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ABSTRACT

Recently there has been a surge in interest in coupling ensemble-based data assimilation methods with

variational methods (commonly referred to as 4DVar). Here we discuss a number of important differences

between ensemble-based and variational methods that ought to be considered when attempting to fuse these

methods. We note that the Best Linear Unbiased Estimate (BLUE) of the posterior mean over a data

assimilation window can only be delivered by data assimilation schemes that utilise the 4-dimensional (4D)

forecast covariance of a prior distribution of non-linear forecasts across the data assimilation window. An

ensemble Kalman smoother (EnKS) may be viewed as a BLUE approximating data assimilation scheme. In

contrast, we use the dual form of 4DVar to show that the most likely non-linear trajectory corresponding to the

posterior mode across a data assimilation window can only be delivered by data assimilation schemes that

create counterparts of the 4D prior forecast covariance using a tangent linear model. Since 4DVar schemes

have the required structural framework to identify posterior modes, in contrast to the EnKS, they may be

viewed as mode approximating data assimilation schemes. Hence, when aspects of the EnKS and 4DVar data

assimilation schemes are blended together in a hybrid, one would like to be able to understand how such

changes would affect the mode- or mean-finding abilities of the data assimilation schemes. This article helps

build such understanding using a series of simple examples. We argue that this understanding has important

implications to both the interpretation of the hybrid state estimates and to their design.
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1. Introduction

Our main goal in this work is to link the methods of

variational data assimilation to the typical approach taken

in ensemble data assimilation. Ensemble data assimilation

is built upon the statistical framework of Bayesian methods

and, therefore, views the data assimilation problem as

centred around the determination of a probability density

function (PDF) describing the uncertainty in the state.

Whilemany contemporary derivations on variational methods

also derive these methods from a Bayesian framework (e.g.

Bennett, 2002; Tarantola, 2005; Lewis et al., 2006), much

of the early work on variational methods in meteorology

were less clear about its connection to PDFs and Bayesian

methods (e.g. Talagrand and Courtier, 1987; Gauthier,

1992; Courtier et al., 1994). We begin here by reviewing

different approaches to state estimation from a statistical

point of view and then relating them to the problems to be

addressed here.

One approach to state estimation is to try and find the

minimum error variance estimate (or mean of the posterior

distribution) of the state given a prior distribution of

possible true states and new observations. This approach is

concordant with ensemble forecasting because the mean of

the initialised ensemble is generally set equal to the state

estimate. Ensemble Kalman filters (EnKF) and smoothers

(EnKS) both fall into this category. In these algorithms, the

posterior mean is approximated as a linear function of the

new observations and can be expressed in terms of a first

guess (prior mean) plus a correction term that depends on,

among other things, the covariance of a prior ensemble of

non-linear forecasts. This state estimation procedure will be
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referred to as the Best Linear Unbiased Estimate (BLUE)

throughout this manuscript. The terms ‘smoother’ and

‘filter’ (e.g. Jazwinski, 1970; Li and Navon, 2001) distin-

guish a difference between the time the observations are

taken and the time at which the analysis is made. In a filter,

one finds the state estimate at a particular time using

observations that were taken at the analysis time, whereas,

with a smoother, one can also use observations taken at

times distinct from the analysis time. Because the observa-

tions used in a smoother are distributed through time the

forecast error covariance matrix is 4-dimensional (4D) (i.e.

varies in both space and time) and describes the covariance

of the error in variables that are separated through this 4D

space-time. The fully non-linear model is required to create

this forecast error covariance matrix from knowledge of the

posterior distribution at the previous assimilation step.

Another approach to state estimation is to find the mini-

mum of some relevant penalty function. Many variational

data assimilation schemes fall into this category (e.g.

Talagrand and Courtier, 1987; Navon et al., 1992; Klinker

et al., 2000; Mahfouf and Rabier, 2000; Rabier et al., 2000;

Rabier, 2005; Rawlins et al. 2007; Zhang et al., 2014). This

penalty function is connected to the minimum variance

approach as it is (up to an additive constant) the negative

logarithm of the product of the prior and observation

likelihood PDFs and hence, by Bayes’ theorem, the state

that minimises this penalty function is the most likely state,

or mode of the posterior PDF. The minimum of the penalty

function occurs where its gradient is zero, which implies

that it may be found by means of a minimisation method

(e.g. Incremental/Gauss�Newton) that employs an ‘outer

loop’ in which one iteratively computes the gradient of the

penalty function around the latest guess of the mode, then

uses this gradient to make better guesses, and so on.

