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ABSTRACT

Ocean data assimilation systems can take into account time and space scale variations by representing

background error covariance functions with more complex shapes than the classical Gaussian function. In

particular, the construction of the correlation functions can be improved to give more flexibility. We describe a

correlation operator that features high correlations within a short scale and weak correlations within a larger

scale. This multiple length scale correlation operator is defined as a linear combination of Whittle�Matérn

functions with different length scales. The main characteristics of the resulting correlation function are

described. In particular, a focus is given on features that might be of interest to determine the parameters of the

model: the Daley length scale, the normalised spectrum inflexion point and the kurtosis coefficient.

The multiple length scale operator has been implemented in NEMOVAR, a variational ocean data

assimilation system. A dual length scale formulation was tested in a one-year reanalysis and compared with a

single length scale formulation. The results emphasise the importance of estimating with great care the factors

used within the combination. They also demonstrate the potential of the dual length scale formulation, in

particular through a decrease of the innovation statistics for salinity profiles. The dual length scale formulation

is now operational at the Met Office.
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1. Introduction

The dominant time and space scales in the ocean vary

considerably. For example, the ocean near-surface can

feature spatial scales from hundreds to thousands of

kilometres, due to the influence of the atmosphere wind

and heat fluxes. Smaller spatial scales of the order of tens

of kilometres, due mainly to internal ocean processes, are

also important for ocean forecasting. Representing small

scales depends on the resolution of the ocean models and

observations. In general, global ocean forecasting systems

run models on a resolution from 1/48 to 1/128 (e.g. Tonani
et al., 2015, and references therein). Higher resolutions are

also available for regional systems. The ocean observations

assimilated in these systems are distributed irregularly in

space and time. Satellites have a good horizontal coverage,

but can only observe the ocean near-surface. In situ mea-

surements are available in the deep ocean but their

horizontal coverage is much sparser.

To account for large and small scales separately, Li et al.

(2015) developed a multi-scale three-dimensional varia-

tional data assimilation (MS-3DVAR) system. In this scheme,

two background error covariance matrices are constructed,

and the classical cost function is split into two parts. This

scheme has been successfully applied in regional systems

(Li et al., 2013; Muscarella et al., 2014). A similar scheme

has been applied in a data assimilation system for hurri-

canes by Xie et al. (2011). Multiple scales can also be

accounted for in the classical cost function by giving the

background error covariance a complex shape. Modelling a

correlation function that matches a set of criteria can be

done in different ways and has been widely studied. For

example, Hristopulos (2003) uses the so-called Spartan

Gibbs random fields where parameters such as scale, shape

and radius can be set up differently. Gaspari and Cohn

(1999) and Gneiting (2002) use products of compactly

supported functions. Linear combinations of Gaussian or

second-order autoregressive (SOAR) correlation functions

have been studied by Purser et al. (2003b), Ma (2005) or

Gregori et al. (2008). In their system, Martin et al. (2007)

combine a SOAR correlation function with a large scale
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associated with errors arising from atmospheric forcing

fields, with another SOAR correlation function with a

small scale associated with errors arising from internal

dynamics.

To model the SOAR correlation functions, Martin et al.

(2007) use a recursive filter (Lorenc, 1992; Purser et al.,

2003a, 2003b). The recursive filter is based on physical-

space models and can therefore conveniently take into

account the complex boundaries that often define the domains

in ocean data assimilation. The diffusion equation (Derber

and Rosati, 1989; Egbert et al., 1994; Weaver and Courtier,

2001) falls into the same class of correlation models.

Weaver and Mirouze (2013) show that solving the diffusion

equation with an implicit scheme leads to modelling a

special case of theWhittle�Matérn functions of order depend-

ing on the number of pseudo time steps. For example,

in one dimension, two pseudo time steps yield a SOAR

function, with the limiting case, when this number is large,

being the Gaussian function. Mirouze and Weaver (2010)

also show that more complex shapes, such as correlation

functions with negative lobes, can be modelled by using a

linear combination of diffusion operators.

In this article, we describe a multiple length scale

correlation operator, which linearly combines two- or

three-dimensional (2D or 3D) Whittle�Matérn correlation

functions of different length scales to construct correlation

functions with more complex shapes. The multiple length

scale correlation operator has been implemented and

tested in the global 1/4 8 NEMOVAR system (Waters

et al., 2015) that constitutes the data assimilation compo-

nent of the current Met Office operational Forecast Ocean

Assimilation Model (FOAM) system (Blockley et al.,

2014).

Section 2 gives an overview of the main features of the

Whittle�Matérn correlation functions and shows how they

are linearly combined to construct the multiple length scale

correlation operator. In Section 3 and Appendices A and B,

some particular characteristics of the resulting function are

described. Results of numerical experiments are detailed in

Section 4. A summary and some conclusions are then given

in Section 5.

2. Multiple length scale correlation operator

In this section, we first recall the main features of the

Whittle�Matérn family that will be used as components in

the linear combination. We then show how to construct a

multiple length scale correlation operator by associating

several of these components with different characteristics,

in order to obtain 2D and 3D correlation models with more

complex shapes.

2.1. The Whittle�Matérn family

In Weaver and Mirouze (2013), a special focus1 is given on

the d-dimensional correlation functions of the Whittle�
Matérn family

cdðrÞ ¼
21�n

CðnÞ
r

L

� �n

Kn

r

L

� �
; (1)

where L is a scale parameter, G(n) is the gamma function,

Kn is the modified Bessel function of the second kind of

order n, and r�jx�x?j is the distance between points x and

x? in R
d . They studied in particular the special case when

n�M�d/2, where M is an integer and M�1 for d�1 and

M�2 for d�2 and 3. For d�1 and d�3, this special case

(WMsp hereafter) leads to a correlation function, often

called an autoregressive function, defined as the product

of an exponential function with a polynomial in r of order

M�(d�1)/2. The Daley definition of length scale (Daley,

1991, p. 110) is commonly used in oceanographic and

meteorological data assimilation to characterise the spatial

scale of a correlation function. The Daley length scale is a

quantity that can be estimated from statistics of back-

ground error. The scale parameter L is related to the Daley

length scale D through the relationship

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� d

r2cd jr¼0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M � d � 2
p

L; (2)

where 92 is the d-dimensional Laplacian operator. The

limiting case for large M and fixed Daley length scale cor-

responds to the Gaussian function gðrÞ ¼ expð�r2=2L2
gÞ,

with D ¼ Lg �
ffiffiffiffiffiffiffiffi
2M
p

L.

