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ABSTRACT 
The kinetic energy spectral equations in the frequency domain was derived for the large- 
scale atmospheric motions. Some of the more important implications revealed by the 
spectral equations are: (1) the shape of the spectral density function + i r ( ~ ) ,  is controlled 
by the out-of-phase relationships among various meteorological variables; (2) the  
rotation of the earth has an explicit influence on Q i t ( v )  as well as on the average level 
of the atmospheric kinetic energy, and (3) an atmosphere that is efficient in spreading 
its kinetic energy among its various frequency components, so that there is no 
particular tendency for spectral peaks to form, should have a red-noise spectrum. A 
detailed discussion of these as well as of other implications is given in the text. 

1. Introduction 

The ultimate source of energy for atmo- 
spheric motions is the radiative energy of the 
sun. The kinetic energy of the atmosphere, once 
created, is constantly depleted by molecular 
dissipation and by the work which the atmo- 
sphere performs on the earth’s surfaces. Since 
atmospheric motions never cease (at  least in 
the time span of recorded history), the supply 
of energy is, on the average, equal t o  the exit 
of energy. Between the two ends of the energy 
cycle, however, there is a complicated chain of 
transformations among different forms of 
energy, energy exchange among different scales 
of motion, and energy transportation from one 
location to another. One of the major tasks of 
meteorologists has been to  find out how energy 
transformation, exchange and transportation 
are carried out in the atmosphere. 

The exchange of kinetic energy between diffe- 
rent scales of fluid motion was first considered by 
Reynolds. In connection with his study of tur- 
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bulence, he derived two kinetic energy equa- 
tions from the equations of motion; one ex- 
pressed tho time rate of change of the kinetic 
energy of the mean motion, and one the time 
rate of change of the mean kinetic energy of 
the eddy motion (Reynolds, 1895). This was 
perhaps the first instance that the  formulation 
of the energy equations for more than one scale 
of motion was considered necessary and bene- 
ficial. Reynolds’ formulation was adopted, and 
at times modified and extended to  include 
other forms of energy, by Ertel (1943), Calder 
(1949), Miller (1950), Van Mieghem (1952) and 
others, for the study of atmospheric energies. 

The so-called eddy motions in the atmo- 
sphere, however, are themselves a composite 
of many scales of motion, ranging from minute 
fluctuations recorded by sensitive microme- 
teorological instruments, t o  the very large-scale 
planetary waves observed in the upper atmo- 
sphere. The interactions among various scales of 
eddy motions are often physically significant 
and interesting. It would therefore be unsatis- 
factory to  speak only of the transformation and 
flow of energies between the mean motion on 
the one hand and all the eddy motions on the  
other. The need for a closer examination of the  
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interactions among all scales of motion has been 
generally realized by meteorologists in recent 
years. Spectral equations of the atmospheric 
motions in the domain of wave number was 
presented by Saltzman (1957) and Dutton 
(1963), in the frequency domain by Chiu (1961, 
1968) and in a mixed wave number and fre- 
quency domain by Kao (1968). 

A close scrutiny of these studies on atmo- 
spheric spectral equations reveal that there are 
many interesting and significant properties and 
implications of these equations that have not 
been clearly brought out and emphasized on. 
We shall try to remedy this in this paper. 

The purposes of this paper are: 

1. To formulate the spectral equations of at- 
mospheric motions from statistical point of 
view. 

2. To compare the spectral equations derived 
by various investigators, and to point out 
their similarities and differences. 

3. To discuss the meanings and implications of 
the derived spectral equations, and, out of 
these discussions, draw some statements con- 
cerning the possible characteristics of at-  
mospheric energy spectrum. 

2. Atmospheric motion as a random process 
Although atmospheric motion changes in- 

cessantly with time, past records indicate that 
the general level of atmospheric kinetic energy 
has remained about the same for a long time. 
This is viewed as a consequence of the constancy 
of the factors which control the statistical fea- 
tures of atmospheric motions, such as the solar 
constant, the rate of earth rotation, the distri- 
bution and physical characteristics of land and 
sea, etc. In  this sense atmospheric motion may 
be regarded as a quasi-stationary random pro- 
cess. 

For a random process it is necessary to talk 
in terms of an ensemble. Since in reality, we 
only have a limited time record of meteorologi- 
cal phenomena which occurred on a single planet 
-the earth-we mentally make up the ensemble 
by conceiving that meteorological phenomena 
are being produced, not only by our own planet, 
but also by infinitely many other planet- 
earths, each of which is identical to our earth 
in every physical aspect, in age and in its rela- 
tionship with its own solar system. However, 
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at any one particular moment in the astro- 
nomical time of all these identical systems, the 
meteorological phenomena occurring a t  any one 
planet-earth, being but one out of many pos- 
sible outcomes, may be quite different from 
those occurring at other planet-earths; and, to- 
gether, they form an ensemble. As will be seen 
later, every meteorological parameter may be 
considered to consist of a climatological mean, 
a periodic component and a deviation from them. 
The deviation is considered to be stationary. 
The periodic component, which has a fixed 
phase angle, and the climatological mean, 
which may have a very slow trend, are not sta- 
tionary. However, within a time span of de- 
cades and centuries, the controlling factors are 
very nearly constant, and the trend may be 
ignored. Because of the presence of the periodic 
component, we therefore elected to call the 
atmospheric motion a quasi-stationary random 
process. 