Variational methods are currently well established at

operational forecasting centres. Their use of an (approx-

imate) tangent linear model (TLM) and its adjoint obviate

the need for the specification of the 4D forecast error co-

variance matrix. However, variational methods do require

the specification of an initial time 3D forecast error co-

variance matrix. This initial time covariance matrix should

change from one data assimilation cycle to the next due to

changes in meteorological conditions and also to changes in

the observational network. Ensemble methods are con-

structed such that they can produce an estimate of this time

varying covariance matrix. However, historically, varia-

tional methods employed a fixed ‘climatological’ model of

this covariance matrix. Recent work has attempted to make

use of the ensemble’s estimate of this initial time covariance

matrix in a hybrid formulation. This hybrid variational frame-

work employs an initial time error covariance matrix that is

a weighted average of a climatological error covariance

matrix and an ensemble covariance matrix (Buehner et al.,

2009, 2013; Clayton et al., 2013; Kuhl et al., 2013; Lorenc

et al., 2015; Wang and Lei, 2014; Kleist and Ide, 2015).

If either the prior distribution or observation likelihood

is non-Gaussian, the most likely state estimate (the poster-

ior mode) will differ from the minimum error variance state

estimate (the posterior mean). Without adjustments, com-

parison of the textbook descriptions of variational methods

with outer loops (e.g. Bennet, 2002; Tarantola, 2005; Lewis

et al, 2006) with actual operational implementations of

variational schemes with outer loops (e.g. Rabier et al.,

2000; Rosmond and Xu, 2006) make it clear that these

operational implementations would find the mode of the

posterior distribution if forecast and observation error co-

variance matrices were accurately specified and an accurate

TLM were available. Lorenc and others (e.g. Lorenc 1986;

Lorenc, 1997, 2003a, 2003b; Courtier et al., 1994) have

argued that the variational framework should be adjusted

so that it achieves a state that is more like the posterior

mean than the mode. Lorenc and Payne (2007) argue that

the most likely state is less useful than the minimum error

variance estimate when the time scale of predictability is

shorter than the length of the data assimilation window.

Also, for the sake of statistical consistency, it is more natural

to centre ensembles of perturbations about the mean than it

is to centre them about the mode. On the other hand, the

time evolution of the ensemble mean state is not governed

by the equations that are in our numerical models nor is the

mean governed by the laws that govern the evolution of a

single realisation of nature. The time evolution of the mode

is approximated by our numerical weather prediction

(NWP) models and hence, if ones primary interest is to

assess the realism of NWP trajectories, one could argue

that the mode is more useful than the mean. This manu-

script does not attempt to take part in this discussion as to

whether the posterior mode or posterior mean is best for

state estimation. Rather, we will carefully discuss the

relationships between mean-finding and mode-finding

methods and how ensembles may be used in either method.

We will carefully compare posterior BLUE-finding

algorithms to mode-finding algorithms. We recall that the

standard mode-finding algorithms, referred to as the

Gauss�Newton and incremental method (Courtier et al.,

1994), can be written in a form very similar to the form of

the equation we described earlier as a ‘smoother’ to find the

BLUE estimate across an observation window in time.

This formulation of the mode-finding problem has been

referred to in the past as the ‘Dual’ form (Courtier, 1997;

El Akkraoui et al., 2008). One purpose of this article is to

point out that despite the superficial similarity between

the posterior BLUE-finding algorithms and mode-finding

algorithms that these two algorithms are fundamentally

different whenever non-linearity is present in the system.

We will argue that this has important ramifications to the
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recent work to fuse ensemble and variational 4D data

assimilation methods by combining their covariance models.

Furthermore, the tests required to check the accuracy of a

data assimilation method to find the BLUE are substan-

tially different from the tests required to check a method to

find the mode. We believe that a clear understanding of

these differences has intrinsic value and may ultimately

improve operational data assimilation systems.

Furthermore, it is well known (Li and Navon, 2001;

Lorenc, 2003b; Fairbairn et al., 2014) that when errors are

small enough to be governed by linear dynamics and the

prior and observation likelihood are Gaussian, then there is

no need for an outer loop in 4DVar, and in this case the

Kalman smoother and 4DVar have the same algebraic

solution. We focus on the differences between 4DVar with

an outer loop, the Kalman smoother and the ensemble

Kalman smoother in the presence of non-linearity (either

in the model or the observation operator). When a 4DVar

algorithm is used in the presence of non-linearity but without

application of the outer loop then the 4DVar algorithm can

be thought of as a BLUE-estimating extended Kalman

smoother because it is propagating the covariance matrix

across the window using a linearised version of the forecast

model (Courtier, 1997; Lorenc, 2003a). We emphasise

that the extended Kalman smoother is not a mode-finding

algorithm and therefore one cannot consider the 4DVar

algorithm as a mode-finding algorithm when its goal is the

same as the BLUE-estimating extended Kalman smoother.