The Fourier transform of the correlation function eq. (1)

is given by

ĉdðr̂Þ ¼
kd

ð1þ L2r̂2ÞM
; (3)

where r̂ ¼ jx̂j, and x̂ is the vector of the spectral wave

numbers associated with x. When the correlation function

eq. (1) is modelled through an implicit diffusion operator, kd

is the normalisation factor to be applied in order to ensure

that themaximumof the function is equal to 1 and is given by

kd ¼ ln;dLd ; (4)

with

ln;d ¼ 2dpd=2 Cðn þ d=2Þ
CðnÞ

: (5)

1Weaver and Mirouze (2013) show that correlation functions

defined by eq. (1) can be modelled by applying M iterations of an

implicit diffusion operator and normalising the result appropri-

ately (see Section 2.4), in the special case when n�M�d/2 .
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2.2. Combining the components

Following Mirouze and Weaver (2010), let us consider a

d-dimensional correlation function constructed by linearly

combining P d-dimensional correlation functions given

by eq. (1)

fd;PðrÞ ¼
XP

p¼1

cpcd;pðrÞ; (6)

where the factors cp are such that
PP
p¼1

cp ¼ 1 to ensure the

maximum amplitude of the correlation function is equal

to 1. Negative lobes can be modelled by allowing some

parameters cp to be negative. In this case, however, some

conditions on the parameters apply to guarantee fd,P (r)

to be a valid correlation function (Gregori et al., 2008).

Figure 1 (left panel) shows the cross-section of an example

of 2D correlation functions f2;2 ¼ c1c2;1 þ c2c2;2 constructed

from two correlation functions with a smoothness para-

meter n�3 (d�2, P�2, M�4). The function c2,1 (dashed

black) uses a small-scale parameter of L1�10 grid points

(D1�20), whereas the function c2,2 (dotted black) uses a

large-scale parameter of L2�50 grid points (D2�100).

Two different linearly combined functions are presented:

f2,2 with c1 ¼ 0:7; c2 ¼ 0:3 (red) uses mainly the small-scale

correlation function, and f 02;2with c01 ¼ 0:3; c02 ¼ 0:7 (blue)

uses mainly the large-scale correlation function. Both

resulting functions retain the features of the small-scale

correlation function for high correlation values, but show

fatter tails that still allow for some correlation with more

distant points. The transition occurs at medium correlation

values and depends on the settings for c1 (and c2 ¼ 1� c1).

2.3. Combination using 1D components

When the hypothesis of separability holds, a d-dimensional

correlation function can be split into 1D correlation

functions for each axis (e.g. Stein, 1999, pp. 54�55 and

references therein). Although this hypothesis is violated

near coastlines, this method is convenient and hence often

used to model the background error correlation function

with the recursive filter or the implicit diffusion operator

(Dobricic and Pinardi, 2008; Waters et al., 2015).

In eq. (6), the desirable correlation function is constructed

from a linear combination of several different d-dimensional

correlation functions. Each of these d-dimensional correla-

tion functions can themselves be a product of 1D correlation

functions. Another way of constructing a complex-shaped

correlation function is to construct directly the d-dimensional

correlation function as the product of 1D correlation func-

tions, which are themselves a linear combination of 1D cor-

relation functions with different characteristics. Equation

(6) is therefore transformed as

fdðrÞ ¼
Yd

i¼1

XPi

p¼1

ci;pc1;i;pðrÞ: (7)

For example, a 2D correlation function constructed

from three different length scales along the x-direction

(dimension i�1) and two different length scales along the

y-direction (dimension i�2) is denoted

f2ðrÞ ¼ cx;1c1;x;1ðrÞ þ cx;2c1;x;2ðrÞ þ cx;3c1;x;3ðrÞ
� �
� cy;1c1;y;1ðrÞ þ cy;2c1;y;2ðrÞ
� �

:

In other words, several linear combinations are involved

in the construction of the desirable correlation function
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Fig. 1. 2D correlation functions f2;2 ¼ c1c2;1 þ c2c2;2where the length scale parameters are L1�10 and L2�50 for c2,1 and c2,2, respectively,

and n1�n2�3. The left panel shows a cross-section of c2,1 (dashed black), c2,2 (dotted black) and two different linearly combined functions: f2,2
with c1 ¼ 0:7; c2 ¼ 0:3 (red), and f 02;2with c01 ¼ 0:3; c02 ¼ 0:7 (blue). The right panel shows a cross-section at x̂2 ¼ 0 of their normalised spectrum.

The black lines highlight the normalised spectrum values ð2M þ 2� dÞM=ð2M þ 2ÞM ¼ 0:41 and 1=2M ¼ 0:0625. See text for details.
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eq. (7), whereas only one linear combination is required in

eq. (6). Formulating a combination through eq. (7) rather

than eq. (6) gives more flexibility because each direction

can be shaped independently. However, this flexibility can

translate into cumbersome square-root formulations, dif-

ficulties in the practical implementation and significant

increase in cost. Therefore, the formulation from eq. (6)

will generally be preferable.

2.4. Discretisation

In variational data assimilation, the cost function is gen-

erally minimised with a preconditioned iterative method

(e.g. conjugate gradient). During the process, multiplica-

tions between the background error correlation matrix (or

its square root) and a vector are required. In most cases,

these products cannot be carried out directly because the

background error correlation matrix is too large, so alter-

native approaches are needed.

