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ABSTRACT

The Defence Centre for Operational Oceanography runs operational forecasts for the Danish waters. The core

setup is a 60-layer baroclinic circulation model based on the General Estuarine Transport Model code. At

intervals, the model setup is tuned to improve ‘model skill’ and overall performance. It has been an area of

concern that the uncertainty inherent to the stochastical/chaotic nature of the model is unknown. Thus, it is

difficult to state with certainty that a particular setup is improved, even if the computed model skill increases.

This issue also extends to the cases, where the model is tuned during an iterative process, where model results

are fed back to improve model parameters, such as bathymetry.

An ensemble of identical model setups with slightly perturbed initial conditions is examined. It is found that the

initial perturbation causes the models to deviate from each other exponentially fast, causing differences of

several PSUs and several kelvin within a few days of simulation. The ensemble is run for a full year, and the

long-term variability of salinity and temperature is found for different regions within the modelled area.

Further, the developing time scale is estimated for each region, and great regional differences are found � in

both variability and time scale. It is observed that periods with very high ensemble variability are typically

short-term and spatially limited events.

A particular event is examined in detail to shed light on how the ensemble ‘behaves’ in periods with large

internal model variability. It is found that the ensemble does not seem to follow any particular stochastic

distribution: both the ensemble variability (standard deviation or range) as well as the ensemble distribution

within that range seem to vary with time and place. Further, it is observed that a large spatial variability due to

mesoscale features does not necessarily correlate to large ensemble variability. These findings bear impact on

the way data assimilation should be addressed � especially in relation to operational forecasts.
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1. Introduction

For several decades, ensemblemodelling has been an integral

component of the meteorology forecasting process. During

the data assimilation process, model ensembles may be

constructed as perturbations on the initial conditions using

schemes like ‘breeding of growing modes’ (see Toth and

Kalnay, 1993), or singular modes (see for example, Molteni

et al., 1996). The use of data assimilation is presently in wide

use in ocean modelling, see for example, Shchepetkin and

McWilliams (2005) and O’Dea et al. (2012). However, the

use of ensemble models is less common. In some cases, the

background error covariances are estimated using a ‘seasonal

ensemble’ from a single multiannual model run, see for

example, Oke et al. (2008). This, however, is not equivalent

to running an ensemble of models.

As part of the MyOcean framework (EU research frame-

work programme, FP7), Golbeck et al. (2015) presented

several operational model setups for the North Sea�Baltic
Sea region and join them in a cumulative ‘Multi Model

Ensemble’ (MME). Although some of the individual setups

employ data assimilation, none uses ensemble modelling.

The commonMME is available online in forecast mode and

shows intramodel variability in time and space.

Some large-scale (basin to global) operationalmodel systems

do use ensemble members to produce ocean forecasts (Sakov

et al., 2012; Brankart et al., 2015; Chu et al., 2015). There,

ensemble members are generated by perturbing the physical
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state in the ocean or by using ensemble atmospheric forcing.

For hindcast studies, a number of ensemble model studies

have been made. For instance, Melsom (2005) studied the

mesoscale variability along the Norwegian coast, using eight

ensemble members that were generated by perturbing the

initial field in a HYCOM model setup. Furthermore, Holt

et al. (2011) used a coupled ocean�atmosphere mesoscale

ensemble (33 members) system to provide uncertainty

information for tropical cyclones.

The most common variable to assimilate seems to be sea

surface temperature (SST) from satellites. However, assim-

ilation of SST may have only a minor effect on the model

result for Skagerrak and Kattegat, our area of interest, since

the baroclinic features in these regions are mainly governed

by salinity differences, see for example, Gustafsson (1999)

and Nielsen (2005). For the North Sea�Baltic Sea regional

domain, Fu et al. (2011) showed in amodel study that there is

a positive effect when including assimilated T/S profiles.

They found the effect to be ‘persistent for nearly 3 weeks’ for

their setup running in hindcast mode. A much shorter time

scale is reported by Losa et al. (2012), where assimilation

of SST in the North Sea leads to improvements for ‘up to

5 days’ in a pre-operational model.

The actual location of the mesoscale features may be

important to the users of operational forecasts, as the

positions of eddies and fronts in some areas have significant

impact on, say, surface velocities. This has a direct influence

on, for example, search-and-rescue operations (e.g. Melsom

et al., 2012), oil drift forecasting used for environmental

protection (e.g. Broström et al., 2011) and ship routing (e.g.

Chu et al., 2015).

This article will examine in detail some of the uncertainties

related to pure stochastical/random phenomena within a

single numerical experiment. The purpose is to shed light on

some of the inner workings of the model, prior to a decision

on how to refine themodel setup using data assimilation and

ensemble modelling. In the present work, the term ‘Internal

Model Variability’ denotes the variation within a numerical

(hydrodynamic) model due to effects such as numerical

round-off, that is, effects which are unrelated to the model

parameter settings, physical forcing and boundary condi-

tions. Golbeck et al. (2015) compared results from different

models originating from various operational centres in

northern Europe. The study examined the results for the

North Sea and Skagerrak for a 1-yr period, and a significant

spread in the model results was observed. In Skagerrak, the

yearly average of the ensemble standard deviation of the sea

surface salinity was found to be about 3�4 PSU. However, it

was not examined how much of the variability that is due

only to the stochastic nature of the individual models

(ensemble members). We conjecture that the internal model

variability is a key element in understanding how the model

works, and, for example, to determine if amodel change gives a

significantly improved result. Also, the internal variability is

important in the setup of ensemble models and in the

interpretation of the results from ensemble systems.

2. On numerical models and stochastic (random)

processes

The physical processes of hydrodynamics inherently contain a

stochastic component caused by the turbulent nature of the

flow processes. The end result is that for any given initial state

and forcing, there is not a single determinable path of the

system � it is chaotic in nature, see for example, Lamb (1932).

This does not mean that the processes are entirely unpredict-

able, but rather that the exact physical state cannotbepredicted

in advance, see for example, Lorenz (1963). Itmay be predicted

that there will be a number of eddies, swirls or gyres, but the

exact path of each eddy is not possible to determine in advance.

In some sense, the physical system may be seen as a stochastic

process, which is executed only once.