3. The spectral equations of kinetic energy 
in the frequency domain 

In  the conventional x, y, p and t coordinate 
system employed by meteorologists, the equa- 
tions of large-scale atmospheric motions may 
be written as: 

au* au* au* au* az * 
- +u*-+v* -+ w* - - fV* = -9- + p: 
at ax ay ap ax 

aw* av* av* av* 2z* 

at ax ay aP aY 
-+u*-+v*-+w*-+fu*= -9- + F: 

where a* is the individual rate of change of 
pressure, z* the height of the isobaric surface, 
and F: and F: the x and y components of the 
frictional forces respectively. The remaining 
symbols have their conventional meanings. The 
superscript, *, is :used to denote the instan- 
taneous value of the quantity. 

Equations (1) and (2) are valid for any space- 
time point (2, y, p ,  t ) .  When Eqs. (1) and (2) 
are multiplied by u *  and w* respectively, for 
that same space-time point, and the products 
added, we obtain the well-known kinetic energy 
equation: 
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aK* aK* aK* 
~ +u*- +v*- 

at ax aY 

au*(t) au*(t) + w * ( t ) -  
aY 

up’) ~ 

at 

+ u*F?+w*F,* (3) +,*-I au*(t) -fu(t’)w*(t)= -gu(t’)- az*(t) 
aP ax 

where K *  = 1/2(u** + w * ~ )  is the total (hori- 
zontal) kinetic energy of the air per unit mass. 

Since the averages of the meteorological para- 
meters, such as u*, w*, z* ,  etc. at one particular 
location, over a long period to time may not 
be zero (the precise definition of time average 
will be given later), we shall consider the in- 
stantaneous value of each parameter to be the 
sum of a climatological mean, a periodic com- 
ponent (or the sum of several periodic compo- 
nents such as the annual and diurnal variations), 
and a deviation from the mean and the periodic 
component. That is 

The means, designated by an overbar, are 
considered to be independent of time (or ap- 
proximately so). The periodic component, up, 
and the deviation (which may be called the 
fluctuating or eddying component), u, are func- 
tion of both space and time. I n  addition, the 
means obtained from any one time record of 
the ensemble are considered to have the same 
values as that from any other time record of the 
ensemble. The deviations are considered sta- 
tionary. 

Later, we shall introduce covariance func- 
tions and their Fourier transforms between 
various pairs of meteorological parameters. 
Calculations of covariance functions are greatly 
facilitated if the means of the parameters con- 
cerned are removed. The existence of the Four- 
ier transforms of the covariance functions also 
requires that the mean and periodic part of 
the parameters be removed. We therefore have 
resolved each parameter according to the man- 
ner given above in the anticipation of this re- 
quirement. 

When Eq. ( l ) ,  assigned to  a space-time point 
(2, y, p ,  t ) ,  is multiplied by the velocity devia- 
tion u(x ,  y ,  p ,  t ’ )  for the same geometrical posi- 
tion but for a different time t’, we obtain: 

+u(t t )P?( t )  ( 5 )  

(the common arguments in x ,  y ,  and p are not 
written out). 

Since t’ and t are selected independently of 
each other, they are considered as two independ- 
ent variables. We shall focus our attention on 
an arbitrary geometrical point x ,  y ,  and p .  We 
therefore only have to consider the dependency 
of each term of Eq. ( 5 )  on the two independent 
variables t’ and t .  We shall introduce a primi- 
tive transformation of variables such that: 

t = [ ( t ’ ,  t )  = t’ 

t = t ( t ’ ,  t )  = t - t’ 

The inverse transformation is: 

t = t ( E ,  t) = t’ +t =6 +t 
t’ = t’(t, t) =t 

Any function F(t’ ,  t )  may, under the above 
transformation, be expressed as: 

W’, t )  = F[t’(6, 4, t (6 ,  t ) l  = GYt, t) 
= G[t(t’, t ) ,  ~ ( t ’ ,  t ) ]  = F(t’, t )  (8) 

then 

aB at. aGI (9) + - - = -  
at. at a t  €=const. 