A correlation operator is a symmetric and positive semi-

definite application, which yields the convolution product

of its kernel (a correlation function) with the initial

condition it has been applied to. In a discretised represen-

tation, this convolution product is equivalent to the pro-

duct of a correlation matrix, whose kernel is the discrete

representation of the correlation function, with a vector repre-

senting the discretisation of the initial condition. Correlation

operators based on a normalised recursive filter or a nor-

malised diffusion operator are therefore widely used to

simulate these products, once discretised.

In ocean applications, length scales are generally allowed

to vary geographically. To be consistent and realistic, the

factors cp should be allowed to vary geographically as well.

Let us call Fd,P a correlation operator whose kernel is the

multiple length scale correlation function given by eq. (6).

When the factors cp ¼ cpðxÞ are not constant, its kernel,

centred at the point x0, is the solution of its application to

an initial condition defined by a Dirac delta function

centred at the point x0 and is given by

Fd;P½dx0
� ¼
XP

p¼1

c1=2
p ðxÞ

�
Z

cd;pðx � x 0Þ c1=2
p ðx 0Þdðx 0 � x0Þ

h i
dx 0

¼
XP

p¼1

c1=2
p ðxÞc1=2

p ðx0Þcd;pðx � x0Þ:

(8)

At the point x0, the amplitude of eq. (8) is
PP
p¼1

cpðx0Þ ¼ 1

and is the maximum of the function as shown hereafter.

Since cd,p(x�x0) is a valid correlation function, its maxi-

mum is at the point x0, that is, its first and second

derivatives are 0 and B0 (negative), respectively, at the

point x0. Assuming that cpðxÞ is n times differentiable, the

sum over P of the nth derivatives of cpðxÞ is the nth

derivative of the sum over P of cpðxÞ, and hence is 0 since

the sum of the factors cpðxÞ is a constant function equal to

1. As a result, the first and second derivatives of eq. (8) at

the point x0 are 0 and B0 (negative), respectively, defining

thus the point x0 as the abscissa of the maximum. There-

fore, the kernel of the correlation operator Fd,P is a valid

correlation function, even when the factors cpðxÞ are not

constant. In this case, however, the kernel does not match

exactly eq. (6). The distortion depends on the variation of

the factors cpðxÞ.
When the correlation operator Fd,P is discretised, its

symmetry and positive definiteness can be guaranteed by

constructing it as a product of ‘square-root’ factors

Fd;P ¼ F
1=2

d;P F
1=2

d;P

� �T

¼ F1=2
d;1 . . . F1=2

d;P

� � F1=2

d;1

� �T

..

.

F1=2

d;P

� �T

0
BBBB@

1
CCCCA;

(9)

where F1=2

d;p ¼ C1=2
p C1=2

d;p ; and Cd,P is a model of correlation

functions of the form eq. (1) such as the normalised implicit

diffusion operator or the normalised recursive filter. Gp is

the diagonal matrix of the discretised factors cpðxÞ asso-
ciated with the correlation operator C1=2

d;p , and is such thatPP
p¼1

Cp ¼ I, where I is the identity matrix. Square-root forms

of the background error covariance matrix (and hence its

correlation matrix) are needed for generating correlated

noise in Monte Carlo applications, such as the randomisa-

tion method (Weaver and Courtier, 2001, and references

therein) often used to calculate the normalisation factors.

They are also used to precondition the cost function mini-

misation problem through the classical change of variable

method (Lorenc, 1988; Courtier, 1997; Derber and Bouttier,

1999). However, when rectangular matrices are involved,

like in eq. (9), using such a preconditioning increases the

size of the minimisation vector. It is therefore preferable in

this case to precondition the cost function using the full

background error covariance matrix, as suggested in earlier

studies by Derber and Rosati (1989) and more recently by

Gratton and Tshimanga (2009) and Gürol et al. (2014).

Both methods of preconditioning are equivalent and will

lead to the same solution.

The calculation of the normalisation factors for the

recursive filter or the diffusion operator is generally costly,

and hence is an obstacle to the introduction of flow

dependency into the correlation model. With the multiple

length scale correlation operator, however, it is possible to

obtain different shapes for the correlation function by

4 I. MIROUZE ET AL.



using the same components Cd,P but with different factors

cpðxÞ. If these factors are computed at each assimilation

cycle depending on characteristics of the flow and/or the

observation network, flow dependency can be introduced

into the correlation model without any extra cost, since the

normalisation factors do not depend on cpðxÞ.

3. Characteristics of the resulting correlation

function

In this section, we explore the features of the correlation

functions given by eq. (6). In particular, we focus on

characteristics that might be of interest for defining the

parameters of the model from an estimate of the desirable

correlation function. In practice, the parameters of the

correlation model are often estimated from, for example,

an ensemble (Daget et al., 2009) or forecast differences

(NMC method, Parrish and Derber, 1992) as done for the

factors cp in our numerical experiment (see Section 4). For

simplification, we are considering only constant length

scales and cp in this section.

3.1. Daley length scale

From eq. (2), the Daley length scale of the resulting

correlation function fP(r) is given by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

PP
p¼1

cp=ð2Mp � d � 2ÞL2
p

vuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQP
p¼1

ð2Mp � d � 2ÞL2
p

PP
p¼1

cp

QP
q¼1;q6¼p

ð2Mq � d � 2ÞL2
q

vuuuuuut :

(10)

When all P functions have the same smoothness parameter

np(Mp)�n(M), eq. (10) reduces to

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M � d � 2
p

QP
p¼1

Lp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
p¼1

cp

QP
q¼1;q6¼p

L2
q

s :

In the limiting case where M is large, the Daley length

scales Dp are equal to the scale parameters Lg;p �
ffiffiffiffiffiffiffiffi
2M
p

Lp,

and the Daley length scale of the linearly combined

function is given by

D ¼

QP
p¼1

Lg;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
p¼1

cp

QP
q¼1;q6¼p

L2
g;q

s :

In the example of Fig. 1 (left panel), the Daley length scale

of the functions f2,2 and f 02;2 are D�23.7 and D?�34.9,

respectively. These Daley length scales are much closer to

the Daley length scale of c2,1 (D1�20) than c2,2 (D2�100)

as can be clearly seen by comparing the distances when the

correlation is between2 0.6 and 0.7.

