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ABSTRACT 

The effect of a basic horizontal shear flow on the linear geostrophic adjustment process 
in an unbounded barotropic fluid is investigated. It is shown that the basic flow is 
absolutely stable to axially symmetric transverse disturbances and that energy is not 
abstracted from the basic flow through the action of Reynolds stresses. A potential 
vorticity equation is derived and solved numerically in order to determine the relative 
amount of initial energy which is partitioned to geostrophic kinetic and available 
potential energy, as a function of the initial current width. It is also shown that, in 
contradistinction to the adjustment process in an atmosphere with a basic state at 
rest, a significant portion of geostrophic energy resides in the low wave-number part 
of the energy spectrum. This latter feature is most noticeable when a large gradient 
of the basic flow exists. 

1. Introduction 

There are a number of mechanisms in the 
atmosphere which may produce a large spectrum 
of internal gravity waves. For example, internal 
gravity waves may be generated by the flow 
of a current over mountainous terrain (Queney, 
l947), by fluid impacts a t  the base of a stably 
stratified layer by rising convective clouds in 
the layer below (Townsend, 1966) and by the 
adjustment of an unbalanced current to a 
balanced state (Monin & Obukhov, 1958). 

Some mesoscale phenomena observed in the 
stratosphere and mesosphere (Newel1 et al., 
1966) and in the lower ionosphere (Hines, 
1963) have been interpreted as manifestations 
of internal gravity waves. These waves are 
observed to have periods of the order of an 
hour, dominant vertical wave lengths of one 
scale height or less and dominant horizontal 
wave lengths of a few hundred kilometers or 
less. The basic zonal wind and temperature 
distribution in the atmosphere commonly ex- 
hibits pronounced spatial variability over a 
distance of a scale height or less, while sharp 
horizontal gradients are less common, occurring 
mainly in the vicinity of frontal zones and jet 
streams. Gravity waves with vertical and hori- 
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zontal components of propagation would then 
be expected to undergo a selective reflection 
with increasing height (Pitteway and Hines, 
1965), but could travel large horizontal distances 
relatively unaffected by broad horizontal gra- 
dients of wind and temperature. 

Observations in the troposphere and strato- 
sphere, presented by Sawyer (1960), Weinstein 
et al. (1966) and DeMandel and Scoggins 
(1967), also reveal the existence of mesoscale 
oscillations but with periods of several hours, 
vertical scales of the order of one kilometer 
and horizontal dimensions of hundreds of kilo- 
meters. This type of oscillation has been inter- 
preted as a gravity-inertia wave, a gravity 
wave strongly affected by the earth’s rotation 
when the frequency of the oscillation u ap- 
proaches the inertial frequency f = 2R sin 4. (R  is 
the angular velocity of the earth’s rotation, 
4 is latitude and f 1~ lo-* sec-l in middle lati- 
tudes.) The properties of this type of wave 
have been discussed by Eckart (1960), where it 
is shown that wave propagation is confined 
primarily to horizontal surfaces and when 
u -+ f the vertical flux of wave energy approaches 
zero. Since the observations, cited above, indi- 
cate that these oscillations are confined to thin 
horizontal layers in the atmosphere, horizontal 
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gradients of the basic flow variables could have 
an important effect on the propagation of these 
waves. 

In  this paper, attention is focused on the 
problem of horizontal propagation of gravity- 
inertia waves through horizontal shear flow. 
Since the purpose here is to illustrate some 
basic properties of this type of motion, we 
consider only a simple fluid model which is 
amenable to analysis. The nonlinear equations 
governing fluid motion in this model, consisting 
of two incompressible fluid layers in stable 
stratification, are presented in nondimensional 
form in section 2. These equations are then 
reduced to a linear system, which describes 
small perturbation motion about a basic time- 
independent geostrophic horizontal shear flow. 
The absolute stability of this geostrophic cur- 
rent to symmetric transverse disturbances is 
established in section 3. The conservation of 
potential vorticity for this model is derived in 
section 4 and in section 5 this conservation 
principle is used in the derivation of the hori- 
zontally-averaged energy equation. In  section 
6.1 solutions of the potential vorticity equation 
for ageostrophic initial conditions are presented 
and the partition of energy between the geo- 
strophic and ageostrophic components is dis- 
cussed. The time-dependent and steady solu- 
tions of this model, for a spatially uniform 
initial condition, are presented in 6.2 in order 
to show the importance of the low wave- 
number part of the spectrum in the process of 
energy partition. Finally, in section 7 we con- 
clude by pointing out the important effects 
which have been introduced by the inclusion 
of a basic shear flow in the present model. 