A numerical model, which accurately describes the

physical processes, will � at least to some degree � share

the stochastic nature of the flow. If the transient nature of the

flow is to be predicted, then the experiment must simulate

each eddy (on the chosen scale). Although a particular

numerical result may be reproduced exactly by re-running

the experiment, it is still so that the result should be seen as a

single outcome of a stochastic process. If the simulation is

perturbed just slightly, then it may result in a rather different

end result. If the perturbation is small enough, then the

overall model stochastic process is not changed, and the

second simulation may be viewed as a second outcome of

the same stochastic process.

At FCOO (Defence Centre for Operational Oceanogra-

phy), it is often necessary to go over eachmodel setup to see if

it can be improved. Normally, each candidate setup is then

simulated for several years of hindcast, and a statistical

analysis comparing model data with observations is per-

formed to evaluate themodel skills. Themodel skills, such as

explained variance, of the various model setups are then

compared to determine which model setup is ‘the best’.

However, as each numerical experiment should be seen as a

stochastic process, it may not be possible to determine which

of the model setups on average give the best result. In

principle, each experiment ought to be run several � or tens

of � times to get an estimate for the statistical properties.

Then, those properties could be compared between the

various setups and the ‘best’ setup could be chosen. In

practice, however, this method would be very cumbersome

with respect to compute resources, as several years of

hindcast should be computed for several setups and the

whole thing repeated many times.
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2.1. Simulation perturbation: branching

The ocean circulation forecasts made at FCOO are based

on theGETM (General Estuarine TransportModel; Burchard

and Bolding, 2002) code. The model has a very good track

record for the North Sea�Baltic Sea transition zone, see for

example, Holtermann et al. (2014), which is a key area for

FCOO. As the numerical experiments themselves are

repeatable, it is necessary to, in some sense, perturb (‘push’

or ‘nudge’) in order to trigger a branching or bifurcation

into different stochastic outcomes. There are surely many

different ways to trigger a branching. However, it seems

imperative that the perturbation is so small that it does not

represent a significant physical change. In some sense, the

perturbation must be (much) smaller than the accuracy with

which the perturbed quantity is known, such that the

perturbed quantity is not less accurate than the unperturbed

quantity.

After a quantity is perturbed, simple numerical arith-

metic, such as round-off or truncation errors, may increase

the differences over time. This effect may depend on how

diffusive the processes are � some numerical processes may

actually converge back to a stable equilibrium if the

perturbation is small enough. The present study will try

to shed light on the following topics:

� How large an initial change (perturbation) is needed

to trigger a branching?

� How fast do the changes grow after a branching?

� How long does it take branched simulations to

‘grow apart’, that is, so the physical states vary?

� How large is the maximum/long-term variation

between branched simulations?

It may a priori be expected that the initial growth of

differences could be roughly exponential. This behaviour is

in accordance with the theory for dynamic systems, where

close trajectories diverge exponentially fast if the so-called

Lyapunov coefficient is positive, that is, if the system is

chaotic. There must be a limit for how large the differences

(variability) can be, as the local (in time and space) salinity

variations indicate some limit for the maximum possible

variability between ensemble members.

In the present study, we perturb the 3-D GETM hotstart

files, that is, the initial conditions. The salinity of each

vertical column is updated by adding a small value,

Esaltðx; yÞ, to each cell of the column. As the salinity of

each water column is perturbed, the vertical stability of the

column should not be affected except in very special cases.

It must be ensured that the update does not result in

negative salinities. However, as the examined model setup

uses a minimum salinity of 0.01 PSU (corresponding to

freshwater runoff), this requirement should be met, as long

as the random constant is numerically much smaller than

0.01 PSU.

In the present study, the perturbation is implemented as a

scale multiplied by a random component, that is,

Esaltðx; yÞ ¼ Esalt� pðx; yÞ, where Esalt is a scale of unit PSU,

and each p(x,y) is randomly chosen from a uniform dis-

tribution over the interval [�0.5: 0.5[. Here, and in the

following, (x,y) denotes the horizontal spatial coordinates,

typically longitude and latitude. It may be noted that the

perturbations in the present study are not chosen to

maximize the initial growth of ensemble modes, see for

example, Toth and Kalnay (1993), as might often be of

practical usage in ensemble modelling.

As p is symmetric about zero, the average salinity change

should be close to zero. The seed, p(x,y), and range, Esalt,
can be chosen uniquely and independently. Therefore, it is

possible to create perturbations, which are ‘in the same

direction’ (identical seed), but with different magnitudes

(scale). In addition, the scale can be chosen to be absolute

(a specified range in PSU), or be relative to the local

(maximum of) salinity in each water column.

2.2. Statistical ensemble variability measures

To assess the model variability, a number of independent

simulations are made. In the following, z and t denote,

respectively, the vertical coordinate and time. Each simula-

tion in an N-member ensemble is denoted by an integer, n,

where 10n0N. If the nth ensemble value of a quantity f is

denoted by fn, then the average of f is defined as the simple

mean over ensemble members:

AVG ¼ �f ðx; y; z; tÞ ¼ 1

N

XN

n¼1

fnðx; y; z; tÞ (1)

Similarly, the standard deviation, denoted as STDDEV, is

computed straightforward as

STDDEV ¼ rðx; y; z; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

n¼1

fn � �f
� �2

vuut (2)

The surface salinity standard deviation is denoted as sSS. In

some cases, the range of the ensemble is examined, where

range is computed as

RANGEðx; y; z; tÞ ¼ max
n
ðfnÞ �min

n
ðfnÞ (3)

In some sense, RANGEmay be considered the ‘maximum

variability’ within the chosen ensemble. However, as

RANGE is computed based on (max � min), it really takes

into account only the two most extreme ensemble members

at each time step. The present study will use N�20, and it

may easily be shown that for a 20-member ensemble,

INTERNAL VARIABILITY OF 3-D OCEAN MODEL 3



RANGE must be within two to roughly six times

STDDEV, depending on the distribution of the ensemble.1

Thus, RANGE may also be used as a measure of the

variability.

The simulations are perturbed at a particular point in

time (t�0). Thus, at t�0, the variability is limited to the

perturbation applied. For large values of t, the standard

deviation may fluctuate but is not expected to increase in

general. The actual values of the ‘limit’ are expected to

depend strongly on the location, and on how much the

natural variability of the variable is at that location. This

includes phenomena like gradients across fronts and

strength and size of local eddies.

