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ABSTRACT 

The optical distortion of a ruled vertical grating, when viewed through a layer of salt 
fingers, is described and discussed by a simple random walk model for a ray path. 
Intensity fluctuations are computed and the magnitude of the effect appears to be 
large enough to measure in the thin transition region separating the step-like structure 
of the main thermocline (Tait & Howe, 1968). 

I. Introduction 

The convective phenomenon called “salt 
fingers” occurs when a layer of hot, salty and 
light water is placed above a layer of cold 
fresh and dense water. In a recent paper (Stern 
&Turner, 1969) the effect was also observed 
and measured using concentrated salt and sugar 
solutions at constant temperature. We also 
observed an interesting optical effect, which 
will be reported in this paper together with a 
calculation which indicates the feasibility of 
related photometric measurements in the main 
thermocline. 

11. Descriptive 

The adjoining figure, prepared for the author 
by Mr. Ian Fletcher of U.R.I., shows a rectangu- 
lar tank 27 cm wide, 26 cm tall and 10 cm thick. 
Two overlapping grids have been mounted on 
the back side, one with vertical lines, one with 
horizontal lines, and in the middle of the tank 
one sees the crossed overlap region. Twenty- 
four hours before the time of this photograph 
the tank was half filled with a salt solution of 
specific gravity 1.12 and then a 1.10 sugar solu- 
tion was carefully pured on top. When the 
pouring is completed one observes a thin (milli- 
meters) horizontal interface containing quasi- 
laminar salt fingers, as described by Stern & 
Turner (loc. c i t . ) .  At this time the interface is 
optically translucent, compared to the transpa- 
rent convecting layers on either side. The poten- 
tial energy decreases slowly with time as the 
interface (and salt fingers) spreads in the vertical 
dimension. This interface occupies the mid- 

third of the tank at the time of the photograph, 
and the salt fingers are neatly detected by the 
refractive distortion of the grid lines on the 
left side of the picture. Note that the horizontal 
grid lines in the right-center of the picture are 
undistorted, even though there are vertical salt 
fingers in this region too. All grid lines imme- 
diately above and below the salt finger layer 
are undisturbed, although some micro-structure 
is visible at the top and bottom of the tank. If 
one waits another twelve hours and takes an- 
other photograph all grid lines appear undis- 
torted. Furthermore if the observer holds his 
eye steady in front of the tank no manifestation 
of the salt fingers is apparent. However if one 
steps back several feet and moves his eye 
parallel to the field of view then a weak “scin- 
tilliation” effect (variations in light intensity) 
is observed. It is believed that this is due to the 
small variations of light intensity on a fixed 
region of the retina-these variations being due 
to the collective focusing of many weak salt 
finger lenses. This effect is weaker for heat and 
salt solutions, because of the relatively small 
density variations. However it has also been 
observed in this case by increasing the optical 
path. The effect also decreases when the grid 
spacing is increased. 

111. Refraction of light rays by salt fingers 

A field of salt fingers has a great deal of short 
range order since each sinking finger is sur- 
rounded by (say) four rising fingers of lower 
density. However i t  is apparent that the refrac- 
tion of a light ray which passes through a large 
number of fingers must be treated by a statisti- 
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Fig. 1. The refractive distortion of ruled grids by salt fingers. The two overlapping grids are mounted 
on the back side of the rectangular tank. The main region of salt fingering is in a horizontal layer occup- 
ing the mid-third of the tank. Note that there is no distortion of the horizontal grid lines on the right, even 
though there are vertical salt fingers in this region. Some micro-structure is also visible at the top and 
bottom of the photograph, which was taken twenty-four hours after the start of the run. 

cal theory. This is because the fluid motion 
(especially the relatively strong convection on 
either side of the salt finger layer) precludes a 
correlation of the gradient of index of refraction 
(Vz) over distances much larger than a finger 
width. In  addition the refraction also depends 
on the orientation of the beam relative to Vz, 
and this too will be a matter of chance. Therefore 
we anticipate that a ray which passes through 
N salt fingers will have an r.m.8. deviation 
angle which is N”’ times the expected angular 
deviation due to one salt finger. Actually we 
need to know the angular deviation of the end- 
point of the ray from the initial direction, and 
although this is of the same order as the afore- 
mentioned angle it is instructive to reproduce 
the simple derivation given below. 