The Daley length scale allows the upper part of the

resulting function to be characterised and hence provides a

crude approximation of the smaller length scale involved in

the linear combination. However, it fails to provide

information on the tail of the resulting function.

3.2. Normalised spectrum

To characterise better the parameters of the model, it is

worth studying its Fourier transform. From eq. (3), the

normalised spectrum of the resulting function eq. (6) is

given by

f̂d;Pðr̂Þ
k
¼
XP

p¼1

sp

ð1þ L2
pr̂2ÞMp

; (11)

where

k ¼
XP

q¼1

cqkd;q;

sp ¼ cpkd;p=k:

(12)

From eq. (4), when all P functions have the same

smoothness parameter np(Mp)�n(M), we have k ¼ ln;d �PP
q¼1

cqLd
q and sp ¼ cpLd

p=
PP
q¼1

cqLd
q . Figure 1 (right panel)

shows a cross-section at x̂2 ¼ 0 of the normalised spectrum

for the previous 2D examples f2,2�0.7c2,1�0.3c2,2 (red)

and f 02;2 ¼ 0:3c2;1 þ 0:7c2;2 (blue). For small wave numbers,

the resulting function is close to the large-scale function c2,2
(dotted black), whereas for high wave numbers, it is closer

to the small-scale function c2,1 (dashed black). A transi-

tional behaviour is observed in between which depends on

the settings for c1 (and c2).

A noteworthy point of the normalised spectrum of a

WMsp correlation function is given for the wave number

distance r̂ls ¼ 1=L. From eq. (3), we have

ĉd ð̂rlsÞ
kd

¼ ĉdð1=LÞ
kd

¼ 1

2M
:

2At a distance from the peak equal to the Daley length scale,

the value of a Gaussian correlation function is e�1=2 � 0:6. For

the correlation functions in eq. (1), the Gaussian function is the

limiting case when n(M) is large. When n(M) is small, a precise

measurement is obtained by computing cdð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M � d � 2
p

LÞ as

given by eq. (1). In our example, this is 0.647. Note however, this is

not exact for the resulting function fd,P, although it is good enough

for the purpose of a sanity check.

A MULTIPLE LENGTH SCALE CORRELATION OPERATOR 5



In the example of Fig. 1 (right panel), the thick black line at

value 1/2M�0.0625 crosses the functions ĉ2;2=k2 and ĉ2;1=k1

at wave number distances 1/L2�0.02 and 1/L1�0.1,

respectively. However, the resulting function of the linear

combination eq. (6) is not of the form of eq. (1). Therefore,

the wave number distance r̂ls cannot be defined by using

eq. (2). Indeed, in our example, the Daley length scales of

the linearly combined functions f2,2 and f 02;2 are D�23.7

and D?�34.9, respectively. Using eq. (2) would give

L�11.85 and L?�17.45, and hence, r̂ls ¼ 0:084 and

r̂0ls ¼ 0:057, respectively. From Fig. 1 (right panel), it is

clear that these wave number distances do not correspond

to the normalised spectrum value 1/2M�0.0625. An

interesting consequence is that if the wave number asso-

ciated with the Daley length scale through eq. (2) of a

correlation function does not match the normalised spec-

trum value of 1/2M, then this correlation function is not of

the form of eq. (1). A linear combination of form eq. (6)

might be required to approach its shape.

A second interesting point is given by the inflexion wave

number r̂ifl ¼ jbxiflj that corresponds to the inflexion of the

spectrum curve. Its calculation is given in Appendix A.

From eq. (A2) of the appendix, the value of the normalised

spectrum for the inflexion wave number is given by

ĉdðr̂iflÞ=kd ¼
2M þ 2� d

2M þ 2

� �M

:

Note that this value depends on the smoothness parameter

n(M) and the dimension d of the correlation function, but

not on the length scale parameter L. The inflexion wave

number for the resulting functions of a linear combination

is not trivial to derive from eq. (11). However, a correlation

operator can be seen as a low-pass filter and the inflexion

wave number as its cut-off wave number, that is, the wave

number from which the filter starts to attenuate the signal.

Because the behaviour of the resulting function of a linear

combination is close to the larger scale function for small

wave numbers (large scales), its inflexion wave number is

expected to be approximately the same as the one of the

larger scale function. Note that this closeness depends on

the smoothness parameters np(Mp) and on the dimension d.

This is illustrated in Fig. 1 (right panel) where both

examples f̂2;2 and f̂ 02;2 are close to ĉ2;2 for the normalised

spectrum value ĉ2;1ðr̂iflÞ=k1 ¼ ĉ2;2ðr̂iflÞ=k2 ¼ 0:41, high-

lighted by a thick black line. When all P functions have

the same smoothness parameter np(Mp)�n(M), the inflex-

ion wave number provides a crude approximation of the

larger length scale involved in the linear combination.

3.3. Kurtosis coefficient

When the different length scales and smoothness factors

involved in a linear combination are fixed, the possible

resulting functions can still have very different shapes,

depending on the factors cp used in the combination. In

the example shown in Fig. 1 (left panel), the correlation

function f2,2 with c1 ¼ 0:7 has a sharper shape than f 02;2 with

c01 ¼ 0:3. The ‘peakedness’ or ‘tail fatness’ of a correlation

function can be expressed in terms of the kurtosis (e.g. von

Storch and Zwiers, 1999, p.32). Whereas the kurtosis of a

fourth-order 2D WMsp function, such as c2,1 and c2,2, is

k1�k2�3.86, the kurtosis of f2,2 and f 02;2 are k�5.46 and

k?�4.16, respectively, acknowledging their sharper shape.

Figure 2 shows the evolution of the kurtosis ratio k/k1,

calculated in Appendix B, for the correlation function f2,2
with respect to c1. The higher c1, that is, the more the small

length scale correlation function is involved, then the higher

the kurtosis ratio is, that is, the sharper the resulting

correlation function is. The ratio drops back to one abruptly

when the factor c1 is close to one. When all P functions have

the same smoothness parameter np(Mp)�n(M), the kurtosis

of the resulting correlation function provides some informa-

tion on the factors cp used in the linear combination (see

Appendix B).