2. Basic equations 

The fluid model used in this study consists 
of two incompressible layers of finite depth 
with densities e* > Q ,  separated by an interface 
at height h*. The lower layer is bounded from 
below by a flat unbounded plane, tangent to 
the earth at latitude 4. The upper layer is 
assumed inert and the pressure is hydrostatic in 
both layers. A Cartesian coordinate system is 
used with x*, y*, z* directed eastward, north- 
ward and upward respectively. Gravity g is 
antiparallel to z*, the vertical component of the 
earth's rotation vector is parallel to z* and the 
horizontal component of rotation is neglected. 

The velocity components in the x*,y* direc- 
tions are u*, v* respectively and the motion is 
assumed independent of s*(a/ax* = O ) .  The 
equations of motion and mass continuity for 
this system have been presented elsewhere (e.g., 
Tepper, 1955). In  nondimensional form they 
are 

au/at + 1v( Fau/ay - 1 )  = 0 (2.1) 

qav/at +ilFvav/ay) + U  + F-lah/ay = 0 (2.2) 

ah/at + AF(vah/ay + hav/ay) = 0. (2.3) 

The dependent variables have been nondimen- 
sionalized by 

u* = u u ,  v* = vv, 

h*H-' = h = 1 + f ULc-'h = 1 + Fh, (2.4) 

where U ,  V ,  denote characteristic amplitudes 
of u*, v* respectively, h is the non-dimensional 
deviation of the interface from the constant 
mean value H ,  f is the constant Coriolispara- 
meter, the characteristic horizontal scale of the 
motion is L =f-'(g*H)t (the radius of deforma- 
tion, Rossby 1938) and ce =g*H (g* -e*-'(e* - e ) g  
is "reduced" gravity). The independent vari- 
ables have been nondimensionalized by 

y* = f-'(g*H)'y, 1* = f-'t (2.5) 

and derivatives with respect to space and time 
are of order unity. The nondimensional para- 
meters are 

1 = vu-1, 
F = U(g*H)-* - O ( l ) ,  the Froude number. (2.6) 

Values characteristic of middle latitudes are: 
f - sec-l, H- 10 km ( H  represents the mean 
tropopause height), e*-'(e* - e ) g  - lo-' msec-', 
which corresponds to a jump in the potential 
temperature of about 3K across the tropopause 
and L =ff-l(g*H)t-300 km. 

Equations (2.1), (2.2) and (2.3) may be 
reduced to a linear system by assuming that 
,i = VU-1- lo-' and expanding all dependent 
variables in a power series in 1. The coefficients 
of each power of 1 satisfy (2.1), (2.2) and (2.3). 
We shall retain only the zero- and first-order 
systems of linear equations, which are 

au,/at = 0, &,/at = 0, U, + aho/@ = 0 (2.7) 

and 
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au,/at +v,(FdU,/dy - 1) = 0 (2.8) 

(2.9) 

(2.10) 

av,/at + U, + ahJay = o 

ah,/at + a(h,v,)/ay = 0, 

where h, = 1 + FAo and A, =h,. The basic state is 
one of time-independent geostrophic balance and 
the first-order variables represent deviations 
from it. 

I f  a basic state of rest (u, = 0, h, = 1) had 
been assumed, then (2.8), (2.9) and (2.10) 
would represent the nondimensional form of 
the equations solved by Cahn (1945) in his 
study of the geostrophic adjustment process. 
The flow in Cahn’s problem is always stable 
since no external energy source is available for 
the unbounded growth of the wave disturbance. 
In  the present problem the energy of the basic 
geostrophic current is available as a possible 
source and the stability of this flow must be 
considered. 