Consider a light ray which traverses a small 
distance I in a uniform medium of relatively low 
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index of refraction z. The ray then encounters 
the interface of an adjacent region whose index 
of refraction is z + Az. (Think of the latter as a 
down-going salt finger of square planform.) 
The ray is then bent to the right or the left of 
its original path by an angle A+, depending on 
the chance orientation of interface and ray 
direction. The ray then traverses another di- 
stance 1 whereupon it encounters a second inter- 
face (which corresponds to the boundary of the 
first salt finger) and is again deflected to its 
right or left by the angle Ad. The sense of the 
latter is also a matter of chance since the second 
interface encountered by the ray may be either 
parallel or perpendicular to the first interface. 
And so on for N interfaces (salt fingers). The 
path of the light ray is E random walk but one 
which is different from that taken by a ‘‘drum 
kard”. Our “perambulator” is quite conscious 
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of the direction and length (I) of the last step. 
He is only prevented from traveling in a straight 
path by navigational uncertainties, which make 
the next step deviate 2 A+ (with equal probabil- 
ity) from the previous step. We want to know 
the r.m.s. transverse displacement (yN) from 
the original direction after N steps. We also 
need to identify the parameters in the statistical 
model with the physical phenomenon. I - ’  is 
proportional to and of the same order of magni- 
tude as the average number of salt fingers per 
unit length; Az is proportional to 11 Az 1 where 
I Az I is the r.m.s. gradient of index of refraction 
of the convecting fluid; A + < l  is proportional 
to Az according to the r.m.8. average of Snells 
law. More detailed calculations may be found 
in the large mathematical literature on stati- 
stical optics (Frisch, 1968). 

After passing through the first interface the 
ray has an angle a, A+ relative to the initial 
direction, where an = If- 1 with equal probability. 
After passing through N interfaces the ray has 
an angle A + I F  a,, relative to the initial angle. 
The statistics of that angle constitute a normal 
Gaussian process, but we want to know the 
transverse displacement of the end point of the 
ray and that requires a somewhat more involved 
calculation. 

Since A+2;a ,  is the angle of the ray between 
the n and n + 1 interfaces, the transverse dis- 
placement of the ray in this interval is 1 sin 
(42; a,). The total transverse displacement after 
N interfacm is then: 

Subsequent calculations show that in the main 
thermocline A+ is small of order and 
N A + a l  (for practical reasons), so that the 
approximation 

N n 

Y N =  2 lA+ 2 a m  ( 2 )  
n-1 m - 1  

is quite satisfactory. Upon squaring eq. (2)  and 
using the abbreviation 

n 

E n = 2  a m  (3) 
1 

one gets 

N 

+ 2  2 E , ( E , + E , + . . . E  ,-,) 
n =2 

(4) 

The basic statistical assumption is: 

( a n a m )  - 0  if n+m 

(<a‘;> = 1)  ( 5 )  

where brackets ( ) denote an (ensemble) aver- 
age over different realizations of the ray path. 
If n >m the correlation of En and Em obtained 
from ( 3 )  is 

< E n E , ) = ( ( a l + a , i  ... a,) ( a , - t - a , +  ... a,)) 

= <a;> + <a:> + ... <a%> 

(EnE, )  =m form < n  (6) 

Therefore when we take the average of [4] we get 

N 

( 1  + 2 +  ... N ) + 2  2 ( 1  + 2 +  ... 0 2 -  1 ) )  
n=Z 

(7)  

The right-hand side of the preceeding equation 
is evaluated from the progression summation 
formula: 

Na+N In=---- 
1 2 

N3 Nz N 1 ne =T 4- ~ + 6 
1 

and ( 7 )  then becomes 

N= 
3 (8) - - -- f o r N 3 1  

Let x = 1N be the horizontal distance between N 
consecutive fingers, and substitute in (8) .  We 
then find that the angular deflection of the end 
point of the ray: 
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is smaller by a factor of b than the r.m.s. 
angle of the ray itself. Of course, if  the array of 
salt fingers is highly ordered then there will be 
certain orientations for which the deflection will 
be much larger than that given by (9). 

IV. Fluctuations of light intensity 

Since the intensity is the number of rays per 
unit area i t  is not, difficult to convert the fore- 
going into intensity statistics. Accordingly we 
consider a collimated vertical slit of light of 
width 2t located in the “object” plane. Let q 
measure distance across this slit, with q = O  a t  
the center. The intensity of light, I ,(q) = I * ,  is 
uniform from q = - t  to 7 = + t ,  and I o ( q )  = O  
outside the slit. Thus we say that there are 
I o ( q ) d q  light rays within the interval dq, all of 
which enter the fluid normal to the plane of the 
slit. The rays from this infinitesimal interval 
suffer identical refractions by the salt fingers 
through which they pass. They are received in 
the “image” plane, located a t  a distance x from 
the object plane. Here the transverse coordinate 
of the afore-mentioned ray lies in some interval 
E = q + y  to q + y + d q  where y is the random 
transverse deflection of the ray. The distance 
f = q +y is the ray coordinate measured from 
the projection of the slit axis on the image plane. 
Let P(y)dy denote the probability that a single 
ray will be transversely displaced through an 
interval between y and y + dy, where 