3. The FCOO model setup

In this study, the FCOO operational GETM setup ‘NS1C’

(Büchmann et al., 2011) is examined. It is a 60-layer,

1 nautical mile resolution setup covering the North Sea�
Baltic Sea area, see Fig. 1. Prior to the present experiments,

which start on 2013-01-01, the operational setup has been

run in a hindcast mode for the 3 yrs (2010�2012).
The present version of the NS1C setup uses MPI

parallelization with 261 subdomains, each of size 66 �
30 in the horizontal. The advection schemes are first-order

monotone for velocities, and TVD (third-order monotone)

for salinity and temperature. The turbulence is parame-

terised using a second-order k�o model implemented under

the GOTM (General Ocean Turbulence Model) framework,

see Umlauf and Burchard (2005). The lateral boundary

conditions of the NS1C setup are obtained from a coarser

2-D/barotropic model of the North Atlantic (NA3) and a

tidal signal using the OSU tidal inversion (Egbert and

Erofeeva, 2002) with a newer high-resolution data set

(COAS, 2015). Boundary conditions for salinity and

temperature are computed by interpolation of a monthly

climatology. Meteorological forcing is from HIRLAM

(Undén et al., 2002) S03, 3 km resolution, hourly fields,

provided by the Danish Meteorological Institute (DMI).

Freshwater fluxes are computed from daily forecasts from

the HBV model (Lindström et al., 1997), provided by

the Swedish Meteorological and Hydrological Institute

(SMHI) and from observational data provided by the

German Federal Maritime and Hydrographic Agency

(BSH).

In Fig. 1, the positions ‘Drogden’, ‘Ballen’ and ‘Å13’,

which are used for data comparison in the present study,

are shown. The positions all lie in the difficult transition

area between the North Sea and the Baltic Sea.

In the FCOO operational setup, a higher resolution 600m

model (DK600) covers the inner Danish waters, that is, the

transitional zone between the North Sea and the Baltic Sea.

At FCOO, the operational setups (NA3, NS1C and DK600)

are executed operationally four times per day, providing

54-h forecast data used for, for example, search-and-rescue

operations, low sea-level warnings, and oil-drift analyses. In

addition, the forecasts are provided as a service to the general

public.

4. Experiment A: branching and repeatability

For the initial test (experiment A), a short 5-d simulation

experiment is undertaken starting at the perturbation date

2013-01-01.

For standard double precision arithmetic (64-bit, 53-bit

mantissa), the relative accuracy (machine epsilon) is around

1.1 � 10�16. Thus, to actually perturb a salinity value of

around 35 PSU, an update of at least 4 � 10�15 PSU must

be made. For the case where Esalt ¼ 10�14 PSU, the typical

update is of magnitude 2.5 � 10�15 PSU, so for many water

columns in the North Sea, there will be zero perturbation in

this case. As the perturbation scale is decreased to

10�14 PSU and below, the largest salinity values are no

longer modified, and a subset of subdomains have unmodi-

fied hotstart files. At a scale of 10�18 PSU, even the smallest

salinity values are no longer changed. In such cases, the

1For a 20-sample draw from a Gaussian (normal) distribution, the

ratio RANGE/STDDEV has an average/expected value of 3.8

with a standard deviation of 0.40. Using Monte Carlo simulations,

we find the equivalent 0.1%, 1%, 99% and 99.9% percentiles to

be, respectively, 2.8, 3.0, 4.8 and 5.1.

Fig. 1. FCOO NS1C model setup. Data comparison positions

are marked for clarity: Drogden (A) at (longitude;

latitude)�(12.7117; 55.5358), Ballen (B) at (10.6444; 55.8167)

and Å13 (C) at (11.0333, 58.3367).
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hotstart files are identical to the baseline experiment, and

the ‘perturbation’ ends up being just a repetition of the

unperturbed baseline experiment.

In addition to the zero-perturbation ‘baseline’ experi-

ment, perturbations have been made with Esalt changing by

a factors of 10 from 10�4 PSU down to 10�18 PSU.

The actual amount of salt redistributed in each perturba-

tion, that is, the volume of positive salt added to

approximately half the cells, can be estimated as

Esalt �
1

2
pmax �

1

2
Ncells � Acell �Davg (4)

where pmax�0.5 is the maximum value of the positive

half of uniform distribution [0:0.5[, Ncells is the number

of water columns in the model, Acell and Davg are,

respectively, the average surface area and depth of the

columns. An equivalent amount of salt is removed from

other columns, thus the word ‘re-distribution’. As an

example, the salt redistribution for Esalt ¼ 10�12 PSU may

be estimated as

10�12 PSU� 1 kg=m
3

PSU
� 1

2
� 1

2

 !

� 1

2
3:4� 105 � 1:81 km� 1:85 km� 70:2 m

� �

’ 10 kg

The computations for Esalt from 10�4 PSU down to

10�14 PSU are completely equivalent and can be scaled

by their exponent, that is, roughly 100 g of salt is

redistributed with 10�14 PSU.

Perturbations have also been made, where the perturba-

tion scale is a set fraction of the maximum salinity in

the water column to be updated. Here, relative values

ranging from 10�15 and down to 10�19 have been

examined. The smallest value again corresponds to a

pathological zero update of the initial conditions, resulting

in a repetition of the baseline experiment. For a relative

scale of 10�18, only the upper part of a single water column

is actually updated, and the total amount of salt change is

B1mg in this case. Even so, simulation branching is

observed both for this and all other cases where a non-

pathological change of the hotstart files have been made.

Thus, for the present case, any actual modification of

the initial salinity � no matter how small � has resulted in a

simulation branching.

5. Experiment B: realistic independent ensemble

As even the smallest change to the hotstart files (initial

conditions) leads to a simulation branching, a very small

perturbation scale is chosen for the following experiment. It

is, however, prudent to have a very large number of possible

perturbations. Therefore, the perturbation scale is chosen

large enough, so that the salinity may be changed in all

vertical columns. Further, the change to a single column

should not just have one or two discrete possible perturba-

tions, but many (preferably at least a few hundreds).