3. Stability of geostrophic motion 

I f  all the variables but vl are eliminated from 
(2.8), (2.9) and (2.10) the following equation 
with y-dependent coefficients is derived 

a%,/at* -t (1  - FdU,/dy)v, -Phovl/aya = 0. (3.1) 

By setting h o v l z q ,  (3.1) becomes 

{h;’[a*/at* + (1 - Fdu0/dy)] - a*/ay*}q = 0. (3.2) 

As Drazin and Howard (1966) have pointed out, 
the continuous as well as the discrete spectrum 
of time-dependent motions must be considered 
in connection with the intitial-value problem. 
However it appears that the modes leading 
to instability are associated with the discrete 
spectrum alone. Since we are concerned with 
the stability problem here, we shall assume that 
each component of q satisfies 

P(Y, t )  = Q(y)efot, (3.3) 

where Q(y) =ho(y)  V,(y) and a =a, + ia,. In- 
stability of the flow to this mode corresponds 
to ui +O; otherwise the flow is stable a, $0 or 
neutrally stable u, = 0. 

Introduction of (3.3) reduces (3.2) to 

dQ/dy* +h;’[d - (1  - Fdu,/dy)]Q = 0. (3.4) 
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Suppose no deviations from the geostrophic 
height field are permitted, i.e., ah@ = - 
ah,v,/ay =O. Then dsQ/dy’, in (3.4), vanishea 
and, if Q(y) is not identically zero, 

UZ = 1 - Fduo/dy. (3-5) 

From the above definition of stability, (3.6) 
yields the classical criteria for the centrifu- 
gal stability of geostrophic motion (e.g., Van 
Mieghem, 1951) 

1 - FdU,/dy 0, (3.6) 

corresponding to stability, neutral stability and 
instability respectively.’ 

We shall now consider the effect of non- 
vanishing height deviations hl(y, t )  upon the 
stability of geostrophic flow. We multiply (3.4) 
by &*, the complex conjugate of Q, and inte- 
grate over the domain - 00 < y  < rn. The ex- 
pression obtained for ua is 

(3.7) 

since Q and its derivatives vanish at y = f. 00, 
because v1 and its derivatives vanish there. 
If we let Q =h, V,, then 

upon integration by parts and use of (2.7). 
Substitution of (3.8) into ( 3 . Q  and separation 
of the real and imaginary parts of a*, yields 

u< - 0 

(3.9) 
~ 

l The terms “inertial stability” or “inertial in- 
stability” have been used in referring to the criteria 
in (3.6) (e.g., Van Mieghem (1951)). In order to avoid 
confusion we shall not use this nomenclature, since 
“intertial instability” has also been used in refer- 
ence to the instability of two-dimensional parallel 
shear flow (e.g., Drazin and Howard, 1966). 
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This result (3.9) means that geostrophic mo- 
tion is stable to transverse disturbances (TI, +0) 
which are constrained to move in the y - z plane. 

In  the derivation of (3.6) it has been tacitly 
assumed that fluid displacements conserve 
their momentum but the pressure field remains 
unchanged throughout the fluid, since ?%,/at = 0. 
If  the net restoring force on the displaced fluid 
due to the pressure gradient is less than the 
centrifugal force, which it conserves upon dis- 
placement, the fluid will be accelerated away 
from its initial position. If this takes place the 
fluid is said to be unstable to transverse dis- 
placements. The criteria for this type of in- 
stability have been expressed in terms of the 
sign of the absolute vorticity, in (3.6). If pres- 
sure deviations are permitted (ah,/at S O ) ,  pres- 
sure changes occur in response to fluid dis- 
placements and no mechanism exists to produce 
the type of instability mentioned above. We 
note stability is still maintained when the 
velocity divergence vanishes (avJay = 0). I n  this 
caae (2.10) reduces to 

ah,/at + v,dh,/dy = 0. (3.10) 

Fluid displacements still produce pressure 
changes but the manner in which these changes 
take place is constrained by not allowing ve- 
locity divergence in the fluid. 