Introducing this transformation and redesig- 
nating 6 by t ‘  after the transformation has been 
applied we may rewrite Eq. ( 5 )  as: 

a 
a t  

where, for the sake of simplicity, the argu- 
ments in t‘ and t = t ‘  +t are written out only 
for the first term in the equation. I n  other 
terms u(t’) is designated by u’, u(t’ +T) by u, 
and so forth. We shall often make use of these 
brief notations. 

Combining Eq. (10) and a similar one ob- 
tained from Eq. (Z), we have 
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-[u'u* + w'w*] +u' 
a 
at 

aw* aw* aw* 
ax ay ap 

u*- +w* -+w*  -1 +f[u*w'-U'W*] 

(11) 

Designating the operation of ensemble aver- 
age by < > and applying this operation to  
Eq. ( l l ) ,  we have: 

at  

+ u'- (u+up) +/u ' -  &+?I,)+ u'- ( ::) - \ a Y  ( :;) 
- 

a(;  + up) + <u' u)  a- + (u'w) ~ + (u'w) 
ax aY 

(W + flip) 

a(; + wD) a(; + wp) a(;  + v,) 
+(w'u>-+ <w'w)--- + <w' w )  ~ 

ax aY a?, 

+ f[<uw') - <u'w)] = - g  

<U'Fl,> + <v'F,) 
(12) 

We obtained the above equation by virtue of the 
fact that the means and the periodic compo- 
nents are constants when the operation of en- 
semble average is taken, and that the ensemble 
averages of the deviations are zero. 

In  addition to the assumption of stationarity, 
we further assume that the deviations are 
egodic. With this assumption, we may replace 
the ensemble average of the deviations, or of 
their combinations, by a time average defined 
as 
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Replacing the ensemble averages in Eq. (12) 
by the time averages, we have: 

~ 

au au 
ax ay ap 

a 
a t  

au - 
+w' u-+w-+w- +u'-(u+up) [ C :: E] ax 

__ ~ 

au - au - -- a(;+ up) + u' ~ (w + wp) + 21'- (w + up) + u'u ~ 

ay ap  ax 

+u'w- + u'w- + w'-(u+up) 
aY aP ax 

- 
-a(i+u,) -a(ii+u,) aw - 

aw - au - - a(; + up) 
+ w ' - ( w + w p ) + w ' - ( W + w , ) + w ' U -  

aY aP ax 

-a(;+ wp) --a(; + w,) + w'w- +w'w- + f[uw'-u'w] 
aY aP 

= -9 u'-+ w'- + u'F, + w ' F 1  (14) [ :: 3 - -- 

We shall define a covariance function R,,(t) &B: 

Ri&) = u*(t') u,& + t) 
=[ur(t~)-(ui+u,{)(t ' )][u~(t '+t)-  ( '&+Upk)( t '+t]  

(15) 

where (for this study) i and k assume the values 
of 1 and 2 only. For example u1 = u and up = w. 
Summation convention of repeated index also 
applies with the same limitation. From Eq. 
(15), it is observed that 

Rtk(t) = (16) 
- - _ _ _  

R,,(O)=u;(t')=u:(t)=u~+w3 (17) 

Similarly we may introduce the following nota- 
tions: 
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R, . . , ( t )=V( t ’ ) .  Vz(t’+r) of the fluctuating motion, can be deduced from 
Eq. (28).  

= R,,,az,as,(t) + Ru’(az/au)(’) (20) The following transformations are introduced: 

au(t’ + t )  

aP 
+ e, u(t’) ~ (21) 

__- 
au(t’ + t )  

T u , , , a u , a d t )  = 4 t ’ )  4 t ’  + t) ~- ax 

where v is the angular frequency. The i in the 
exponential stands for fi. The existence of 
the above Fourier transformation pair requires 
that Rik(t)  satisfies certain conditions, such as 
the condition that R i k ( t )  should have piece- 
wise continuity and that the integral of the 

values of T should be finite. Since we are deal- 
ing with a stationary random process, and that 
we have removed the means and the periodic 
components of the parameters concerned on 
the definition of R,,, these conditions are likely 
to be met by Rlk( t ) .  In any case we could cal- 
culate R,,(t)  only for t up to a finite value. 
This means that in practice it would be neces- 
sary to approximate R i k ( t )  by a truncated 
Rik( t )  which is equal to R,,( t )  for It I less than 
a certain finite value and is zero otherwise. 
The truncated R,,(t) clearly permits the above 
transformations. The effect of such a truncated 
R,,(t)  on -$,,(Y) is well-known. 