A perturbation scale of 10�12 PSU ensures that there

will be hundreds of possible permutations for each water

column � even in high-salinity waters. As a consequence,

the perturbation of Experiment B is chosen with scale Esalt ¼
10�12 PSU (absolute value). On a side note, this means that

approximate 10 kg of salt is redistributed over the entire

volume of the North Sea and Baltic Sea, compared to

teratons of total salt in the area. The seed for each ensemble

member is saved to file for possible later rerun of the

experiment.

For Experiment B, 20 independent perturbations are

made from the baseline experiment to give a reasonable

ensemble size. Each ensemble member is started at the

perturbation date (2013-01-01) and is run for 1 yr. The first

2 d have been simulated with output in double-precision

NetCDF and with a higher output frequency (every 15th

minute) for 3-D data. The added precision is necessary in

order to compute statistics of the very small variations of

the initial ensemble.

5.1. Results after first week of simulation

In Fig. 2, the RANGE of the elevation at a particular

position is depicted. It should be noticed that the RANGE

starts at O(10�14)m and increases rapidly up to a few

tenths of a millimetre over the first few days simulated. It is

noted from Fig. 2 that the computed ratio between

RANGE and STDDEV falls within the limits of approxi-

mately 2�6 expected for a 20-member ensemble.

In Fig. 3, the ensemble salinity standard deviation is

depicted after 5 d of simulation. At this point, the model

output is in single precision, so the minimum differences of

O(10�7)m or lower corresponds to machine accuracy on

the output. In a few days, STDDEV grows by 10�11 orders

of magnitude in many areas.2

The salinity variation at Drogden Sill is shown in Figs. 4

and 5. As expected, the initial RANGE corresponds to the

applied level of perturbation. However, after a few hours,

the variation grows very fast. An exponential increase of 10

orders of magnitude in 34 h (about 7 orders of magnitude

per day) is shown for reference in Fig. 4. On 2013-01-05,

after the initial exponential growth, an outflow of brackish

2An animation of the initial development of the surface and

bottom salinity standard deviation in the Danish waters is

presented as part of the online material: dk.salt-std.surfbott-

15min.avi.
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Baltic Sea water is visible in the data, see Fig. 5a. It is

interesting that the maximum ensemble variability for

salinity for this episodic event does not occur at the surface

nor at the bottom, but rather in the halocline, see Fig. 5b,

where for a brief period RANGE reaches a maximum of

5.8 PSU (maximum standard deviation 1.5 PSU). The fast

development of the ensemble variability is not unique to

the Drogden Sill, a similar development can be observed at

other positions. Not surprisingly, the initial variability is

consistently around 10�12 PSU for all examined positions,

corresponding to the initial perturbation level. At position

‘Å13’ in the eastern Skagerrak, see Fig. 1, sea surface

salinity RANGE grows from roughly 10�12 to 10�5 in

about 13 h, corresponding to a growth rate of about 13

orders of magnitude per day (results not shown). Thus,

although the exponential growth rate varies in the model

area, similar behaviours are observed throughout the

system: a few hours with very little variability variation �
probably just a re-balancing of the system after the

perturbation, followed by a rapid exponential growth for

about 1�2 d. Finally, a slower increase in the variability can

be observed, as the ensemble develops towards a saturated

state.

5.2. Variation growth anomalies

The time series of standard deviation within the ensemble

members have been studied carefully, and it has been noted

that there are sporadic ‘jumps’ in the data, that is, times

where the difference between the simulations increases very

rapidly in a single point. This effect is particularly notice-

able in log-scale animations of the development of the

standard deviation over the first days.

Figures 6 and 7 highlight one particular jump occurring in

the German Bight after nearly 2 d of simulation.3 In Fig. 6b,

the location of the jump stands out clearly on the ‘back-

ground’ standard deviation. There are no signs of this feature

just 15 min earlier in the simulation, see Fig. 6a. The bottom

salinity variation is very similar to the depicted surface

variation (results not shown). A closer inspection of the data

has revealed that just a single ensemble member (#07) of the

20 stands out from the rest. In Fig. 7, the absolute value of

the salinity anomaly of this single simulation is shown. The

anomaly is computed as the difference between the salinity of

the chosen simulation and the average of the other 19

ensemble members. To gauge the initial growth rate, a

dashed line with a constant growth of six orders of

magnitude per day is shown for comparison. From Fig. 7,

it is noted that there is an apparent instantaneous increase

in the anomaly by about five orders of magnitude from

4.1�10�10 to 5.6�10�5 PSU. Just after the jump, the sign

of the anomaly (not shown) is positive at the surface and

negative at the bottom. In other words, after the jump the

salinity gradient from surface to bottom is slightly larger for

simulation #07 than for the other 19 ensemble members.

These jumps seem to occur only relatively rarely in time and

space, and only for the first days of the simulation, after

which the general variability is so large as to hide the

difference occurring from a single jump.

The mechanics of the jump can be explained by the

vertical advection scheme in GETM, which has an (op-

tional) iterative process4 to ensure the stability of the

scheme. The number of iterations involves the computation

of a round-up (ceil-function) on a floating point variable.

This means that even a small variation in the floating point

value may change the number of iterations, which again

may trigger a relatively large difference in the result. As a

consequence, initial almost identical simulations may drift

apart ‘slowly everywhere’ due to the numerical differences

of the slightly perturbed data undergoing identical instruc-

tions, and ‘sudden sporadically’ due to the occasional

3This event is presented as animation in online material as

gbight.salt-std.surfbott-15min-jump.avi. 4Repeat until convergence.
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differences in the number of iterations in some of the com-

putations, that is, differing instructions. It should be noted

that the observed discrepancies in, for example, salinity

from a change of the iteration count have been small � less

than 10�4 PSU � much smaller than the typical error of the

model. Further, one extra iteration step in the vertical

iteration does not necessarily yield a higher accuracy of the

end result. Hence, in the case mentioned above, simulation

#07 is not better or worse than the rest. It is just different.

