Lumley
obtains
$(k) ~k=3,  $r(k) ~ k=1 2)

There is an obvious contradiction between
these two theories because of the different
physical backgrounds they are based on. It
can not be solved by the experiment for the
present, so the solution has to be found theore-
tically. This question has been widely discussed
at the international colloquiums in Moscow
(1965) and Stockholm (1969).

For the first time Bolgiano’s spectra have
been obtained as solutions of the spectral
equations by Monin (1962). Later Gissina (1966),
applying the Tchen’s ideas about strong and
weak interaction to the temperature field,
obtains the same spectra in case of weak
interaction in the velocity field and strong
interaction in the temperature field, Monin
(1965) and Phillips (1965) make comparative
analyses of these two hypotheses. Monin shows
that the results of both theories come from
dimensional reasonings with different deter-
mining parameters. It is shown in Phillips’
paper that (1) and (2) are consequences from
one and the same system of equations, i.e.
both theories are compatible. A closer relation
between the two hypotheses was established by
Lin (1969). He was the first to introduce the
concept of intermediate interaction and suggest-
ed a model, in which the degree of interaction
changes with respect to an external numerical
parameter. Applying this model to the tempera-
ture field and solving the spectral equations, in
case of weak interaction in the velocity field
and stable conditions Lin obtained a power law
for the turbulent energy spectrum. The exponent
is a function of the above mentioned external
parameter. It becomes equal to -—-11/5 (i.e.
Bolgiano’s spectrum) in case of strong inter-
action in the temperature field and to —3 (l.e.
Lumley-Shur’s spectrum) in case of weak
interaction. In this way Lin (1969) obtained
the results of both theories as asymptotic
parametric cases of a general solution of the
spectral equations.

In the present paper, for modelling the
spectral heat flux, we shall use the idea of
natural realization of the degree of interaction
between the mean and turbulent motions over
different wave numbers, developed by Syrakov
(1970, 1971).
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The equations describing the spectral balan-
ces of turbulent kinetic and temperature
energy in the flow under consideration after
neglecting the dissipative effects (at high wave
numbers k) are of the type:

£= L F(p) dp+ﬂf $wrip)dp 3)
k

N,= f Frp)dp-2 o f $wr(p)dp 4)
k 2 Jk

where Nx =2N, dT'/dz is the mean temperature
gradient and ¢y, (k) is the vertical heat flux
spectrum.

The first terms on the right hand side of
(3) and (4) describe the inertial transfers of
turbulent kinetic and temperature energy over
the hierarchy of eddies and for their modelling
we shall use Heisenberg’s eddy-viscosity ap-
proximation:

0 k
Jk F(p)dp =vr(k) fo 2p°4(p) dp

=vp(k) w7 (k) (5)

-] k
fk Fr(p)dp=vi(k) f . 2p°$r(p)dp
=3 (k) y7 (k) (6)

Here »p(k) and vE(k) are spectral turbulent
exchange coefficients for momentum and heat
respectively, wqp(k) and yp(k) are the mean
squared vorticity and the turbulent temperature
gradient. Further we assume:

v7(k) = frr(k) (7)

where f i3 a constant. [t is easy to determine
that f ~2a/ar~2.5. « and ar are the universal
numerical constants in the Kolmogorov’s and
Obukov’s “—5/3 laws” for the inertial and
convective subranges

¢(k) = oce‘llsk“sla, ¢T(k) - ozTNe_ll3k'°’3 )