(22) 

where v is the horizontal velocity vector, V the 
horizontal del-operator, V, the three-dimen- 

vectors in 2, y, and p coordinates system. 
RUvVau(t)  is the covariance vector for u‘ and 
V,u. We find that: 

sional del-operator and e l  e Z  and e3 the unit absolute value of Rlk( t )  with respect to all 

(23) 

R V , . F ( t )  =Rp.v( -t) (24) 

R U , V , U b )  = R ( V d ) U (  - t) (25) 

Tv,.c(v8. v . ) v I ( ~ )  = TRV,,. v.)v,I.v( - t) (26) 

where F is the horizontal frictional force vec- 
tor, and 

RV,.VZ(t) = R,Z. .V(  - t) 

a a  a 
ax ay ap 

(V, . V,) =u- + v- + n, - (27) From Eqs. (29) and (30),  we have 

With these notations Eq. (14) may be written 
as: 

- 
where v,, vp,, and v, are the three dimensional 
velocity vectors for the mean, the periodic 
motion and the fluctuating motion respec- 
tively. [R,,  (t) - Rzl ( t ) ]  represents the phase 
relationship between u and 2) and in general 
is not equal to zero when z is not zero. When 
t = 0, R,,(O) - Rzl(0) = 0 and an equation, simi- 
lar to Eq. (3) but for the mean kinetic energy 

Here, in order that these equations may be 
valid, we have assumed that the integral on 
the right hand side of Eq. (31) converges uni- 
formly to aR,,(t)/at for all t .  Our justification 
for this is that in the present study we are 
interested only in the spectrum of the large- 
scale atmospheric motions. Therefore, -$( Y )  not 
only is integrated to a finite value, but also i t -  
self becomes identically zero after a certain 
large value of v .  This effectively reduces the 
integral in Eq. (31) to a definite integral, and 
thus uniformly convergent. It also most likely 
renders aR,,(t)/at absolutely integrable and the 
existence of its Fourier transform, Eq. (32).  
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From Eqs. (17) and (29) it follows that: 

Therefore drr( v ) d v  is the spectral contribution 
to  the mean kinetic energy of the fluctuating 
motion 1/2(uz + w*), from the frequency interval 
v to  v +dv. Similarly, we introduce the follow- 
ing transformation pairs: 

~V,.vr(v)efv7dv (34) 

TV,.[(V,.~)YI(T) = ~V.[~V..~,)VI(~) etV7dv (36) I-m* 
1 *  

dv*.rtv,.v.)vl(Y) = 2n - 1- TV,. “ I .  V)Vl(t) e- *”rdt 

(37) 

and others like them for Ru,dru(t), RuSua(t) ,  etc. 
When Eq. (28) is multiplied by (1/2n) e-i”T 

and integrated with respect to t, we obtain, in 
view of the above transformation pairs, the 
following spectral equation: 

= -i2Q,,v(v) (39) 

[R,,(t)  -R,,(-t)lsin m d t  (40) 

where 

Q , . v ( ~ )  is the quadrature spectrum for u and 
w, and 

where 

QV. ( v )  = - - [RV. . vp ( t )  - R ~ . ~ ~ ( t ) l  sinmdt : Iom 1 

4. Some general comments about the at- 
mospheric spectral equations 

A close inspection of the ways various exist- 
ing atmospheric spectral equations were derived 
shows that Saltzman’s (1957) and Dutton’s 
(1963) kinetic energy spectral equations are in 
the same category as that of Eq. (44), and that 
Kao’s (1968) kinetic energy spectral equation 
is in the same category aa that of Eq. (38). I f  
we were to derive the spectral equations in the 
frequency domain by a method similar to that 
employed by Kao or Saltzman, we would first 
truncate u* and other meteorological vari- 
ables in the following manner: 

u*(t) for - T < t < T  
0 for all other t (46) u*T(t) = 

Then we represent the Fourier transform of 
4 by 

Tellus XXII (1970), 0 
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and the reverse transform by 

When Eq. (1) is multiplied by e-tYt and trans- 
formed according to Eq. (47) and others like 
it, we get an equation which may be sym- 
bolically written as 

ivU&) = ... (49) 

This equation corresponds to Kao’s Eq. (24) 
and Saltzman’s Eq. (40) in their respective 
papers. 

Saltzman obtained his equation for the time 
rate ofchangeof I U(n)Iz(hisEq. (47)),wherenis 
the wave number, by forming U(  - n )  [aU(n)/at] 
+ U ( n )  [aU( -n) /at] .  In our case, this would 

equivalent to form, via Eq. (49), the sum 
U;(  - v) [ivU;(v)]  + U;(v )  [ - i vU(  *, - v)]. This sum 
is zero, and so is the sum for V*,( - v) [ivV*,(v)] + 
V*,(v)[  -ivV;( -v)], where V*,(v) is the Fourier 
transform of the truncated v*,. But this, in es- 
sence, is the same way we derived Eq. (44), 
and the zero term on its left side from Eq. (38). 

Therefore Saltzman’s kinetic energy spectral 
equation, like our Eq. (44) is the real part of 
his complex spectral equation (which, if writ- 
ten down, would be an equation with U (  -n) 
[aU(n)/at] + V (  -n)[aV(n) /at )  as its leading 
term). The same also can be said about Dutton’s 
spectral equation. 