5.3. Spatial distribution of ensemble variability

Previously, see Figs. 4 and 5, it was shown that the salinity

variability at the Drogden Sill increases to O (1) PSU

within a few days of simulation. A similar increase takes

place in many other parts of the domain, but both the rate

of increase and the final size may vary with space. If the

surface salinity of the individual ensemble members is

examined after a few months of simulation, see Fig. 8, then

it may be noted that they have a lot of overall features in

common.5 For instance, the members all show mesoscale

eddies in Skagerrak and a north�south oriented front in the

central Kattegat. Also, salinity gradients of several PSU

across fronts seem consistent features. Common frontal

features can be observed also north of the Sound and along

the German coast in the western Baltic Sea. However, a

more detailed inspection of the images in Fig. 8 reveals that

the exact locations and shapes of eddies and fronts differ

among the simulations. Noticeably, the shapes of the eddies

in central Skagerrak (latitude�588 N, longitude�9.58E)
differ between members #6, #10 and #14. The ensemble-

averaged surface salinity exhibits the same large-scale

spatial variability as the individual ensemble members

(results not shown), that is, with the high values of about

35 PSU in western Skagerrak and down to about 8 PSU in

the western Baltic Sea. A priori, the largest ensemble

variability may be expected to occur in regions with strong

salinity gradients, which for date 2013-03-01 is in the

German Bight, in Skagerrak, and in the northwestern and

central Kattegat regions (Fig. 8). In practice, however,

large anomalies from ensemble average are found in

Skagerrak and near the front in central and north western

Kattegat, but not in German Bight, see Fig. 9.6

In Fig. 10, snapshots of sSS are shown for the first day of

each month throughout the simulated period. There are

many regions where the variation covers several orders of

magnitude, either temporally from one time frame (month)

to the next or spatially within a time frame. During the first

month of simulation, sSS increases from O(10�12) PSU to

above O(10�3) PSU on most locations, see Fig. 10a. It is

worth to notice that the variability in the surface salinity

does not continue to increase beyond the first few months.

This suggests that 1 yr simulation period should be

sufficiently long to reach a saturated state for the internal

variability of the surface salinity. From Fig. 10, it is noted

that the highest ensemble standard deviations are found in

frontal zones and eddies in Skagerrak and Kattegat. Also,

there seems to be some hotspots for variability in the

Danish Straits and western Baltic Sea. It must be noticed

that for a few locations, there is relatively high variability at

the end of simulation. For instance, east of Bornholm (Fig.

10l), sSS is above 0.1 PSU on 2014-01-01. For that region,

that is a rather high ensemble variability, the spatial

variability of the salinity within each member is less than

about 1 PSU in that particular region. However, from the

present data set, it is not readily possible to determine if the

high variability is due to initial effects, seasonal effects or

just plain random stochastics.

5A figure including surface salinity data for all 20 members is

available as part of the online material: dk.salt-data.surface.
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There are even higher sSS values between these 12 dates.

The temporal maximum of sSS, see Fig. 11a, shows irregular

features with strong gradients. This suggests that the events

responsible for the maxima are local phenomena such as

strong fronts. If the position of a front differs between the

ensemble members, then it is only during a short period and

in this local area that there will be high values of sSS. Before

and after the frontal passage, the values will be much lower.

The maximum values in sSS in Skagerrak, eastern Kattegat

and the southern part of the Sound are several PSUs, and

about one PSU on some locations in western Kattegat,

western Baltic Sea and German Bight. Even though fronts

frequently occur in the southwestern Kattegat and the Great

Belt, the maximum sSS is about one order of magnitude

lower in these areas. This might seem surprising or even

counterintuitive, but it might simply indicates that fronts in

the Great Belt are more deterministic in nature than, for

example, eddies in Skagerrak.

In general, the temporally averaged sSS, see Fig. 11b, is

about one order of magnitude smaller than the maximum

values. Further, the temporally averaged field is much

smoother than the field of annual maximum values. The

large difference in magnitude between these two fields

indicates that the large values are reasonably rare events,

with longer periods of modest variability in between. It is

worth to notice that certain areas, such as the German

Bight and the western Baltic Sea, stand out with especially

high ratio between maximum sSS and time-averaged sSS

values. It is concluded that high-variability events are rarer

in these particular areas than in, say, Skagerrak.

The distribution of bottom salinity ensemble standard

deviation (sSB) differs significantly from sSS. The temporal

maximum and time averaged values of sSB over the

simulated year are shown in Fig. 11c and d. It is immediately

noted that there are very low values of sSB in the deeper

areas of Skagerrak and Kattegat. In these areas, the bottom

is dominated by high-saline oceanic water with little salinity

variation in time and space, which could explain the limited
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ensemble variability. In other areas, such as the eastern

Kattegat near the Swedish coast, the western Baltic and the

Arkona Basin, there are relatively deep areas (depth�20m)

that have significantly higher values of sSB. In these areas, it

is expected that there are significantly more activities, saline

inflows, etc., which lead to higher variations in the

ensemble. Finally, it should be mentioned that the values

of sSB above 1 PSU are observed in areas where upwelling

frequently occurs, such as southern and western Kattegat.

As observed for the surface layer, high maximum values and

relatively low averaged value are present in the German

Bight and parts of western Baltic Sea. It should in this

context be noted that only the surface and bottom field are

analysed here. There may be even higher maximum and

average ensemble standard deviations within the water

column.

5.4. Ensemble variability in different areas

The ensemble variability of salt and temperature varies

significantly between the various areas shown in Fig. 12.

Further, there is a large difference between the maximum

variability in an area and the average variability over the

area. Also, for several areas, there is a large difference bet-

ween variability at the surface and at the bottom. To quan-

tify the long-term variability, the time average over the final

4 months of simulation, that is, September�December, is

computed for each region. It is thus assumed that the ensemble

have reached some steady state for variability within the first 8

months of simulation. As we shall see, this may not be the case

for all areas, but that will be dealt with later.

From Table 1, it is noted that the long-term regional

maximum variability (STDDEV) is typically significantly

59
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larger than the regionally averaged values, by roughly one

order of magnitude. Together the two numbers may provide

a good indication of the typical variability for the variables in

a particular area. It should be noted, though, that the values

in Table 1may be sensitive to the actual period chosen for the

temporal averaging, both to the start and the length of the

period. In particular, the start of the period should be late

enough to be after any initial effects due to the model

branching, and the length should be sufficiently large to yield

an accurate average value. As both start and length of the

period could be chosen differently, the values in Table 1,

should be taken as orders of magnitude only.