In modelling the third terms in (3) and (4)
the semiempirical relation is used

ar

fo ¢Wr(k)dk=v—7—i1—'= _KTE; (9)
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By analogy with (9) and in agreement with
the general idea for the diffusion nature of the
transfer mechanism both in the temperature
and velocity fields, the following expression
may be written:

fk $wr(p)dp= —v7 (k)T (10)

where T, still undermined, is temperature grad-
ient. To determine this gradient Gisina (1966)
extended Tchen’s (1953) original conception
about weak and strong interactions as follows:

t y<yplk
: z{y at y<yr(k) an
yrlk) at  y>yr(k)
where y = |dT/dz|. Further she interprets

these cases in the following way: in case of
weak interaction the characteristic scale of
change of the mean temperature field (it may
be identified with y~1 = |dz/dT'|) is much bigger
than the same one of the turbulent temperature
field (y7'(k) and the heat transfer will be
realized by the mean temperature gradient.
Inversely, in case of strong interaction the
characteristic scale of change of the mean
temperature field will be so small, that the
big eddies from the equilibrium range will
perceive the mean gradient as a turbulent
fluctuation, due to eddies of certain scale. For
them the mean temperature gradient does not
exist and the heat flux will be realized by the
temperature fluctuation gradient. There exists
a case of intermediate interaction when both
scales are of one and the same order.

But by fixing a priori the degree of inter-
action (strong, weak, intermediate), as is done
by Tchen (1953), Gissina (1966, 1969), Lin
(1969) and others, actually means that the
ratio between the gradients of the mean and
fluctuation temperature fields is given in
advance. However, only one of these quantities
(y) can be considered as constant; the other one
(yp(k)) varies with respect to the wave number
k. The ratio between them will vary with respect
to k too and will be different in different spectral
domains. Actually at low wave numbers y,(k)
is small and values of k will exist, at which the
inequality y,(k)<+y is fulfilled. At these eddies
strong interaction occurs. The increase of k&
weakens this inequality and at eddies for which
yr(k) ~y intermediate interaction will take
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place. The wave number k¥, defined by y 5 (k%) =
¥, will be called “intermediate interaction
centre’”’ for the temperature. Further increase
of k leads to y,(k)>y, i.e. to the weak interac-
tion subrange. At higher k any interaction
disappears, i.e. the inertial-convective subrange
begins. According to these arguments such a
function I'(k) must be constructed, in which
the change of k will result in realizing consecu-
tively the above mentioned cases. Following
Syrakov (1970, 1971) we assume that the
characteristic scale of change of the total
{mean plus turbulent) temperature field I'-1(k)
is a sum of the corresponding scales of the
component fields:

T (k)y=p " +y7' (k) (12)
ie.
WT(’C)
= 2T 13
y +yrlk) (13)

With the use of this expression for I'" the eqgs.
(3) and (4) become:

_ 2 yyr(k)
e=vp(k) [wr(k)ifﬂy——‘erT(k)] (14)
_ 2 '}’zVT(k)
Ny = for(k) [yT(k)+2‘y+yT(k)] (15)
where the sign “— refers to stable (dT'/dz > 0)

and the sign “+" to unstable (dT/dz<0)
stratification.

For the sake of convenience and for univer-
sality of the results we pass to the following
dimensionless variables:

x:k/kd, kd=“—3l4(eN;—3y6)1/4
p(@) = d(k)/par da—a’(eNgy W
(@) = dr(k) 9%, SF=o" (e Ny

Fr(@) =vp(k) vy, vF=Nyy™> (18)

In the new variables the spectra (8) become:

5/3

p@)=a ", Ea

yri®)=1" a7

and they are convenient asymptotes of the
solutions to be obtained at x—oo.
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Let
Z{x) = "o d “(; _Zadz 18
() = , 2q°yp(g) dq Le. w(w)—mz;i; (18)

T, M Y dy
Y{z)= I:f 2q '/’T(Q’)d‘I:I (1-e~ yrl{x) = )
[

& dw
(19)
Then the eqgs. (14) and (15) become

- 2 Y
1=77(2) (Z —fm 1.+—Y) (20)

- 2 Y
l=fvT(x)(Y +2m) (21)

where
m= ﬂN/a@ (22)
dz

is a nondimensional parameter. In case of
stable stratification m >0 (because dT/dz >0)
and it increases with the stability. The condi-
tions for existence of a buoyancy subrange,
obtained by Lumley (1965) and later by Gissina
(1966) are equivalent to m>1. In case of
unstable stratification m <0 and the restriction
m > —1 is in force.