At this point, we note that when the spectrum 
in the wave number domain is interested, as in 
Saltzman’s & Dutton’s studies, the real part of 
the complex spectral equation (or the co-spec- 
tral equation) deals with the time rate of change 
of spectrum. On the other hand, when the 
spectrum in the frequency domain is interested, 
aa in Kao’s and the present studies, th co- 
spectral equation does not deal with the time 
rate of change of spectrum, but with the bal- 
ance among various co-spectra. 

If one were to sort out the imaginary part 
(or the quadrature spectral part) from Saltz- 
man’s complex spectral equations, he would 
take Saltzman’s Eq. (40) and perform an opera- 
tion like U(  -n)[aU(n)/at] - U(n) [aU( -n)/at] .  
This term, however, does not seem to have 
much physical meaning. In our case, a similar 
operation applied to Eq. (49) leads to an equa- 

tion with U ~ ( - v ) [ i v U ~ ( v ) - U * , ( v ) [ - i v U ~ ( - v ) ]  
=2ivI  U(v)lz as its leading term. This, except 

for a factor of 2, corresponds to the left hand 
side term of our Eq. (45). 

Therefore when the spectrum in the wave 
number domain is interested, the quadrature 
spectral equation does not seem to carry much 
physical meaning. On the other hand, when the 
spectrum in the frequency domain is interested, 
the quadrature spectral equation relates the 
spectrum itself to various factors that influence 
it and so has great significance. 

Another point worth noting is the appear- 
ance of Coriolis parameter in the quadrature 
spectral equations and, with a minor exception, 
its disappearance in the co-spectral equations, 
signifying that the earth’s rotation has a role 
to play in the former but in general not in the 
latter. We shall have more to say about this 
later. 

5. Discussion of the spectral equations and 
the statistical energy spectrum of atmos- 
pheric motions in the frequency domain 

From Eq. (45), the following deductions may 

A. From Eqs. (16) and (30) we find that 
be made: 

j-** [vdtr(v)ldv = 0 (50)  

This is because d t t ( v )  is an even and so vdt t (v )  
is an odd function of v. However dt i (v)  is in 
general not zero. Therefore, Eq. (45) links 
d t t ( v )  to the factors that influence it, and 
makes it possible for us to discuss and to  
speculate on the characteristics of .$tl(v). 

B. The statistical spectral density of the kinet- 
ic energy, di i (v) ,  of a stationary atmosphere 
is shaped by quadrature spectral densities only. 
There are, according to their order of appear- 
ance in Eq. (45), the quadrature spectral den- 
sities for v’ . (v , .V, )v ,  for u’ V,u, for w’Vgw, 
for u’v8 for v’v,, for u’v, for v’ .Vz and for 
v’ . F respectively. Since the quadrature spec- 
trum is a measure of the 90 degree out-of-phase 
relationship between the variables concerned 
(Panofsky & Brier, 1958), the existence of such 
an out-of-phase relationship between the vari- 
ous pairs of variables mentioned is essential 
for molding the shape of &{(v). 

C. The first term on the right side of Eq. 
(45) has its origin in the interaction among 
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different frequencies of the motion. This can 
easily be seen if u(t’), v(t’), etc., were truncated 
and represented in the same way as u* was by 
Eqs. (46) and (48). Then we have 

U( -Y) U ( p )  U,( -p+v)dp  efVtdv (51) 

where U ( Y )  is the Fourier fransform of u(t’), 
U, =aU/ax:, and p is anothgr notation for the 
angular frequency. Therefore 

I 

represents some kind of interaction among dif- 
ferent frequencies, and QV,[(V,. o,)vJ (Y) is a 
sine transform of the terms like it. However, 
for this quadrature spectrum to be nonzero, 
there must also be an out-of-phase relationship 
between the fluctuating momentum (u, v) and 
the advection of fluctuating momentum by the 
fluctuating motion (uaulax, etc.). 

Similarly, the second and third terms on the 
right side of Eq. (45) have their origin in the 
interaction between the fluctuating motion and 
the mean and periodic motions. The second 
term depends on an out-of -phase relationship 
between the fluctuating momentum and the 
advection of fluctuating momentum by the 
mean and periodic motions 

[(ii+uP);, au etc. 1 ; 
while the third term depends on an out-of- 
phase relationship between the fluctuating 
momentum and the advection of momentum 
of mean and periodic motions by the fluctuat- 
ing motion - I. [ U T -  

a(u+u,), etc. 