1;; P(Y) dY = 1 

1;: Y”(Y)dY = <Y%) (10) 

Thus (drlP(y)) ( I o ( q ) d q )  is the average number 
of rays bet,ween 9 + y and q + y t dq contributed 
by the differential element d q  on the object 
plane. Dividing by dq to get the intensity and 
then summing all such contributions gives the 
following value for the average intensity a t  a 
fixed point [ in the image plane 

I (5 ) )  = j;: IO(71) P(E - T I )  & 

4.J +t P ( t - q ) d q  (11) 
- t  
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The first non-trivial moment of (11) is ob- 
and integrating: tained by multiplying it by 

j+m E*(I(E))dt= I +:dq j;: ( x + r ) e P ( x ) d x  .- I* -m 

By reintroducing the undisturbed intensity 
function I,( q) the preceeding equation may be 
written as: 

Now substitute (9) into (12) and replace A 4  by 

and N by 

X N = -  
1 

to get 

All quantities in this equation are well-defined 
except the “mean free optical path” (2) .  Eq. 
(13) may then be regarded as a definition of I 
and the content resides in the correlation of I 
with the dimension of salt fingers as determined 
by other means. 

V. Is it possible to “see” salt fingers 
in the thermocline? 

A calculation of the order of magnitude of the 
right-hand side of (13) will now be made for a 
relatively “clean” region of the main thermo- 
cline, utilizing existing theoretical information 
about the expected salt finger structure. At a 
given depth the variation of index of refraction 
aa a function of salinity S and temperature T 
may be written in the form: 
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1 
- Vz = a(VS - bVT 
z 

a=-(-)  1 az 

z aS T 

b = r:) 
n 

where a is the rate of increase of index of 
refraction with salinity a t  constant tempera- 
ture and b is the rate of increase of S with T 
at constant index of refraction. By squaring 
and averaging the above equation we obtain 
the r.m.s. lVnl  for use in (13). Denoting the 
r.m.s. salinity gradient by I V S  I we may write 
the result as: 

where r is the correlation coefficient between 
V T and V S ,  u is a normalizing factor equal to 
the ratio of the mean vertical temperature 
gradient divided by the mean vertical salinity 
gradient and q = a I V S  1 / I V T I . The estimates 

r ~ 0 . 2  

q2: 10 

given by Stern (1968) are based on general ther- 
modynamic considerations of the world ocean. 
The following values of b and a were read from 
the graphs given by Montgomery (1957): 

and a can be obtained from classical oceano- 
graphical measurements. The value we use is 

10°C a=- 
1% 

With these values (15) becomes: 

An estimate of the salt finger thickness: 

1 - 1  cm 

can be obtained from theoretical studies (Stern, 
1969). Although this estimate is not too reliable 
it is hard to believe that the oceanic fingers 
could be an order of magnitude larger or smaller. 
If we consider an optical path of 

5 = los cm 

in the main thermocline and use a grid with 

1 = 10-l cm 

we then find that the second moment of the 
mean intensity fluctuation (eq. 13) is 10%. 
Somewhat larger deviations are expected in a 
single realization. 

If a photometric device were lowered in re- 
gions of the thermocline exhibiting regularly 
spaced “steps” (Tait & Howe, 1968) then the 
relatively thin transition layer should be as- 
sociated with larger fluctuations of intensity 
(13) on the microscale. If such a program is fea- 
sible then it might be possible to calibrate (13) 
in laboratory experiments to obtain an oceanic 
value of 1. Furthermore it  may be possible to 
derive another non-redundant equation for the 
intensity statistics and these two simultaneous 
equations will allow a computation of both V z  
and 1 from the optical measurements. The ef- 
fect of molecular scattering, absorption and 
diffraction have not been explicitly accounted 
for in the foregoing calculation. To some extent 
they may be compensated for by interpreting 
I, ,([)  in eq. (13) as the intensity observed in the 
absence of microstructure. The same reserva- 
tions hold for particle scattering and absorp- 
tion, and measurements should be confined to 
regions of the deep thermocline where such ef- 
fects are minimal. In  any case the modification 
of a beam of light after it passes through salt 
fingers is qualitatively different from the modi- 
fication caused by particles. One should also 
try to correlate the optical signature with simul- 
taneous measurements of temperature and sa- 
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linity using an STD. Although there are many 
practical problems which must arise in the ap- 
plication of the method, we believe that it will 
be possible to adapt the micro-optical (or re- 

lated) techniques to the important problem of 
measuring the dissipation range of oceanic tur- 
bulence. 
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