The data in Table 1 may be used to identify some rather

different stochastic regimes. In particular, Skagerrak and

the German Bight are areas where the surface salinity within

each ensemble member varies significantly in both time and

space. In Skagerrak, the variation is typically 28�34 PSU,

while the chosen area of the German Bight experiences

values around 24�34 PSU, see for example, Fig. 8. However,

the ensemble variation is more than an order of magnitude

larger for Skagerrak than for the German Bight. In words,

the different ensemble members agree more on the salinity

distribution in the German Bight than in Skagerrak. This

indicates that there is a significantly larger stochastic

component of the surface salinity distribution in Skagerrak

than in the German Bight. In Skagerrak, the salinity

variation is typically due to ‘free’ eddies and fronts, while

the German Bight is dominated by forced flows due to, for

example, tidal waves and the Coriolis force.

5.4.1. Initial time scales. In addition to the long-term

temporal average, it is important to evaluate the initial

temporal evolution of the ensemble variability, that is, how

long does it take before the ensemble is ‘fully evolved’ and

reaches the long-term ‘saturated’ state. It may seem feasible

to locate the first time the regionally averaged variability

exceeds the computed long-term value. It turns out, how-

ever, that this simple estimate of time scale is very sensitive to

individual spikes, which occur early in the simulations of the

STDDEV time series (results not shown). To decrease the

influence of short spikes, the variability time series can be

low-passed filtered. The so-called Hanning filter is used with

a time window typically several days wide. As the original

time series coversmany orders ofmagnitude, the filter is used

on log(STDDEV). Due to a large variation in the variability

growth rates among the areas, it is not trivial to choose a

window size: the computed time scales will � at least to some

extent � depend on the used filter. This is especially true for

the smallest time scales, even though the start of the time

series is padded with the initial value to reduce the boundary

effect of the filter. On the other hand, a narrow filter window

will not give the necessary effect for the more slowly growing

cases. To deal with this problem, all cases are initially filtered

Fig. 12. Regions to compute time evolution of averaged and

maximum standard deviation of salinity and temperature.

Table 1. Computed long-term ensemble variability for salinity and temperature for different areas

STDDEV salt (PSU) STDDEV temperature (8C)

Depth (m) Surface Bottom Surface Bottom

Avg (area) Avg (area) Max (area) Avg (area) Max (area) Avg (area) Max (area) Avg (area) Max (area)

Skagerrak 290 1.4E-01 7.4E-01 7.2E-03 1.6E-01 7.9E-02 4.5E-01 3.1E-02 3.1E-01

Kattegat 28 5.7E-02 5.3E-01 3.8E-02 6.9E-01 2.2E-02 1.8E-01 4.9E-02 3.4E-01

The Sound 12 4.2E-02 4.4E-01 5.8E-02 8.9E-01 1.7E-02 2.4E-01 2.1E-02 1.8E-01

Arkona 39 1.9E-02 1.5E-01 4.7E-02 5.0E-01 2.1E-02 1.3E-01 3.6E-02 3.5E-01

Great Belt 17 2.2E-02 2.3E-01 2.2E-02 3.3E-01 6.8E-03 1.3E-01 7.6E-03 8.9E-02

Bornholm 72 1.8E-02 8.1E-02 2.3E-02 1.9E-01 3.7E-02 2.3E-01 4.9E-02 3.8E-01

German Bight 22 6.7E-03 8.5E-02 4.6E-03 7.0E-02 3.2E-03 3.8E-02 2.7E-03 2.3E-02

Regional average and maximum values of STDDEV have been temporally averaged over the final 4 months of simulations. Average depth

of each region is given for reference.
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using an 8-d wideHanning window. If the time scale is found

to be less than twice the filter width, then thewidth is reduced

by 1 d, and the time scale is recomputed. This process is

repeated iteratively until the condition is fulfilled. In all

cases, a window width of at least 1 d is used.

The time scale of the initial growth of the ensemble

variability is shown in Table 2 for the different areas. To

gauge the sensitivity of the filter values, the process has been

repeated varying the initial filter width in five steps from 6 to

16 d, and varying the ‘re-iterate condition’ on the ratio

between computed time scale and used filter width in three

steps from two to one. If, for a particular case, the ratio

between the maximum and minimum time scales computed

in this way exceeds 1.20, then the result may be seen as par-

ticularly sensitive to the filtering process. This is true for

approximately 20% of the cases, and these are marked with

asterisks in Table 2. It should be noted that � as was the case

for Table 1 � all the values in Table 2 are only estimates and

should be used with caution as ‘order of magnitude’ numbers.

The actual numbersmay changewith the specific initial state �
and there may also be a seasonal variation, which is not

examined in the present study. For a single case, the time

scale varied from 5 to 10 d during this sensitivity estimation.

Normally, but not always, the time scale of the area-

averaged variation is larger than the time scale of the

maximum variance in an area. It is important to note that a

few areas, in particular the Kattegat Bottom, have very

large time scales. So large that a longer simulation may be

necessary in order to accurately determine the time scales

for those few areas. For the remaining areas, however, the

time scales are much smaller than the simulation period

and, thus, are expected to be reasonable estimates for how

fast-branching simulations deviate for each area. Some

areas like the Great Belt and, to some extent, the Sound

have characteristic short time scales of less than a week.

Other areas develop on scales of several weeks to months.

6. Ensemble variability in eastern Skagerrak,

a case study

In Section 5, high internal variability was found in a

number of different areas, in particular in Skagerrak. In the

present section, a single event is examined in order to

exemplify the impacts of the previous findings. The

analyses in the present section are based on numerical

results from September 26 to October 26 at position ‘Å13’,

see Fig. 1. This time period and location was chosen to

demonstrate the ensemble variations during an event with

large differences between the ensemble members. In this

particular case, large variability develops in an area with

large horizontal salinity gradients due to the north-bound

Baltic Current, which due to the Coriolis force, follows the

Swedish coast. In the time leading up to the event, no

especially large freshwater fluxes have been observed.