Therefore, throughout this article we will consider both

EnKFs and 4DVar algorithms with no outer loop as BLUE-

estimating methods and will compare and contrast them

with mode-estimating methods.

The manuscript is organised as follows. In Section 2,

we illustrate the basic model setup used throughout the

text. In Section 3, we write down the equations for the mini-

mum error variance estimate in the form of a ‘smoother’.

In Section 4, we develop the strong-constraint form of the

4DVar problem and derive the incremental method for

finding the posterior mode. In Section 5, we delve deeper

into the properties of the TLM necessary to find the mode

using an incremental method and compare this to a line-

arised model referred to as a statistical linear model. In

Section 6, we compare and contrast methods for testing

the quality of mode-finding and BLUE-finding methods.

In Section 7, we close the manuscript with a brief summary

and suggestions for the future development of data assi-

milation algorithms that attempt to blend aspects of en-

semble and 4DVar methods.

2. Model

The analysis presented below will make use of a scalar

physical system in order to illustrate the basic results in

their simplest forms. Our emphasis is on the effects of non-

linearity, not the difficulties that arise from a large state

dimension, and this simple scalar example allows us to

illustrate our main points most clearly.

We assume that the state of the physical system at the

time t�0 is uncertain and this uncertainty is described by a

prior distribution that is Gaussian with mean x
f
0 ¼ 1:5 and

variance P00 ¼ x0 � x
f
0

� �2
��
¼ 1. The reason for choos-

ing this particular value for x
f
0 will be explained in detail

in Section 5. We will further assume that we have an

observation of the state at t�1 with a Gaussian observa-

tion likelihood with error variance, R�1 and take for our

example observation y1�2.5.

The ordinary differential equation (ODE) governing the

evolution of the variable of interest is

dxt

dt
¼ f ðxtÞ (1)

where f(x) is some potentially non-linear function defining

the tendencies of the model and the subscript on the state

variable denotes its relevant time. We may integrate eq. (1)

in time from t�0 to the time of the next observation at

t�1 to define a non-linear mapping from t�0 to t�1:

x1 ¼ x0 þ
Z 1

0

f ðxtÞdt ¼M10ðx0Þ (2)

where the subscript on M10 denotes that this mapping

propagates a state at t�0 to t�1. The mapping in eq. (2)

is different for different lengths of time between observa-

tions and therefore the degree of non-linearity in eq. (2)

changes with the time between observations. While the

mapping [eq. (2)] changes as a function of the time to the

next observation the underlying model [eq. (1)] is always

the same.

For concreteness, we define the model in eq. (2) as

x1 ¼M10ðx0Þ ¼ a0tanhðx0Þ (3)

where a0�5. This example model equation in eq. (3) was

chosen carefully to have one real root for each final state,

x1, i.e. it was chosen to have a known inverse. If this is not

the case, and eq. (3) has multiple real roots of x0 for some

particular value of the final time state, x1, then the resulting

posterior at t�0 will be multi-modal if an observation at

t�1 is near to this particular final time state. Additionally,

the model [eq. (3)] was carefully chosen such that the

dominant action for small values of the state, x0, is growth

and for larger values the dominant action is saturation. We

will see later that this can result in excessive growth in the

TLM in certain situations.
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3. Ensemble-based methods for the BLUE

Our goal in this section is to illustrate the basic properties

of the forecast error covariance matrix required to find

the minimum error variance estimate of a linear estimator,

which is the posterior mean in the Gaussian case. In this

section, we wish to update the state at t�0 and t�1 based

on the observation at t�1. In the next section, we will

develop a mode-finding algorithm that will only update the

state at t�0 given the observation at t�1. Because we are

updating the state at a time distinct from the observation

time the standard nomenclature for this state estimation

technique is to refer to this method as a ‘smoother’.