If we divide (20) by (21), # »(x) cancels out
and we obtain an independent on the wave
number relationship between Y and Z

Y49 Y _ p~1p2
+ (m+l)—l+y—f Z (23)

At low z from (20) and (23) the following
asymptotic equation it obtained:

2

1=z(x) (24)

m+1

At any model for yr(k) it has the solution p(x)
= (m+ 1) %,
At high x the equation (20) reduces to
1=Fp(x) Z° (25)
It does not depend on the stratification and has
Kolmogorov’s spectrum w(x) =2-%% as a solu-
tion.
The asymptotic solutions just obtained show
that a general inertial subrange over the whole
spectrum range under consideration exists and
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the buoyancy effects excite it in a particular
subrange. It follows from the solution of the
equation (24) that in case of m >0 the long wave
“ —5/3 asymptote” of y(z) locates higher than
the clagsical inertial ‘‘ —5/3 curve” (m =0)
and therefore assures a steeper slope to the
former one in the excited (buoyancy) subrange.
This corresponds to a loss of turbulent energy,
which is in agreement with the above discussed
physical ideas about the mechanism of such a
type of turbulence. In case of m <0 the long
wave ¢ —5/3 asymptote” lowers and the spec-
trum slope in the buoyancy subrange is less
steep, which corresponds to an inflow of
turbulent energy in this intermediate spectral
subrange. At m close to —1 the appearance of
humps in the spectral curve may be expected.

The system (20, 23) is solved numerically for
the following models of v;(k): the model of
Kesic (1969)

2 kel 21dz
- ) 2ant - 212

26
wrk)’ 3zxdx (26)
and Kovasznay’s model
_2 V‘;(k—) s _2 VZ az (27)
volk) = 3oc P Pp(x) 3V Fdm

In the expressions (26) and (27) the relationship
(18) has been used.

In Fig. 1 the computed energy and tempera-
ture spectra at several different stratifications
are represented. The energy spectra confirm
previous quantitative conclusions according
to the asymptotic solution. In case of stable
stratification (m >0) in the transitional spectral
range between the two xz%3 asymptotes of
y(x) spectral subranges with z-" behavior
exist. At lower wave numbers n =11/5 and at
higher n =3. The arrow in the figure shows the
centre of the interval which divide these two
subranges. It is defined as wave number xk,
at which Y (xh) =1.

These results appear as direct consequence of
the application of our idea about natural realiza-
tion of the degree of interaction to the tempera-
ture field. In the *“ —11/5 subrange’ (Bolgiano’s
spectrum) strong interaction takes place (Y <1);
in the subrange around z% the interaction is of
intermediate degree (Y ~1); at n =3 (Lumley-
Shur’s spectrum) the interaction is weak
(Y >1); after that the curves sharply pass into
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the inertial subrange. With the increase of the
stability the slope of the curves in the weak
interaction subrange becomes steeper than
¢ —3”, which is in agreement with the experi-
mental results of Pinus & Scherbakova (1966).
They have observed spectra with a slope up to
“—38.5”. When the stability decreases ‘“ —11/5”
and ‘ —3 subranges” shrink and at certain low
value of m the ‘“ —3 subrange’ can even dis-
appear. The further decrease of m (m—0)
leads to disappearance of the whole buoyancy
subrange, which is in agreement with the
results of Lumley and Gissina.

The shape of the turbulent energy spectra,
computed in the present paper, shows that in
the stratified turbulent flows theory an essential
progress is achieved. The contradiction between
Bolgiano’s and Lumley-Shur’s theories seems
finally solved. It is convineingly shown that the
results of both theories follow not only as
two parametric cases of the general solution
(Lin, 1969) but that the Bolgiano’s and Lum-
ley-Shur’s spectra are actually two wave sub-
ranges of one spectral cuve. This is one of the
most important results of the application to the
temperature field of our idea about natural
realization of the degree of interaction over the
wave numbers in the treated range.