Meteorologically, the period is dominated by relatively

low winds and relatively stable pressure. On September 21

and 22, that is, 2 weeks before the event, a passing low-

pressure system leads to moderate westerly winds slightly

larger than 10m/s for a few days, but no unusually strong

winds seem to have triggered this particular event. As can

be seen from Fig. 13a, the salinity variation is very small �
less than 0.1 PSU RANGE � at the start and the end of the

chosen period. However, between these dates, there are

very large variations within the ensemble. For example, for

October 07 member #19 predicts a decrease of about

1.7 PSU, from 24.9 to 23.2 PSU, while member #13 predicts

an increase of about 5.4 PSU, from 25.8 to 31.2 PSU. The

maximum ensemble RANGE in the period is about 8 PSU

and occurs on October 8 (the equivalent maximum value of

sSS is about 3 PSU). Two days later, the RANGE is

B0.5 PSU, decreasing to B0.1 PSU after further a few

weeks. Therefore, the variability, computed as RANGE in

this case, varies about two orders of magnitude within the

examined period. It is important to note that for a

Table 2. Time scales (in days) to reach long-term ensemble variability (Table 1) for salinity and temperature for different areas

Time-scale STDDEV salt (days) Time-scale STDDEV temperature (days)

Surface Bottom Surface Bottom

Avg (area) Max (area) Avg (area) Max (area) Avg (area) Max (area) Avg (area) Max (area)

Skagerrak 21 18 59 18 19 17 55 48*

Kattegat 18 47 122* 26 17 11 300* 24

The Sound 28 4 5 4 15 10 129* 12

Arkona 43 75* 22 5 45* 24 130 137

Great Belt 5 3 7 4 6 6 7* 4

Bornholm 54 32 55 18 72 83* 73* 94*

German Bight 10 5* 16 10 10 10 13 11

Low-pass filtered time series of log(STDDEV) have been used for the computations, see text. Values 20% or more sensitive to the filtering

process are marked with asterisks.
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particular point in time and space, for example, Å13 at

2013-10-07 19:00 UTC, the distribution of salinity values

from the ensemble members is very uneven and does not at

all resemble a uniform or Gaussian distribution. The

salinity varies between 23.5 and 31.3 PSU; several members

predict values very close to the minimum, while none

predicts salinity within the 24�26 PSU interval. Around the

time of maximum RANGE, the ratio of RANGE to

STDDEV shows significant variation (results not shown)

with a minimum ratio of 2.5 around the time of maximum

RANGE, and subsequently increasing rapidly to 4.9. If

these numbers are compared to the computed percentiles

found for a Gaussian distribution, see Section 2, then it

seems unlikely that the distribution could be Gaussian.

Time series of computed statistical variables is shown in

Fig. 13b. It is interesting that the 25�75 percentile range

shown in yellow often, for example, 2013-10-08, covers a

very large part of the total range, as this indicates that 50%

of the simulations are at the extreme ends of the interval.

At other times, the 25�75 percentile band is very narrow,

which could indicate a common tendency around the

median with fewer outliers near the extremes. It should

also be noted that there is often a significant difference

between the median and mean values. On several occasions,

the mean value does not even fall within the 40�60 percentile
range shown in green. It is important to keep in mind the

uneven/unpredictable distribution, if the ensemble is used

to deduce more general features of the model stochastics.

If the surface salinity in Skagerrak � near the Å13

position � is examined in detail, then it becomes apparent

that the high internal variability at Å13 during this event

may be caused by uncertainty in the positions of eddies and

fronts in the area. In Fig. 14, the surface salinity in

Skagerrak is depicted for two particular dates. Data for a

single ensemble member are compared to ensemble varia-

bility sSS. The dates correspond to, respectively, very low

and very high ensemble variability at Å13. On 2013-10-04

20:00, the ensemble members predicted nearly the same

salinity value at Å13. At this time, there are high values of

sSS north of Å13 and near the Norwegian coastline, but

not closer to Å13, where the value is sSS�0.2 PSU, see

Fig. 14a, left panel. The surface salinity for member #13

shows that there is a front off the coastline that separates

the low saline waters along the coast line and the high

saline waters in the centre of Skagerrak, see Fig. 14a, right

panel. Obviously, the surface salinity distribution for the

other ensemble members is similar to member #13, except

for locations with high sSS. On 2013-10-08 00:00, the

ensemble members predict very different surface salinity at

Å13, see Fig. 13. The standard deviation is now above

2.0 PSU over a large area in eastern Skagerrak (Fig. 14b,
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‘Å13’. Sea surface salinity STDDEV (PSU) (left) and surface salinity

(PSU) for ensemble member #13 (right). In each subfigure, the top

panel indicates time in a way consistent with Fig. 13.
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left panel), as the ensemble members disagree on the exact

locations of a front and eddy in the area. The online

material includes animations of surface salinity, both in the

form of frames like Fig. 14,7 and for two particular

ensemble members (#13 and #19) side by side.8 Such

animations provide valuable insights into the workings of

internal variability.

The different pathways for the water masses in the

ensemble members can also be observed deeper in the water

column. On October 8, the mixed layer depth in the

different ensemble members varies from 3.5 to 20m, and

the salinity RANGE at 20m depth is 1.8 PSU, see Fig. 15a.

The vertical variations in temperature are also significant

on this occasion, where some members predict temperature

increase of almost 2 8C from 20 to 30m depth, while other

members predict a decrease from the mixed layer towards

the bottom, see Fig. 15b.

The temporal evolution of salinity average and range is

shown in Fig. 16. The previously observed high variability

periods, see Fig. 13, can be refound in Fig. 16b. The highest

salinity variability is found at and just below the free surface.

If the variability is compared with the ensemble average in

Fig. 16a, then it is noted that the maximum salinity

variability occurs right after a period with well-mixed

conditions, where there is very little salinity difference in

the upper half of the water column. The present single event

does not, however, seem to be enough to conclude if there is a

firm connection between well-mixed conditions and high

variability. The temperature average and range at Å13 for

the same period are depicted in Fig. 17. From Fig. 17a, it is

noted that both before and after the well-mixed period, there

are periods with warmer waters at intermediate water

depths. This is interpreted as ‘warm summer waters’, less

affected by the autumn cooling of the surface. Compared

with the surface salinity, the surface temperature has very

little ensemble variability. This is likely because the surface

temperature is tightly bound to the used meteorological

forcing, which does not vary between the ensemblemembers.

Further, it is clear from Fig. 17b that large temperature

variability may be found in the intermediate waters. Thus,

high variability in temperature and salinity may be quite

unrelated phenomena.