4. Conservation of potential vorticity 

A model, in which the basic state was one of 
rest (u, =0, h, = l), was studied by Obukhov 
(1949) in application to the adjustment of an 
initial unbalanced current to geostrophic bal- 
ance. Obukhov showed that the linear equations 
of his model possess a time-independent in- 
variant, the potential vorticity, which he ex- 
pressed in both one and two space dimensions. 
This invariant is a condition which allows the 
eventual steady geostrophic state to be deter- 
mined uniquely from the initial state of the 
motion field without solving the intermediate 
initial-value problem. Papers by Cahn (1945), 
Washington (1964) and Blumen (1967b) have 
been concerned with the solution of the time- 
dependent problem. Their results show that the 
time it takes to reach an approximate steady 
geostrophic state increases with the ratio of the 
characteristic scale of the initial motion to the 
radius of deformation. Since this latter aspect of 

the adjustment problem has been considered 
elsewhere, we shall not consider it here. 

I n  this section we shall show that potential 
vorticity is conserved in the present model, 
in which the basic state is one of steady geo- 
strophic balance. Equation (2.8) may be re- 
written as 

au,/at -v,h, R, = 0, 

where R, = hi1( 1 - Fdu,/dy) (4.2) 

(4.1) 

is the potential vorticity of the basic state. If 
(4.1) is differentiated with respect to y and 
(2.10) is introduced, we obtain 

. (4.3) 

Multiplication of (4.3) by a, and use of (4.1) 
yields the equation for the conservation of 
first-order potential vorticity 

If the flow becomes steady it must also become 
geostrophic 

ulg + ah,,/ay = 0. (4.5) 

The nonsteady ageostrophic part of the flow 
will be denoted by a prime. Then, upon inte- 
gration of (4.4), we obtain 

denotes the initial-value (t =0) of the first- 
order potential vorticity. The steady first-order 
geostrophic field is determined from the solu- 
tion of the following linear differential equation 
with variable coefficients 

which has been obtained by using (4.5) to 
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eliminate ulg in (4.7). I f  R, +0, then a certain 
portion of the initial energy will go into the 
steady first-order geostrophic field and the 
remainder will be dispersed throughout the 
fluid by horizontally propagating gravity 
waves. The gravity-wave field may be deter- 
mined from the solution of the wave equation 
(3.1) and specified initial conditions. Obukhov's 
(1 949) one-dimensional form of the potential 
vorticity equation is obtained by setting R, = 1 
in (4.9). 

In  order to determine some properties of the 
linear system (2.7-2.10) the following initial 
conditions will be considered 

h; = (h,); t = 0. (4.10) 

v* =v; ' I  u; = ( U g ) ;  

If (4.8) is evaluated by (4.10), then (4.9) be- 
comes 

h,v, and hl respectively. Addition of these 
equations yields 

where & = 4 (h,uZ + h,v': + hi). (5.2) 

E represents the sum of kinetic and available 
potential energy per unit horizontal area, if 
we set the constant nondimensional density of 
the lower layer equal to unity. Integration of 
(5.1) over y,  denoted by a bar, yields 

(5.3) a -  duo 
- E  + 3'h v u -= 0. 
at O 1  ' d y  

The second term in (5.31, which represents the 
total interaction between the Reynolds stress 
and the horizontal shear of the basic flow, may 
be rewritten as 

where x =  hl, - (huh. (4.12) 

We shall consider the case R, + O  in 
- 03 < y  < 03, i.e., 1 -Fdu,/dy +O. Then (4.11) 

may be rewritten as 

;(a.'Z) - x = o .  (4.13) 

Multiplication of (4.13) by x*, the complex 
conjugate of x ,  and integration over y yields 

since x and its derivatives are assumed to 
vanish at y = rf: 03. Since R, +0, (4.14) can only 
be satisfied if x = O .  This means that the 
eventual steady fields of u1 and h, are the same 
as the initial fields, given by (4.10). This result 
will be used in the following section where 
the partition of energy between the steady 
and nonsteady fields is considered. 

5. Energy equation 
An energy equation may be obtained by 

multiplying (2.8), (2.9) and (2.10) by h,u,, 
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using (2.8) and assuming 1 -Fduo/dy +O. It 
is now possible, using (4.2) and (5.4), to rewrite 
(5.3) as 

Integration of (5.5) yields 

where 8 ,  denotes the initial value of the expres- 
sion in brackets on the left side of (5.6). The 
first-order variables may be expressed as 

u1 = ulg +u;, v = v;, h, = h,, +hi.  (5.7) 

Then if (5.7) is inserted into (5.6) the cross- 
product term 

will arise in addition to the term representing 
the sum of the geostrophic and ageostrophic 
energies. With the aid of (4.5) and one integra- 
tion by parts (5.8) becomes 
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We note, however, that (4.6) may be written 

a 
- (n;'u;)+h;=O 
ay 

(5.10) 

if a,=t=O, so that 9 = 0. 