In the temperature spectra, however, no
similarity between (1), (2) and the spectra
presented in the figure exists. This means that
we cannot obtain the shape of the temperature
spectra in the buoyancy subrange only by
dimensional reasonings. In fact Monin (1965)
and Lumley (1965) obtain different expressions
(k- and k-!) for the temperature spectrum,
though they proceed from correct assumptions.
The temperature spectra presented in the figure
are more objective because they are obtained
as solutions of the spectral equations. The long
wave asymptote ‘“ —~1/3”” means that the mean
temperature gradient feeds the temperature
fluctuation field without having influence on the
inertial velocity spectrum. At higher wave
numbers the buoyancy force action begins. In
case of stable stratification the decrease of
turbulent energy causes influx of temperature
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Fig. 1. Dimensionless turbulent spectra of velocity
y(x) and temperature yp(x) at stable (m>0) and
unstable (m <0) stratifications.

energy and the temperature curves slope be-
comes less steep and even humps appear. In the
case of unstable stratification the temperature
spectrum slope is steeper, which corresponds to
drainage of turbulent temperature energy and
its transformation into kinetic.

In general the buoyancy subrange is located
over about two decades of the nondimensional
wave numbers z(10-1=10!) and moves to the
right with the increase of m. The wave number
x¥ moves in an analogical way as a centre of the
whole buoyancy subrange.

The authors of this paper see the further
development of their idea, concerning the natur-
al realization of the degree of interaction be-
tween the mean and turbulent fields over the
different wave numbers, in its application to the
thermally stratified turbulent shear flow.
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CIHEKTPBI TEMIHEPATYPHO CTPATUONIINPOBAHHOTO TYPBVJIEHTHOTO
TIOTOKA BE3 CABUTA CHOPOCTH

B pa6orte mpeniioseH HOBHI MOAXOM K BOIpPOCY
06 aHANIMTHYECKON! aNNpPOKCHUMaLMH KHTerpana
_ﬁ? ®wr (p)dp B CHEKTpANLHBIX YpaBHeHUAX Ga-
gadca (3) u (4). O Bupamaerca QopMmyramu
(10), (12) u (13) 1 B ero OCHOBe NeMmUT (UBM-
YyecKana uaea 00 eCTECTBEHHOM OCYUIeCTBIEHUH
CTeneHM B3aMMOAeliCTBHA MeKAY OCPeqHeHHEIMU
¥ QAIOKTYyallMOHHHIMM NmoasAMu. B npemenbHHX
cay4yaAaX CHIBLHOTO M ciaboro B3auMoORelCTBUHA
o6utee BripaskeHue (13) uMeer usBeCTHle ACHMI-
TOTH (11).
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Cucrema cneKTpalbHHX ypaBHeHuit (14), (15)
pemiaack YMcieHHo. PeayunbTaTsl BeUMCIeHUit
npejncrasiensl Ha ¢urype. Ilpu crabuabHoit
cTpaTHPMKANNK OHUM YKA3HIBAIOT HA CYIECTBO-
BaHWE eNUHOrO HHEepLUOHHOr0 HHTepBajda, B
MEHIMHHOM CIIEKTPAJBHOM Y4YacTKe KOTOpPOTro
HOABIIAETCA MHTEPBAJ MJIABY4YECTH ¢ HAKIOHAMM
CHEeKTPaJbHO{ KpMBOH KaK MMOKA3aHH Ha ¢u-
rype. YCTaHABIMBAETCA XOpoLIee COTrJlacue
TEOPDHU C 3KCIIEDMMEHTAMM. ¥ CTpPaHAETCH Hpo-
THBOpeune Mexnay Teopuamu DBomxuasoe un
Jlaman-Illypa.