7. Conclusions and further work

The stochastic uncertainty connected to the simulations of a

single 3-D baroclinic ocean model setup has been examined,
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Fig. 16. Time-depth plot of salinity AVERAGE (a) and

RANGE (b) over the ensemble at position ‘Å13’.
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Fig. 17. Time-depth plot of temperature AVERAGE (a) and

RANGE (b) over the ensemble at position ‘Å13’.
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namely the FCOO NS1C operational setup, see Büchmann

et al. (2011). The model compilation and execution are fully

repeatable, so the uncertainty is unrelated to random

rounding effects taking place in the floating point computa-

tions. Rather, the stochastic features are attributed to

cascading effects from small-scale to larger mesoscale

features. Perturbations have beenmade solely on the salinity

initial conditions, and it has been shown that even the

slightest perturbations, corresponding to well under 1mg
salt, result in simulation branching and in large local

differences of several PSUs within a few days of simulation.

To estimate the stochastic component inherent to a single

numerical experiment, a 20-member ensemble based on

initial perturbations of 10�12 PSU has been created and

run for 1 yr. No perturbations have been made to the

equations of state or the forcing fields driving the simula-

tions. During an initial phase, the ensemble variability grows

exponentially fast with asmuch as seven orders ofmagnitude

in a single day. It is concluded that the growth is due to two

inherently different processes. Primarily, a simple repetition

of the time-stepping computations causes the original slight

differences to increase exponentially in time. This happens

even if all ensemble members go over exactly the same

numerical instructions sequence. Secondarily, however,

discrepancies in the number of repetitions in an iterative pro-

cedure for vertical stability causes ‘sporadic jumps’, as some

ensemble members may make additional computations.

It was found that the ensemble variability depends heavily

on the area. For instance, the average sea-surface salinity

ensemble standard variation varies about a factor of 20 from

the German Bight to Skagerrak, with the highest values in

Skagerrak. High ensemble variability was found in areas

with high mesoscale activity, such as Skagerrak and Katte-

gat, where eddies may propagate reasonably unrestricted by

coastal processes. However, also some areas with many

fronts, such as the Sound, show relatively high ensem-

ble variability. It has been shown that in some cases the

maximal ensemble variability may be found not at the sur-

face or bottom, but in the interior of the water column, such

as near a bottom boundary layer developing under a

freshwater outflow. In the Baltic Sea, there are also regions

with high mesoscale activity, but the spatial salinity gradi-

ents are sufficiently small to limit the variability. In general,

high internal model variability does not seem to be initiated

by extraordinary forcing, such as storms or very large

freshwater outflow.

Periods with very high ensemble variability have been

found to be short-term events and very limited spatially. The

impact from these events on the annual statistics is relatively

limited. For example, the found annually averaged surface

salinity ensemble standard deviation is about an order of

magnitude smaller (0.1 PSU vs. 3�4PSU for Kattegat and

Skagerrak) compared wih the results by an MME

study (Golbeck et al., 2015), that is, an intra-model study.

There are several reasons for the much higher intramodel

variability values, such as different model resolutions and

different forcings, including the freshwater fluxes. However,

the high internal variability events increase the uncertainty

connected to setup tuning and validation.

The stochastic distribution of, for example, salinity within

the ensemble � found in the present work � is itself variable

not just in magnitude. Sometimes, the ensemble values are

concentrated around a common average with a few outliers,

while other periods show a ‘bundling’ of values at opposite

ends of an interval with very few members predicting

intermediate results. Results indicate that the model

ensemble probably does not follow a normal distribution.

This may bear an impact on data assimilation where it is

often an assumption that model errors follow a particular

ensemble distribution. The time scales for the model internal

variability to reach a final saturated state also exhibit

significant variations between regions � for the surface

variables from in the order of 5 d in the Great Belt to around

2 months for the Bornholm Basin. For the bottom variables,

the time scales tend to be larger, and for the bottom

temperature in Kattegat, the time scale was found to be

too large to be estimated by the present 1-yr simulation.

The estimated time scales seem consistent with the findings

by Fu et al. (2011), who report that the effects of data

assimilation in the transition area can ‘persist for nearly

3 weeks’, while Losa et al. (2012) reported a much shorter

time scale of ‘up to 5 days’ in the North Sea with SST

assimilation.

For an event with very high ensemble variability of

surface salinity at a particular position in Skagerrak, it has

been observed that there was not an equivalent high

variability of surface temperature. Further, very high

temperature variability was found � only in the middle of

the water column. This variability may be decoupled from

the surface mesoscale structures. As a consequence, it may

be difficult to decrease the variability in the deeper layers of

the waters, if data assimilation of surface quantities only is

considered. However, the actual SST values may be useful

if remote sensing of SST is used in recursive selection and

re-branching of ensemble members, as described by van

Leeuwen (2010). Then, data for each ensemble member are

compared to observations, and the best-fitting members are

selected for further processing and re-branching, while

badly fitting members are discarded and exempted from

further simulation. It may be successful in areas, where the

time scale for temperature variability is sufficiently large

and there is enough ‘open water’ for the SST to actually

produce a picture of high enough resolution without coast

effects. Thus, candidates, where such ideas may prove

successful, are areas which have both relatively large

geographic extend and a large time scale of SST ensemble
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variability. In particular, the Bornholm and the Arkona

Basins seem candidates for this application, as the time

scales of the SST ensemble variability development seem

very large (40�70 d). In Skagerrak and Kattegat, the

estimated time scales to full decoupling of the ensemble

members are smaller � in the order of a few weeks (17�19
d). Thus, it is expected that the selection and re-creation

process might be repeated at least several times per week in

order to keep the ensemble members reasonably close to

the observations. However, if an operational ocean forecast

model is to be significantly improved by reducing the

internal variability and bringing the simulated mesoscale

features ‘in phase with nature’, it may require additional

data sources such as altimeter, RF arrays, ferry-boxes and

on-line buoys and observation stations. In fact, many

operational models for the North Sea�Baltic Sea assimilate

satellite-derived SST or in-situ data, including ferry-box

data, see Golbeck et al. (2015). However, in operational

modelling assimilation, combining the full variety of

measured data seems less used � if at all.
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