Further simplification is possible if initial 
conditions (4.10) are used to evaluate el. Then 
(5.6) becomes 

_ _ _ _ _  
t [ n , ' ( u ~ , + U ; 2 ) + h o w ~ + ( h ~ u + h ; P ) ]  

~ _ _ _ _  
= &[L20-'(uO); +how;" + (h,):]. (5.11) 

This energy equation (5.11) represents an exten- 
sion of a result obtained by Blumen (1967a) 
who investigated the energy partition of motions 
superposed on a basic state of rest. 

Finally, using the result based on (4.14), 
equation (5.11) simplifies to 

- 
~[L?,'u? + h,~?+h;~]=&h,w;2, (5.12) 

which expresses the partition of the initial 
ageostrophic energy among the ageostrophic 
components. It is interesting that, in this model, 
the ageostrophic components do not abstract 
energy from the basic current. However the 
distribution of the potential vorticity in the 
basic state does determine the relative parti- 
tioning of energy among the components. 

6. Solutions 
6.1. Potential worticity equation 

Solutions of the potential vorticity equation 
(4.9) for ageostrophic initial conditions have 
been determined by numerical integration in the 
region - 5.0 < y < 5.0. The basic flow variables 
(2.7) are given by 

A , =  -Q tanh 2y 

uo = - ahO/ay = p secha 2y (6.1) 

and the initial conditions by 

ui = e- t ( v W  

v , = o  (6.2) 

h, = 0, 

where r = r*/(f-l(q*H)') denotes the nondimen- 

sional measure of the initial current width. 
The basic state variables, together with the 
potential vorticity 

no (1  + FAo)-' (1 - Fdu,/dy) (6.3) 

for F =0.5, are displayed in Fig. 1.  The initial 
velocity field, delineated by dots, appears in 
Fig. 2 for r = 0.5 and r = 1.5. 

The first-order geostrophic variables may be 
obtained from (4.9), using (6.1), (6.2) and (6.3). 
The geostrophic velocity, u,, = - ah,,/ay, is dis- 
played in Fig. 2 for various values of a,. 
The case R, = 1 refers to a resting basic state. 
Solutions for this latter case were also deter- 
mined analytically to provide a check on the 
numerical integration. These geostrophic solu- 
tions, for no = 1, have been determined from 
the Green's function for the operator appearing 
on the left side of (4.9) (Goertzell and Tralli, 
1960). They are 

arid 

(6-5) 

where erfc(z) denotes the complementary error 
function (Gautschi, 1964) and ui(y) is given (6.2). 

The geostrophic velocity fields for F =0.5 
and 1.0 in Fig. 2 show some features which do 
not appear in the case no = 1. Most noticeable 
is the southward shift of the current axis and 
the relatively large amplitude of the velocity 
with increasing values of F. The southward 
shift, first discovered by Rossby (1938), does 
not appear in the case no = 1  because the 
absolute momentum following fluid parcels is 
not conserved. The addition of the convective 
term Fwldu,/dy in (2.8) overcomes this restric- 
tion, within the scope of linear theory. Addi- 
tional features of the motion introduced by the 
addition of convective terms has been discussed 
elsewhere (Blumen, 1967 b).  
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Fig. 1. Distribution of the basic-state geostrophic height field h,, zonal velocity u, and potential vorticity a,. a, has been evaluated with the Froude number F = 0.5. Positive y is directed northward. 