4. Numerical experiment

The multiple length scale correlation operator described in

the previous sections has been implemented in the global

Fig. 2. Evolution of the ratio k/k1 with respect to c1. k is the

kurtosis of the 2D correlation function f2;2 ¼ c1c2;1 þ c2c2;2, with

L1�10 and L2�50 for c2,1 and c2,2, respectively, and n1�n2�3.

k1 is the kurtosis of the function c2,1 (and c2,2).

6 I. MIROUZE ET AL.



1/48 75 vertical levels FOAM system (Blockley et al., 2014).

The FOAM system consists of the hydrodynamic model

Nucleus for European Modelling of the Ocean (NEMO;

Madec, 2008) coupled with the Los Alamos sea ice model

(CICE; Hunke and Lipscombe, 2010) and the incre-

mental first guess at appropriate time 3D scheme (Waters

et al., 2015) of the variational data assimilation system

NEMOVAR.

A numerical experiment was designed to assess the

impact of the multiple length scale operator in a realistic

framework and give insights on its potential. A one-year

reanalysis has been run with the new correlation operator

in a dual length scale formulation (hereafter DUAL

experiment) in order to be compared with the original

single length scale correlation operator (hereafter SNGL

experiment). Both experiments start using the same initial

states provided by the operational FOAM system (Blockley

et al., 2014) on 4 August 2010. Each experiment is spun up

for four months and the one-year period of interest runs

from 1 December 2010 to 30 November 2011.

4.1. Assimilation scheme

Two cost functions are minimised separately in a one-day

assimilation window: a sea ice cost function to assimilate

sea ice concentration observations; an ocean cost function

to assimilate satellite and in situ sea surface temperature

(SST), temperature and salinity profiles from the EN4 data

set (Good et al., 2013), and along-track sea-level anomalies.

Both cost functions are minimised with 40 iterations of a

B-preconditioned conjugate gradient algorithm (algorithm

2 in Gürol et al., 2014), where B is the background error

covariance matrix. The ocean cost function accounts for

multivariate variables through a balance relationship between

the temperature (defined as a total variable) and the other

variables (salinity, sea surface height, zonal and meridional

components of current velocities) as described in Weaver

et al. (2005). In the univariate problem that follows,

spatial correlation matrices for temperature, unbalanced

salinity and unbalanced sea surface height (SSH) are as-

sumed to have a kernel of the form eq. (1). In the sea ice

cost function, the sea ice concentration is considered as

a total variable, that is, there are no balance relation-

ships with any other variables, and its spatial correlation

matrix is also assumed to have a kernel of the form eq. (1).

The spatial correlation matrices are modelled by using

2D (unbalanced SSH and sea ice concentration) or 3D

(temperature and unbalanced salinity) correlation opera-

tors constructed from a product of 1D normalised implicit

diffusion operators.

4.2. Parameters of the correlation operator

The original correlation operator (SNGL) uses a single cor-

relation function (no linear combination) for all variables.

For temperature, unbalanced salinity and sea ice concen-

tration, the horizontal length scales of the correlation

functions are based on the first baroclinic Rossby radius,

with a minimum of 25 km at high latitudes and a maximum

of 150 km around the equator. For unbalanced SSH, the

horizontal length scales are set to 400 km. The vertical

length scales for temperature and unbalanced salinity are

set to the mixed layer depth at the surface and decreased

smoothly to reach a value of twice the vertical grid size at

the mixed layer depth and below. This parameterisation

allows for some flow dependency to be taken into account.

However, it leads to non-trivial off-line calculation of the

normalisation factors. A lookup table depending on a

discrete set of possible mixed layer depths is then used to

define the normalisation factors to apply at each grid point

during the cycle (Waters et al., 2015).

For the dual length scale reanalysis (DUAL), the back-

ground error correlation functions for temperature and

unbalanced salinity are constructed from eq. (6) with P�2.

As in Martin et al. (2007), the linear combination associates

a small scale to account for internal dynamics error and a

large-scale for the errors arising from some atmospheric

forcing fields. For the horizontal, the small scales are the

same Rossby-radius-based length scales as in SNGL and

the large scales are set to a constant value of 400 km. The

choice of the second length scale was made according to the

previous data assimilation system (optimal interpolation

scheme) that was used in FOAM (Martin et al., 2007). For

the vertical, the same parameterisation as in SNGL is used

for both components.

Short tests of the dual length scale formulation were

done by using constant factors c1 and c2. Although the

results show the potential of the multiple length scale

operator, using constant factors was unsatisfying. Indeed,

we expect the shape of the background error correlation

function to be varying depending on the geographical

location. Defining location-dependent factors is not trivial

and is beyond the scope of this article. Therefore, we chose

to use the factors defined from the seasonal variances

calculated from the previous Met Office operational 1/48
system (Storkey et al., 2010) and interpolated in time.

The seasonal variances were calculated by fitting two

SOAR functions to the correlations estimated from an

ensemble of forecasts with different lead times (NMC

method, Parrish and Derber, 1992). The forecasts were

provided by the former Met Office operational system,

where observations were assimilated through an optimal

interpolation scheme. Because these variances are coming

from a different system, they have been calculated according
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to different parameters. The small scale used to compute

them was fixed to 40 km, whereas in our experiments it

varies from 25 to 150 km depending on location. Moreover,

the correlation functions modelled in our experiments are

closer to the Gaussian function than the SOAR function.

For most of the ocean, the factor c2 is about 0.25, that is,

only weak correlations are spread further. In highly

dynamic regions, such as the Gulf Stream, the Kuroshio

or the Antarctic Circumpolar Current (ACC), this factor is

increased to about 0.4. This increase is counter intuitive,

since errors are expected to be relatively greater in the small

scales for the strongly eddying regions. This is probably

due to the method used to calculate the seasonal variances

rather than being a genuine feature. The higher variance

can be assimilated as a higher noise in the set of cor-

relations points, and the fitting function method tends to

over-estimate the larger scale in this case. At low SST (high

latitudes), the factor c2is decreased to zero in order to use

the small scale only near the ice edges (see Section 4.4 for

more details).