The prior covariance matrix obtained by propagating the

prior distribution forward in time under the dynamics of

the non-linear model would be:

P̂ ¼
Z 1

�1

Z 1

�1

x0��xf

0

x1��xf

1

h i
x0 � �xf

0 x1 � �xf
1

h i
pðx0; x1Þdx0dx1

¼
P00 P01

P10 P11

� �
¼

1 1:56

1:56 3:49

� �
;

(4)

where P11 ¼ x1 � x
f
1

� �2
� �

, P01�P10�
�

x0 � x
f
0

� �

x1 � x
f
1

� ��
, angle brackets are used to denote an expecta-

tion has been taken, and

pðx0; x1Þ ¼ pðx0Þpðx1jx0Þ (5)

is the joint prior density with p(x0) being the density des-

cribing the uncertainty at t�0 and p(x1jx0) is the transition
density describing how the model propagates the state from

t�0 to t�1.

The integral in eq. (4) is computationally infeasible to

evaluate in high-dimensional problems; in practice this

integral is approximated by employing an ensemble of non-

linear model runs beginning from random draws from p(x0)

and pushed through eq. (2). In eq. (4), an ensemble of 107

members was run to estimate P̂ using sample statistics.

The covariance matrix [eq. (4)] delivers the minimum

error variance estimate of a linear estimator (Jazwinski,

1970) when used in the following formula:

�xa
0

�xa
1

h i
¼ �xf

0

�xf

1

h i
þP̂HT HP̂HT þ R

� 	�1
y1 �H

�xf

0

�xf

1

h i� �
; (6)

where H�[0 1], y1 is the observation at t�1, R is the

observation error covariance matrix and a superscript of a

denotes the ‘analysis’ and a superscript of f denotes the

prior mean. The expected squared error from estimating

the state as eq. (6) is given by the similarly well-known

formula:

P̂
a ¼ I�P̂HT HP̂HT þ R

� 	�1
H

� �
P̂: (7)

In the next section, it will prove of interest to note that

the first row of eq. (6) may be written as

�xa
0 ¼ �xf

0 þ P01

1

P11 þ R
y1 � �xf

1

� �
; (8)

and the initial time posterior variance around this mini-

mum error variance estimate of a linear estimator is

Pa
00 ¼ P00 �

P01

P11 þ R
P10 ¼ 0:459; (9)

which with eq. (4) and R�1 implies that on average the

error variance at time 0 will be reduced from 1 to 0.459 by

assimilating an observation at t�1.

The point here is that the correct gain matrix in eq. (8) to

find the minimum error variance of a linear estimator is

constructed by propagating the prior distribution under the

dynamics of the non-linear model across the assimilation

window. We shall hereafter refer to the estimate [eqs. (6)

and (8)] as the Best Linear Unbiased Estimate (BLUE). We

emphasise here that the ‘L’ in BLUE refers to the fact that

the estimate [eq. (8)] is a linear function of the observation,

and not to using a linearised model or linearised observa-

tion operator.

4. A variational method for the posterior mode

Our goal in this section is to illustrate the properties of the

standard solution technique to find the maximum like-

lihood (mode) estimate and then compare this to the

BLUE.

4.1. The incremental approach

Because the prior and the likelihood are Gaussian the well-

known cost function, whose minimum is the mode of the

posterior distribution at t�0, is:

Jðx0Þ ¼
1

2

ðy1 � x1ðx0ÞÞ
2

R
þ 1

2

ðx0 � �xf
0Þ

2

P00

; (10)

where R�1 is the observation error variance and we have

made explicit that x1 is a function of x0. Equation (10) can

be found in, for example, Rabier (2005). The cost function

in eq. (10) for our example problem is plotted in Fig. 1.

Typically, this cost function is re-written in ‘incre-

mental’ form through the definition of the perturbation,

dxj ¼ x0 � xj
g, where xj

g is referred to as the guess for the jth

outer loop and whose form will become apparent in a

moment. Using this perturbation, and linearising, allows
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the cost function [eq. (10)] to be written as an exactly

quadratic problem of the form:

JðdxjÞ ¼ 1

2

y1 � x1 xj
g

� �
�M10dxj

� �2

R

þ 1

2

xj
g � �xf

0 þ dxj
� �2

P00

:

(11)

This cost function is then solved as a series of exactly

quadratic problems of the form eq. (11) for fixed xj
g. Note

that to obtain eq. (11) from eq. (10) we made an appro-

ximation in the observation weighting term. This approx-

imation begins with a Taylor-series of the form

x1ðxj
g þ dxjÞ � x1 xj

g

� �
þM10dxj þ 1

2

dM10

dx0

ðdxjÞ2 þ . . . ;

(12)

where

M10 ¼
dx1

dx0

(13)

is the TLM. To obtain eq. (11) from eq. (10), we use eq.