I n  order to more clearly show the significance 
of including a basic horizontal shear flow we 
have computed the following quantities, defined 

___-  by 

&g= u;d,n;'/u;n;' (6.6) 

E X  and E G ,  which are presented as functions of 
r in Fig. 3, denote the fractions of the total 
energy u; a;' which reside in geostrophic ki- 
netic energy and in total geostrophic energy. 
The fraction of energy going into the ageostroph- 
ic components, determined from (5.6),  is 

&A = 1 -&g (6.8) 

where eA= [ u ~ n ; ' + h , v ~ + h ~ ] / u ~ C & ' .  (6.9) 

It is noted that the presence of a basic hori- 
zontal shear flow inhibits the partition of energy 
to the ageostrophic components, and that this 
effect becomes more pronounced with larger 
shears, i.e., increasing F. A substantial contri- 
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- _ _ _ -  

bution to geostrophic energy is also evident 
when r > 1 and a,, 91. When r is large this 
contribution must come principally from the 
low wave number part of the initial velocity 
spectrum, k -=< 1, since 

(6.10) 

I n  contradistinction, Blumen (19674 has shown 
that with a basic state of rest (no = 1) little 
energy is partitioned to geostrophic motion 
when k is small. In  the limit, k = 0, all the initial 
energy goes into pure inertia motion, since 
pressure gradients do not develop in response 
to an initial motion which is uniform over the 
whole infinite plane. 

6.2. Uniform initial condition 

We now investigate the limiting case (r = 03 

or k =0)  for the present model, when a basic 
horizontal shear flow exists. From (3.9), we note 
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. .  . .  

Fig. 2. Distribution of the initial (t = 0)  unbalanced current ui and steady-state (t = 00) first-order geo- 
strophic velocities ulp for indicated values of the Froude number F and initial current width r .  0, = 1 cor- 
responds to 8 basic-state at  rest. 

that the time-dependent motion oscillates with 
the  inertial frequency, (I = 1, when av,/ay = 0. 
The time-dependent solutions for this case 
may be determined from (2.8), (2.9) and (2.10), 
which may be expressed as 

a ,  
at 
- ( ~ 1  +hi, + iv ; )  + i(u; +hi, + h i )  = 0, (6.11) 

where the prime denotes ageostrophic motion. 
The solution of (6.11), satisfying ui =constant 
initially, is 

v; = -ut sin t 

u1 +hl,  = u* cos t .  
, J  

(6.12) 

From (2.10), with avUl/ay = 0 ,  and (6.12) we 
.obtain 

u; = ut[l  -Fuo,] cos t 

h: = ui Fu, COB t .  (6.13) 

The geostrophic part of the solution may be 

determined from (2.8), which may be expressed 
as 

} =  0, l-Fuo,+O. (6.14) 
at ay 1 -Fu,, 

Integration of (6.14) yields the geostrophic 
solution 

ulg = FUiUO, 

hlg = -Puiuo, (6.15) 

where uo( kco) = O .  (It may be verified that this 
geostrophic solution (6.15) satisfies (4.9).) The 
geostrophic solutions for P = 1.0 which are 
displayed in Fig. 2, clearly show the influence 
of the low wave-number part of the spectrum. 
This may be seen by comparing these solutions 
with ug ot uoy, where u o ( y )  is shown in Fig. 1. 

Finally, the complete solution, obtained 
from (6.12), (6.13) and (6.15), is 
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0.0 

a. =I  

0.2 

0 0.5 1.0 1.5 
r 

0.8 

F.0.75 cQ:la;y F.0.5 

0 0.5 1.0 1.5 

0.2 

r 
Fig. 3. Fraction of initial energy partitioned to geostrophic kinetic energy eg and total geostrophic energy 
eG as functions of the initial current width r for indicated values of the Froude number F. no - 1 cor- 
responds to a basic-state at rest. 

U, = ~ ~ ( ( 1  - Fu,,) cos t + Fu,,) 

v, = -u,sint  

h, = U! Fu,, (COS t - 1). (6.16) 

This solution (6.16) represents an undamped 
inertia-motion superposed on a steady geo- 
strophic motion. 

The rewon that pressure gradients develop in 
response to a uniform initial motion is related 
to the presence of a basic shear flow. The 
spatial variability of the basic state introduces 
a variable restoring force, per unit mass and 
unit displacement, which acts on fluid motions. 
This force is f ( f  -u,,)H/h:,c’)expressed indimen- 
sional units. If the basic state is at  rest, the 
force f *  is constant and the resulting motion is 
independent of y. When u,, = u,(y), pressure gra- 
dients must develop in order to balance the 
variable restoring force and permit the fluid to 
attain an ultimate steady-state. 