4.3. An example of temperature increments

Figure 3 shows an example of temperature increments at the

surface, obtained from the same initial states and the same

set of observations. It represents the increments using the

original formulation for the correlation operator as in

SNGL (top left panel), and a dual length scale formulation

as inDUAL (top right panel). The factor c2 for the large scale

of the surface temperature is illustrated in the bottom panel.

One can see that the increments are similar in both

examples when the factor c2 is small (northern and south

eastern areas), although a slight smoothing effect can be

observed for the increments provided by the dual length

formulation. When the factor c2 is larger, the spread of the

innovations is visible for the increments of the dual length

scale formulation. This is particularly noticeable for the

cold increments along the coast between 30 8N and 42 8N
(1), and for the warm increments around 60 8W (2). In the

area around 42 8W and 45 8N (3), there is a gap in the cold

increments for the original formulation, whereas in the dual

length scale formulation, the fatter tails of the correlation

function have filled the gap.

4.4. Sea ice concentration and SST increments

conflict

During initial tests of the dual length scale formulation, a

strong increase (17 %) was noticed in the innovation root

mean square (RMS) of the sea ice concentration. This was

Fig. 3. Surface temperature increments on 1 December 2010 with the original formulation (top left panel) and a combination of two

functions (top right panel) for the Gulf Stream region. The increments are calculated from the same initial states and the same set of

observations. The factor c2 defining the amount of the large scale to be used in the combination is shown on the bottom panel.
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caused by the large scale of the surface temperature spread-

ing the innovations a long distance under the ice and

conflicting with the sea ice concentration increments. When

propagated by the model, the resulting analysis showed

a less accurate daily mean field of sea ice concentration.

Although the assimilation of sea ice concentration observa-

tions was working very hard on the next cycle to correct the

field, it was constantly degraded by the SST increments.

To eliminate the problem, we redefine the factor c2 for

the temperature large scale such that it is reduced for low

SST values. The large-scale factor at any depth is linearly

interpolated from its current value to zero when the SST

decreases from 3 8C to 1 8C and is maintained at zero when

SST is below 1 8C. The small-scale factor c1 is increased

accordingly. In other words, the dual length scale formula-

tion for temperature is smoothly replaced by the single

length scale formulation at high latitudes near the ice edges.

Using this new factor c2 resolved the problem completely

and led to similar sea ice concentration statistics for both

single and dual length scale formulations. This ad hoc

parameterisation should be revisited, however, when the

factors will be tuned.

4.5. Innovations statistics

The assessment of the results is mainly based on innovation

statistics, in terms of mean and RMS error (see Table 1).

The innovations compare the observations before they are

assimilated to their model counterparts. When they are not

yet assimilated, the observations can be considered as an

independent set of observations, and hence provide a useful

diagnostic.

Globally, we note a slight increase of the RMS error of

about 2�3 % in most regions with low variability for SST

in situ innovations. In regions with higher variability such as

the Gulf Stream and the ACC, this increase is even higher.

A similar but lower increase can be seen in the SST inno-

vations RMS error when the observations come from

satellite. The results for temperature profile innovations

are similar in both experiments, alternating slight decreases

and increases. For salinity profile innovations, there is a

general decrease of the DUAL RMS error. This decrease

can reach more than 5 % in the South Atlantic and even

more than 12 % in the Arctic Ocean and comes mainly

from the first hundred metres. The mixed layer depth is

derived from temperature and salinity profiles (Kara et al.,

2000) and shows an interesting global decrease of 8 % for

the DUAL RMS error. This probably results from a better

salinity field in the top few hundred metres. A general

increase of the RMS error for SSH innovations can be seen

for DUAL, although there is a decrease in the Labrador

Sea. The main increase is located in the Southern Ocean for

the whole year. Highly dynamic regions, such as the Gulf

Stream and the Kuroshio, also have slightly increased

errors for DUAL. In both SNGL and DUAL, the back-

ground error correlation function for the unbalanced SSH

variable is modelled through a single diffusion operator (no

combination) with a constant length scale of 400 km. The

SSH increment is then constructed using the unbalanced

SSH increment and a baroclinic balance relationship based

on the integration of the density increments (Weaver et al.,

2005). The total SSH is thus affected by the changes intro-

duced in the temperature and salinity increments by the dual

length scale formulation. The decrease seen in the North

Atlantic is possibly due to large-scale forcing dominating

the Labrador Sea region during summer. More investiga-

tion is required, however, to determine more precisely the

causes. In the Southern Ocean, eddies are particularly nu-

merous and can extend quite deeply, affecting the isopyc-

nals in such a way that they present steep gradients. A likely

cause of the degradation is that the innovations are spread

too far away by the large length scale, merging temperature

or salinity increments belonging to different density layers.

Solving this problem requires more complex strategies than

the one adopted in Section 4.4

The main impact of the dual length scale formulation

can be seen on the bias of the innovations. This is not surpris-

ing since the fat tails of the background error correlation

functions account for large-scale errors and hence impact

the error mean. The large scale of the dual length scale

formulation is associated with the errors arising from some

atmospheric forcing fields and its impact is therefore

confined to the first 500m. However, a slight impact can

also be seen at greater depths in the Southern Ocean,

possibly due to the high mixed layer depth in this region.

Table 1. RMSE for SNGL and DUAL in different areas

RMSE

Variable Area SNGL DUAL %

SST in situ Global 0.455 0.462 �1.5

North Atlantic 0.516 0.527 �2.1

Southern Ocean 0.468 0.484 �3.4

Temperature profile Global 0.614 0.616 �0.3

North Atlantic 0.812 0.806 �0.7

Southern Ocean 0.568 0.565 �0.5

Salinity profile Global 0.126 0.124 �1.6

North Atlantic 0.218 0.214 �1.8

Southern Ocean 0.108 0.103 �4.6

Mixed layer depth Global 40.35 37.08 �8.1

North Atlantic 44.13 42.94 �2.7

Southern Ocean 63.76 56.44 �11.5

SSH Global 0.071 0.075 �5.6

North Atlantic 0.075 0.074 �1.3

Southern Ocean 0.089 0.097 �9.0

The last column represents the normalised difference (DUAL�
SNGL)/SNGL in percentage.
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Figure 4 presents Hovmoller plots for temperature innova-

tion mean in the Southern Ocean. Near the surface, SNGL

(left panel) shows a cold model bias during the summer that

is mostly corrected in DUAL (right panel). Between 100 and

500m, a warmmodel bias of about 0.2 8C can be clearly seen

in SNGL during most of the year, except winter. The dual

length scale formulation manages to reduce it, although

a bias remains, in particular in January and February.