(12) but neglect terms in the series that are quadratic and

larger. In order for the quadratic term to be negligible, the

following condition must be satisfied:

jM10dxj j‰ 1

2

dM10

dx0

ðdxjÞ2












 (14)

This condition implies that either or both:

1

M10














dM10

dx0













…1 (15)

dxj


 

…1 (16)

Both conditions are identically the condition for a dynami-

cal system whose evolution is nearly linear, where eq. (12)

requires that the true model for the perturbations [eq. (3)]

is at most weakly non-linear and eq. (16) requires that

the perturbation is small. The question of whether these

assumptions are ever satisfied in numerical weather predic-

tion is a difficult one. If eq. (15) is satisfied, this implies that

the TLM is largely independent of the state it is linearised

around; this apparent lack of sensitivity to the state the

TLM is linearised around is not seen in practice. This would

seem to imply that the satisfaction of condition eq. (14)

hinges on the smallness of the perturbation [eq. (16)].

Similarly, the perturbation, dxj, approaches zero when the

sequence of quadratic problems in eq. (11) convergences to

the mode.

If we take a derivative of eq. (11), set the result to zero,

and solve we find:

dxj ¼ dx
j
f þ PInc

00 M10

1

R
y1 � x1ðxj

gÞ �M10dx
j
f

� �
(17)

where dx
j
f ¼ �xf

0 � xj
g and

1

PInc
00

¼M10

1

R
M10 þ

1

P00

: (18)

If we re-write eq. (17) by removing the various perturbation

quantities, we find:

x
jþ1
0 ¼ �xf

0 þ PInc
00 M10

1

R
yl � x1 x

j
0

� �
þM10 x

j
0 � �xf

0

h i� �
(19)

Equation (19) is identical to eq. (9.49) of Jazwinski (1970).

Equation (19) is also identical to the solution procedure

obtained from the Gauss�Newton method (see Appendix A),

which implies that the solution to incremental 4D-Var is

identical to the solution obtained through the Gauss�Newton

method. Hence, if we desire for the incremental method to

converge towards the minimum of the cost function we

need eqs. (15) and (16) to be satisfied just as the Gauss�
Newton method needs to neglect a specific term in the

Hessian through the identical requirement that eqs. (15)

and (16) be satisfied. We point out that if one replaces the

exact TLM with an approximation in the Gauss�Newton

method or in the incremental method the end result is the

same; they converge to the same state, which is not the

minimum of eq. (10).

J(
x 0

)

0

1

2

3

4

5

0 0.25 0.5 0.75 1 1.25 1.5

x0

Fig. 1. The cost function and important parameters. The blue

curve is the cost function of eq. (4). vertical black line denotes the

solution at the minimum of the cost function. Vertical cyan line

denotes the true posterior mean. Vertical green line denotes the

BLUE from the Kalman smoother in eq. (8).
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Finally, if the incremental method is stopped after the

first iteration then eq. (19) simply reduces to the extended

Kalman Smoother (EKS), viz.

x2
0 ¼ �xf

0 þ PInc
00 M10

1

R
y1 � x1 �xf

0

� �� �
; (20)

where we emphasise that the EKS differs from the BLUE in

eq. (8) because the variances are propagated by the TLM

rather than calculated from an ensemble of non-linear

model runs.

4.2. Prior and posterior variances

The quantity in eq. (17), that we label as PInc
00 , is only equal

to the posterior error variance when the model governing

the dynamics is linear. When the dynamics are non-linear it

is not equal to the posterior error variance. As an example,

if we evaluate eq. (18) at the mode identified in Fig. 1 we

find a ‘posterior error variance’ of 0.0593, which we com-

pare to the posterior error variance of the BLUE, which is

0.459, and is obtained from eq. (9). The posterior error

variance of the true posterior mean at t�0 is 0.240 and the

variance about the mode must be larger than this because

the variance about the posterior mean is the minimum

variance estimate. Therefore this quantity in eq. (18) that

is often referred to as a ‘posterior error variance’ is not

actually a useful approximation to the posterior variance

because of the non-linearity in the model.