For all these three quadrature spectra to be 
nonzero, i t  is also necessary that there be some 
velocity shear, either of fluctuating motion or 
of mean and periodic motions, or of both. Since 
velocity shear is related to vorticity, one might 
say that vorticity plays an important role in 
shaping the spectrum. For example, the third 
term may be rearranged to yield that 
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That the existence of this term depends on the 
presence of vorticity in the mean and periodic 
motions is obvious. It also shows that this 
term is in nature similar to 2f  QUrv(v). 

D. From Eqs. (15) and (29), we have 

00 

- f ~ ~ ~ ~ . , ~ Y ~ ~ v = f ~ ~ m d z l ~ ~ ~ ~ ~  (53) 

Therefore both + l p ( v ) d v  and +,,(v)dv are the 
spectral contribution to  the exchange of ki- 
netic energy between u and v velocity compo- 
nents. However from Eqs. (16) and (30), we 
find that 

+ I d 4  =dzA - v )  *+,1(v) (54) 

Therefore 2 f Qufu(v) is in general not zero. Its 
association with f means that its contribution 
to v d i l ( v )  is brought about by the rotation of 
the earth. Therefore the rotation of the earth 
plays an  explicit role in shaping the spectral 
distribution of the kinetic energy. This point 
was first brought out by Chiu (1961) (although 
this report contains some errors in other as- 
pects), and later by Dutton (1963) and Kao 
(1968). 

We are used to the notion that the earth’s 
rotation plays no part in the time rate of 
change of kinetic energy of the atmosphere 
(disregarding the possible work done by the 
centrifugal force due to the rotation of the 
earth, which is conventionally incorporated 
into the gravity), but we have reaaon to believe 
both from our intuition as well as from there- 
sults of the dish pan experiment (Fultz et  al., 
1959) that the rotation of the earth should 
exert a very strong influence on the typesof 
motion the atmosphere will follow and conse- 
quently upon its associated kinetic energy level 
and distribution. Eq. (45) brings out clearly the 
influence of earth’s rotation on spectrum. 
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When Eq. (45) is divided by v,  we have: 

+ Q u v .  * V ~ ( ~ + V ~ ) I - ~ ~ Q U , ~ ( V )  

+gQv , . v z (Y)  - Qv, .F(v) )  (55) 

When this equation is integrated with respect 
to Y from zero to infinity, we have, inview of 
Eq. (33): 

Equation (56) shows the manner in which the 
various factors, including the rotation of the 
earth, influence the kinetic energy level of the 
atmosphere. 

Since the earth’s rotation plays no role in the 
time rate of change of kinetic energy, we more 
or less expect that it also plays no role in the 
time rate of change of the kinetic energy spec- 
trum. This indeed is so in Saltzman’s case.But 
Dutton’s result shows that when the variation 
in fluid density is taken into consideration, the 
earth’s rotation plays a role even in the time 
rate of change of the spectrum. [Incidently, 
since Dutton’s spectrum represents a summa- 
tion over all three space directions, its varia- 
tion could not be a result of an exchange of 
spectral energy among different directional 
components. Therefore, if there has been a 
change of the spectral density at a certain 
wave number due to the Coriolis term in his 
spectral equation, there must be a compen- 
sating change (or changes) of spectral density 
(or densities) a t  another wave number (or many 
other wave numbers).] However, for the large- 
scale quasi-horizontal atmospheric motions the 
variation in density is small compared to  the 
variation in velocity, making it permissible to 
disregard the Coriolis term in Dutton’s spectral 
equation (this term drops out when density is 
considered constant); while for the small-scale 
atmospheric motions, the Coriolis terms in the 
equations of motion are usually negligible in 
the first place. Therefore, in all likelihoods, the 

effect of the earth’s rotation on the time rate 
of change of spectral energy (in the wave number 
domain) is negligible. 

According to the term 2 f Q,.,(Y) in Eq. (45), 
the effect of earth rotation on spectrum in- 
creases with f (or the rate of earth’s rotation), 
and vanishes when the earth is not rotating. 
This is what one would expect from intuition. 
However, the magnitude of this term depends 
also on Q,. , (v) .  Therefore, one cannot conclude 
that the effect of earth’s rotation on spectrum 
is necessarily more important in high latitudes 
than in low latitudes without further looking 
into QU,,,(v). In  this connection, it would be 
interesting to find out: (1)  whether there is any 
tendency for Q,.,(v) to arrange itself according 
to v (i.e., whether there is any tendency for 
Q,.,(Y) to be one sign for a certain range of v 
and to be of another sign for another range of 
v ) ,  and ( 2 )  whether there is any systematic 
change in the pattern of Q,.,(V) from high to  
low latitudes. 

E. The last two terms of Eq. (45), g Q v , . v e ( v )  
and Q v * . p ( ~ ) ,  represent the role of v frequency 
component of the pressure gradient force and 
the v frequency component of the frictional 
force, respectively, play in shaping d l i ( v ) .  