Figure 5 shows Hovmoller plots for salinity innovation

mean in the Southern Ocean. In SNGL (left panel), a fresh

model bias can be seen in the first hundred metres for most

of the year, except January. Another fresh model bias of

about 0.03 also develops from the middle of autumn until

the end of spring below 200m. Both biases are well corrected

in DUAL (right panel) although a small near-surface fresh

bias remains for most of the year except summer.

4.6. Results summary

The impact of a multiple length scale correlation operator

for the background error was studied through one-year

reanalyses. The aim of the experiment was to study the

potential of a dual length scale formulation compared with

the single length scale formulation that was currently used

in the operational system.

Some issues arise, probably due to a lack of a proper

tuning for the factors c1 and c2. An increase of the RMS

error for the sea ice concentration innovations was spotted

and corrected by an ad hoc parameterisation of the factors

before running the reanalysis. A general increase of the

RMS error can be seen for SST innovations, possibly

suggesting that the large length scale should be reduced in

areas of dense observations. Regions of high variability are

particularly affected because of the counter-intuitive in-

crease of the factor c2 in these regions (see Section 4.2).

This is also the case for the SSH innovations. Moreover,

the RMS error for the SSH innovations is particularly

worsened in the Southern Ocean, probably due to the large

length scale merging increments inappropriately. Some

additional tests were performed, in which the large length

scale was reduced at the edge of uncorrelated regions.

These regions were identified by using horizontal gradients

of the potential vorticity. These tests were reasonably

successful at correcting the increase of the RMS for the

SSH innovations and hence tend to confirm the hypothesis.

We hope to develop this approach in future work.

Despite these issues, the potential of the dual length scale

formulation was demonstrated. A large impact was seen on

the innovation bias for temperature and salinity profiles,

showing the usefulness of fatter tails in the background

error correlation functions. The innovation statistics were

also improved in terms of RMS for the salinity profiles and

the mixed layer depth. The profile data performance was

substantially improved in the Southern Ocean in particular,

possibly at the expense of the SST and SSH performance.

This trade-off was considered acceptable, however, for the

dual length scale formulation to become operational.

Further improvement is expected with carefully tuned

factors c1 and c2.

5. Summary and discussion

We presented a multiple length scale operator that linearly

combines special cases of Whittle�Matérn correlation

Fig. 4. Hovmoller plots of the observation minus background innovation mean for temperature profiles for SNGL (left panel) and

DUAL (right panel) in Southern Ocean. Blue colours denote a warm model bias, whereas red colours represent a cold model bias.

Fig. 5. Hovmoller plots of the observation minus background innovation mean for salinity profiles for SNGL (left panel) and DUAL

(right panel) in Southern Ocean. Blue colours denote a salty model bias, whereas red colours represent a fresh model bias.
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functions (WMsp) with different characteristics to obtain a

correlation function with more complex shapes. Some

features of the resulting correlation function, such as the

Daley length scale, the kurtosis and the spectrum infle-

xion point, have been detailed. The multiple length scale

operator can easily be implemented by modelling each of

the WMsp correlation functions with a normalised implicit

diffusion operator, for example. It can hence be used to

model complex-shaped background error correlations in

variational data assimilation systems.

The multiple length scale correlation operator has been

implemented in NEMOVAR, an ocean 3D variational

system, and a dual length scale formulation has been tested

through a one-year reanalysis. When compared with a

single length scale formulation, the results show an increase

of the RMS error for innovations where a dense observa-

tion network is assimilated (SST and SSH). This suggests

that the large length scale should probably be reduced in

densely observed regions. The performance of profile data

was improved in terms of innovation bias. The RMS error

for the mixed layer depth and salinity profile innovations

was decreased. These improvements justified an opera-

tional implementation in the Met Office system.

In order to set up this experiment, the factors c1 and c2 of

the combination were defined from the seasonal variances

calculated from the previous Met Office operational 1/4 8
system (Storkey et al., 2010). These factors define the

amount of the small- and large-scale correlation functions,

respectively, involved in the combination and hence define

the shape of the resulting correlation function. The results

of the experiment show a slight increase of the RMS error

of the SST innovations and an increase of the RMS error of

the SSH innovations in the Southern Ocean particularly.

The worsening of the statistics might be due to the factors

c1 and c2 not being properly tuned. The different experi-

ments tested in this study showed that the results were

sensitive to the choice of these factors. It is therefore

important to define these factors accurately.

Defining good estimates of the factors c1 and c2 of the

linear combination is a difficult task, beyond the scope

of this article. The method of fitting functions that was

used here requires an estimate of the resulting correlation

function itself at each grid point. With the increasing

resolution of the models, these estimates become more and

more costly to calculate. Fitting specified functions to the

resulting correlation function to determine the factors c1

and c2 is not flawless either. For example, the large-scale

tends to be overestimated when the variance is high.

Moreover, length scales are expected to vary depending

on their location and to be anisotropic in some regions.

This results in distortions of the resulting correlation

function, which are not taken into account by the fitting

function method. Overall, the method to estimate the

factors c1 and c2 is not satisfying with respect to the

importance of these factors. The technique using the

kurtosis that we described in this article might be a good

candidate for a more efficient method of estimation and

needs to be studied further.
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Appendix A

A.1. Inflexion wave number

In this appendix, we develop the calculation of the inflexion

wave number r̂ifl ¼ jx̂ iflj for the normalised spectrum

ĉdðr̂Þ=kd of the d-dimensional WMsp correlation function

of form eq. (1). This distance represents the inflexion of

the spectrum curve, that is, the cut-off of the low-pass

filter defined by the correlation operator. It is calculated

by finding the minimum of the normalised spectrum

gradient and hence by nullifying the normalised Laplacian

spectrum.