The term eG (6.7) cannot be determined for 
the present case, since the total initial energy is 
infinite. However, from (6.15), we note that the 

1 The presence of this term as a variable restoring 
force is most clearly seen in (3.2), which is the one- 
dimensional Klein-Gordon equation discussed in 
Morse and Feshbach (1953, 3 2.1). 

total geostrophic energy is finite and increases 
like F Z .  When the initial motion is y-dependent, 
so that the initial spectrum is not discrete and 
the total energy is finite, a nonzero contribution 
to E~ comes from the total spectrum, including 
k =O.  

7. Concluding remarks 

The principal conclusion that may be drawn 
from the present investigation is that the pro- 
cesa of energy partition between geostrophic 
and ageostrophic motions is strongly influenced 
by the presence of a horizontal shear flow. This 
effect, which is illustrated in Fig. 3, is most 
noticeable when the shears are large. For 
example, if F =0.5 the horizontal shear is one- 
half the Coriolis parameter in a small region 
near the zonal wind maximum. Horizontal 
shears of this magnitude are not uncommon in 
the vicinity of jet streams (Endlich, 1964). 

Finally, we note that the absolute stability 
of the basic geostrophic current has been estab- 
lished by allowing pressure changes to occur in 
response to fluid displacements. This result sug- 
gests that ‘‘pure’’ centrifugal instability should 
be a rare phenomenon, if it exists a t  all, in the 
atmosphere and oceans. 
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BW-DEICT TEYEHMFI C I'OPB30HTAJIbHbIM CABklI'OM HA I'EOCTPO@MYECHYIO 
A,IJAnTAIJklIo B EAPOTPOIIHOm XB,IJHOCTM 

MCCJleAyeTCR a @ @ e K T  OCHOBHOFO Te' ieHRR C 
~ O p H 3 0 H T a J I b H b I M  CABIlrOM CKOPOCTM H a  I I p O g e C C  
n m e f i H o f i  r e o c T p o @ w i e c K o f i  a A a n T a q n M  B H e -  
o r p a H m e H H o l  6 a p O T p O n H O f i  XURKOCTM. no- 
~ a a a ~ o ,  YTO o c H o B H o e  T e q e H n e  a 6 C O n I 0 T H O  

nonepewbm B O ~ M Y I ~ ~ H M R M  M YTO a H e p r a r r  H e  

H a n p r r m e H m  P e f i H o n b A c a .  BHBOAMTCR M pe- 

y C T O f i Y H B 0  IIO OTHOUleHMlO K OCeCUMMeTPHYHblM 

Y e p I I a e T C f l M 3  OCHOBHOrO TeYeHMR IIOA AefiCTBMeM 

U I a e T C R  YHCJleHHO Y p a B H e H k i e  nOTt?HqMaJlbHOl'O 
B M X P R ,  9 ~ 0 6 ~  OIIpeJI,eJIMTb OTHOCMTeJlbHOe KO- 

JlHYeCTBO H a Y a J l b H O f i  a H e p r M M ,  KOTOpOt? n O A -  

Y e C K Y I 0  M A O C T y I I H y l o  I l O T e H q H a J l b H y l O  a H e p -  
rMI0, K a K  i#YHKqUI0 l l II lPMHbI H a q a J l b H O r O  T e -  
YeHMR. n O K a 3 a H O  T a K X e ,  YTO IIpOTMBOnOJlOm- 

HOBHbIM COCTORHMeM KOTOPOfi RBJlReTCR n O K 0 8 ,  
3 H a Y H T e J I b H a R  Y a C T b  reOCTpO@MqeCKOfi  a H e p r l l H  
HaXOAMTCR B B O J l H a X  C MaJlbIMM H O M e p a M M .  3 ~ 0  
06CTORTeJlbCTBO ~au6onee  BaMeTHO, K O r A a  rpa- 
AMeHT OCHOBHOrO T e Y e H U R  BeJIMK. 

p a 3 n e n ~ e ~ c ~  H a  r e o c T p o @ m e c K y m  m H e m -  

H o c m  npoqeccy a Q a n T a q m  B amoc@epe, oc- 
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