F. Equation ( 5 5 )  shows that b r f ( v )  would in 
general decrease with increasing Y ,  leading to  
the so-called red-noise spectrum (Gilman, 
Fuglister & Mitchell, 1963) provided that the 
bracketed term does not generate a sharp 
spectral peak or peaks. Since our atmosphere 
is often in a turbulent state, we couldexpect 
the exchange mechanism associated with the 
turbulent motions acts to redistribute the spec- 
tral densities among different frequency scales 
of the motion, thus any spectral energy input 
or inputs that the term gQV..vp(v) introduces 
into $ f i ( v )  spectrum will be smoothed out.1 

1 Although one cannot rule out the possibility 
that the exchange mechanism may occasionally 
tend to  concentrate rather than to spread the spec- 
tral energy input, the chances are greater that it 
will spread, since motions of all scales, directly or 
indirectly, must eventually derive their kinetic 
energy from the potential energy. A similar idea 
concerning the redistribution of the spectral ener- 
gies in the wave number space was voiced by Kraich- 
nan (1967). The tendency to spread input does not 
necessarily mean that there is no flow of the spec- 
tral energy from the region of low spectral density 
to the region of high spectral density. The picture 
visualized here is that if the input of kinetic energy 
through the conversion from the potential energy 
is concentrated in certain frequency bands, the ex- 
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Equation (55 )  shows that such an atmosphere 
would have a red-noise spectrum. The avail- 
able observational evidence (Chiu (1960); 
Shapiro & Ward (1960); Ward & Shapiro 
(1961)) seems to indicate that our atmosphere 
is of this type. 

A process that exhibits some persistence pos- 
sesses a red-noise spectrum (Gilman, Fuglister 
& Mitchell, 1963; Ward & Shapiro, 1961). At- 
mospheric motion exhibits some persistence. 
Because it evolves continuously with time and 
in so doing is bound to the laws of motion, the 
motion at one moment must carry with it some 
memory and influence of the motion a t  the im- 
mediately previous moment. Y in Eq. (55) 
arises from the terms for the time rate of 
change of velocity in Eqs. (1) and (2). There- 
fore 1 / v  in Eq. ( 5 5 )  seems to be a subtle mathe- 
matical expression of the persistence of the 
motion and of its red-noise characteristics. 

Within the inertial subrange of the turbulent 
fluid motion, there is no kinetic energy input 
(from the conversion of the internal and po- 
tential energies). The only mechanism operating 
is the exchange of kinetic energy between scales 
of motion, which passes the kinetic energy 
down the scale in the case of a three-dimensional 
turbulence. As a result, the spectrum of the 
inertial subrange follows a very simple Kolmo- 
goroff’s-5/3 law. On the other hand, the im- 
mediate sources of atmospheric kinetic energy 
are many, and they fuel atmospheric motions 
from many different scales, such as large-scale 
differential heating between pole and equator, 
differential heating between land and sea, latent 
heat and potential energy associated with 
cyclones or local thunderstorms (various time 
scales are associated with each energy source). 
The manner in which energy is converted to 
atmospheric motion is therefore much more 
complicated than that associated with wind 
tunnel turbulence for which Kolmogoroff’s law 
is most convincingly confirmed. This, however, 
change mechanism sperads the input to  other fre- 
quencies. It may also take the kinetic energy from 
a region of relatively low spectral density and give 
it to a region of relatively high spectral density, 
without creating peaks in doing so. The latter trans- 
fer, for example, may correspond to a “counter- 
gradient” flow of energy from the intermediate 
frequencies to the low frequencies in a red-noise 
spectrum. This would be the case if the semiperma- 
nent highs and lows were found to be maintained 
by the moving cyclones, and the latter were main- 
tained by the input from the potential energy. 
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does not necessarily imply that the spectral 
law of atmospheric motion must be a compli- 
cated one. It could be that such factors as a 
persistently high degree of turbulence in the 
atmosphere and interactions on all scales of 
motion, would maintain a relatively simple 
statistical spectral distribution of atmospheric 
motion. From the observed red-noise characteris- 
tics of the large-scale atmospheric motion, it 
appears that the spectrum of atmospheric 
motion also follows a rather simple law despite 
numerous kinetic energy inputs within the 
range of motion that interests us. This probably 
means that the interaction term also plays a 
dominant role in shaping the spectrum of the 
large-scale motion, as it does for thesmallscale 
turbulence. Therefore it may be possible that 
atmospheric spectrum appears to  be isotropic, 
but is really not isotropic in nature. In  their 
study of the mean geostrophic kinetic spectra 
of the large-scale atmospheric circulation, 
Horn and Bryson (1963) found that there was 
a section of the spectra that followed an 8/3 
power relationship with respect to  (spatial) 
wave number. They assigned this section to  
the isotropic range when comparing it with 
the results of other studies. They also suggested 
that this section belongs to the range at which 
the kinetic energy of the atmosphere was pro- 
duced (from the conversion of the available 
potential energy). However, the idea of a range 
of wave length which is both isotropic and 
energy-producing is itself conflicting. Hence it 
might have been better to omit its explanation 
in terms of isotropy. 