From eq. (3), the gradient of the normalised spectrum is

given by the sum over d of its elements

@ĉdðr̂Þ=kd

@x̂i

¼ � 2ML2x̂i

ð1þ L2 r̂2ÞMþ1
; (A1)

where x̂i, i�1,. . ., d is the ith element of the spectral wave

number vector x̂. The gradient of the normalised spectrum

is negative for all wave numbers x̂i > 0. Its value is

rĉdðr̂Þ=kd ¼ 0 for all x̂i ¼ 0 (̂r ¼ 0) and rĉdðr̂Þ=kd ! 0

for r̂! þ1.

From eq. (A1), the elements of the Laplacian are

given by

@2ĉdðr̂Þ=kd

@x̂i@x̂j

¼
2ML2 2ðM þ 1ÞL2x̂ix̂j � 1� L2 r̂2

h i
1þ L2 r̂2ð ÞMþ2

;

with i, j�1,. . .,d, and hence the Laplacian reads

r2ĉdðr̂iflÞ=kd ¼
Xd

i¼1

Xd

j¼1

2ML2 2ðM þ 1ÞL2x̂ix̂j � 1� L2 r̂2
h i

1þ L2r̂2ð ÞMþ2
:
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The inflexion wave number is given by

Xd

i¼1

Xd

j¼1

2ðM þ 1ÞL2x̂i;iflx̂j;ifl � 1� L2 r̂2
ifl

h i
¼ 0:

If we assume that x̂i;ifl ¼ x̂j;iflfor all i, j, then we can rewrite

the previous equation as

Xd

i¼1

2ðM þ 1ÞL2r̂2
ifl � dð1� L2r̂2

iflÞ
	 


¼ d ð2M þ 2� dÞL2 r̂2
ifl � d

	 

¼ 0:

From there, we can define the (squared) inflexion wave

number

r̂2
ifl ¼

d

ð2M þ 2� dÞL2
(A2)

Appendix B

B.1. Kurtosis coefficient for the WMsp functions

The kurtosis describes the shape of a distribution, in

particular its sharpness. For example, the kurtosis of a 1D

normal distribution is k�3, whereas it is k�6 for a 1D

exponential distribution, stressing the ‘peakedness’ of the

latter. The kurtosis is defined as the normalised fourth

moment divided by the normalised secondmoment squared.

In this section, we calculate the kurtosis of the WMsp

functions defined by eq. (1) and of the resulting functions of

the linear combination eq. (6). We then show how the

kurtosis can be used to provide information on the factors gp
of a linear combination when the length scales are known.

From Gradshteyn and Ryzhik (2014), p. 685, eq. 6.561�
16), the following results hold

Z 1

0

xlKnðaxÞ dx ¼ 2l�1a�l�1C
1þ lþ n

2

� �
C

1þ l� n

2

� �
;

and hence with a�1/L, we have

2

Z 1

0

21�n

CðnÞ
L�nrlKnðr=LÞ dr ¼ ð2LÞ1þl�n C 1þlþn

2

� �
C 1þl�n

2

� �
CðnÞ

:

The WMsp function being even, we can then calculate the

scaling factor for m�v

N ¼
Z 1

�1
cdðrÞ dr ¼ 2L

ffiffiffi
p
p Cðn þ 1=2Þ

CðnÞ
;

where we used Cð1=2Þ ¼
ffiffiffi
p
p

. The scaled second moment

for m�v�2 is

r ¼
Z 1

�1

r2cdðrÞ
N

dr ¼ 2L2 Cðn þ 3=2Þ
Cðn þ 1=2Þ

¼ 2ðn þ 1=2ÞL2;

where we used Cð3=2Þ ¼ 1=2
ffiffiffi
p
p

. The scaled fourth moment

for m�v�4 is

s ¼
Z 1

�1

r4cdðrÞ
N

dr ¼ 12L4 Cðn þ 5=2Þ
Cðn þ 1=2Þ

¼ 12ðn þ 1=2Þðn þ 3=2ÞL4;

where we used Cð5=2Þ ¼ 3=4
ffiffiffi
p
p

. The kurtosis for the

WMsp function is then defined as

k ¼ s

r2
¼ 3ðn þ 3=2Þ
ðn þ 1=2Þ

:

Note that the kurtosis depends on the smoothness para-

meter but not on the scale parameter. Indeed, the shape in

terms of ‘peakedness’ of a WMsp correlation function

depends on its order and its dimension only. However, the

scaling factors and the moments involved in the calculation

of the kurtosis do depend on the scale parameter. If the

WMsp functions involved in the combinations are ordered

such that L1B. . .BLp, we can define a1�1B. . .Bap such

that Lp�apL1. When all the functions have the same

smoothness parameter vp�v, it is easy to see from the

previous equations that Np�apN1, rp ¼ a2
pr1and sp ¼ a4

ps1.

Rearranging the equation of the kurtosis for the resulting

function, we can define the ratio

k

k1

¼

PP
p¼1

cpa
5
p

 ! PP
p¼1

cpap

 !

PP
p¼1

cpa3
p

 !2
; (B1)

where k1 is the kurtosis of the correlation function with the

smallest scale parameter L1. In the particular case when

P�2, the maximum of the ratio k/k1 is given for

c1 ¼ a3
2=ð1þ a3

2Þ, and its value is

k

k1

 !
max

¼ 1þ a3
2ð Þ 1þ a2

2ð Þ2

a2
2 1� a6

2ð Þ2
:

In the examples of Fig. 1, solving eq. (B1) with 0Bg1B1,

g2�1�g1 and a2�5 leads to g1:0.7 for k/k1�5.46/

3.86:1.41, and g1�0.3 for k/k1�4.16/3.36:1.08.
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