From Eq. (44), the following statements may 
be made: 

G. When Eq. (44) is integrated over allposi- 
tive v, we find, in view of equations like Eq. 
(42) and its Fourier transform, that: 

- v . v  ~ v,* * v, - + [UV, * V,(U + UJ + wv, . V,(V + v,)] 
2 
-- 

+ g V .  VZ = V . F (57) 

That is, a t  a particular location in a stationary 
atmosphere, the average rate of advection of 
eddy kinetic energy through that location by 
the total velocity vector, v:, plus the average 
rate of work done by the Reynolds stresses 
against the gradient of the mean andperiodic 
motions (which represent the exchange of ki- 
netic energy between the eddy motion and the 
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mean and periodic motions, although its physi- 
cal meaning is not without ambiguity, see 
Lettau, 1954), and the average rate of work 
done by the fluctuating pressure gradient force 
(which represents the conversion from the eddy 
potential and internal energies into the eddy 
kinetic energy, see for example, White & Saltz- 
man, 1956) must be equal to the average rate 
of frictional dissipation of the kinetic energy. 
Since the frictional dissipation acts to take 
away the kinetic energy,l the sum of the three 
terms on the lefthand side of Eq. (57) must, 
on the average, act to increase the kinetic 
energy. The second term, according to the 
current belief, is likely to represent a loss of 
eddy kinetic energy to the kinetic energy of 
mean and periodic motion (see for example, 
Starr, 1958).2 The first term may be of either 
sign, depending on the location considered. 
There have, for example, been some indications 
that in some areas of the stratosphere the third 
term of Eq. (57) represents a loss rather than 
a gain of kinetic energy (White & Nolan, 1960; 
Oort, 1967).2 In  those areas the first term of 
Eq. (57) must represent a gain of kinetic energy 
in order to balance the drain due to all other 
terms. On the other hand, the semi-permanent 
subtropical high pressure belt, according to 
the discussion by Starr (1948), should be an 
area where kinetic energy is produced and 
transported away. In  that area, the loss of 
kinetic energy by the first, second and fourth 
terms of Eq. (57) is balanced by the gain of 
kinetic energy due to the third term. When 
Eq. (57) is integrated over the whole atmo- 
sphere, the first term is zero, as there can be no 
net transport of kinetic energy out of the whole 
atmosphere. The total production of kinetic 
energy by the third term is balanced by the 
total dissipation by the second and fourth terms 
in a stationary atmosphere. 

In short, important information concerning 
the energy characteristics of various locations 

~ 

V . P  includes, in addition to the molecular dis- 
sipation, some work done by molecular and Rey- 
nolds stresses which may not be dissipative. But 
on the average V . F must be dissipative. 

* Most of the studies that showed the mean (in 
space) motion is maintained by eddy motions dealt 
with motions with different space scales. We are 
making an assumption here that a similar relation- 
ship exists between the mean (in time) motion and 
eddy motions of different time scales. 

~ 

of the atmosphere could be obtained from the 
calculation of the terms of Eq. (57) a t  those 
locations. It should tell us whether they are 
kinetic energy production or consumption areas, 
and should thus enhance our understanding of 
the working and compling of different parts 
of the atmosphere. However, i t  is difficult to  
calculate the terms in Eq. (57) from presently 
available meteorological observations. Initial 
effort toward such a calculation, if attempted, 
is best limited to areas, where observational 
network is dense and observations accurate 
and have been carried out for a period long 
enough to yield stable time means. 

In this connection, it also would be of in- 
terest to see whet>her the shape of # i i ( v )  for 
the area of kinetic energy production is sub- 
stantially different from that of # i i (v )  for the 
area of kinetic energy consumption. 

Since the Coriolis parameter does not appear 
in Eq. (57), the four terms in the equation 
should balance regardless of the earth’s rota- 
tion rate. Indeed, the terms should balance 
even when the earth is not rotating. The earth’s 
rotation, however, might have a subtle influence 
on the manner in which these terms maintain 
their balance, i t  certainly influences the pattern 
of the wind field and hence the magnitudes of 
these terms. 

H. The terms in Eq. (44) are, respectively, 
the cospectral densities (or the spectral contri- 
butions, when multiplied by dv) of the terms 
in Eq. (57).  Consequently a balance like that of 
Eq. (57)  holds true even for the corresponding 
cospectral densities in a stationary atmosphere. 
The foregoing remarks on the effect of the 
earth’s rotation apply equally well here. 
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