As we will show below even though PInc
00 is not an

accurate estimate of the error variance of the posterior it is

precisely the correct quantity required for a mode-finding

method to converge to the mode. Similarly, we show below

that this has important ramifications to the fusing of

ensemble and variational methods because the ensemble

method must be able to deliver eq. (18), and not an accurate

estimate of the posterior variance, if the algorithm is inten-

ded to converge to the posterior mode. Please see Appendix

B for more discussion as to how the Hessian relates to the

error variance about the mode. Additional discussion of the

relationship between the implied ‘variances’ in 4DVar and

the true variances is given in Section 5.

Equation (19) gives the appearance of the formula for the

BLUE [eq. (8)], but with a modified innovation. We believe

that this has helped spur interest in the desire to merge

ensemble Kalman filtering methods with those of 4DVar.

This however immediately leads to the following question: is

the ‘gain’ required in eq. (19) to obtain the mode the same

object that is required to find the BLUE using eq. (8)? If not,

then the merging of ensemble and 4DVar methods must be

done very carefully if one wants the mode from a hybridised

version of 4DVar that makes use of an ensemble covariance

matrix. We answer this question next.

The implied ‘Kalman gain’ for eq. (19) is

Gmode ¼ PInc
00 M10

1

R
¼ P00M10

1

M10P00M10 þ R
: (21)

We may compare this gain to the gain in eq. (8)

Gmean ¼ P01

1

P11 þ R
: (22)

These two gains will be the same if it is true that

P00M10�P01 and M01P00M10�P11, which implies that

we assume that eq. (4) is equal to

P̂
TLM ¼ P00 P00M10

M10P00 M10P00M10

� �
¼ 1 3:98

3:98 15:9

� �
; (23)

where we have evaluated this matrix for our example

problem and linearised the TLM around the mode. This

apparent desire to swap the TLM’s propagation of the

initial time covariance matrix for the ensemble’s propaga-

tion of this matrix is motivated by the urge to develop

algorithms that can do what TLM’s do without the typical

expense in development and maintenance efforts of the

TLM. This swapping of the TLM’s estimate of the 4D

covariance matrix for the ensemble’s version has recently

been referred to as ‘4DEnVar’ (Lorenc et al., 2015).

The mode-finding gain [eq. (21)] is a non-linear function

of the reference state because the TLM, M10, is a function

of the reference state that it was linearised around. In con-

trast, the gain in eq. (22) is a constant. Clearly, they cannot

be the same. Let’s create a specific example to illustrate the

difference between eqs. (21) and (22). The gain in eq. (21)

is most sensibly evaluated at convergence, which means

evaluated at the mode. This implies that the mode-finding

gain [eq. (21)] depends on the observation (because the

mode depends on the observation) while the BLUE-finding

gain [eq. (22)] is strictly independent of the observation.

We iterate eq. (19) to obtain the mode ðxmin
0 ¼ 0:62Þ such

that Gmode�0.236 and Gmode�0.347. Hence, we have now

shown that the correct gain matrix for the BLUE is not the

one required to find the maximal likelihood estimate using

an incremental method. This immediately implies that

swapping the covariance matrix in a 4D-Var scheme with

an outer loop for that of an ensemble-derived covariance

matrix will no longer find the mode. Note however that

replacing the covariance matrix in a 4D-Var scheme without

an outer loop for that of an ensemble-derived covariance

matrix may lead to a better estimate of the BLUE.

5. Tangent and statistical linear models

The use of ensemble methods in 4DVar algorithms has led

to the desire to use hybrid ensemble/static covariance

matrices in the algorithm. One idea for a ‘hybrid’ 4DVar
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algorithm is to make use of the ensemble covariances

through time rather than to use a TLM. There are at least

two ways that have been discussed in the literature as to

how one might go about this. First, one can compare the

prior covariance matrix from the TLM [eq. (23)] to the

prior covariance matrix in eq. (4) and conclude that one

could simply swap the prior covariance matrix from the

TLM [eq. (23)] for the prior covariance matrix in eq. (4).

We have already shown in Section 4 that this will not

deliver the mode when used in the incremental method.

It will however deliver the BLUE when an outer loop is

not invoked, and this practice is useful for BLUE-finding

algorithms. Second, one could keep the prior covariance

matrix from the TLM [eq. (23)] as it is, but replace the

TLM with a statistical approximation based on the co-

variances from the prior ensemble. This section will discuss

the implications of this second approximation.

5.1. Tangent linear model

We begin with the TLM. The TLM, M10, used to find the

mode is defined in eq. (13) and is to be understood in the sense

of a Taylor-series about a model state, xs
1 ¼M10ðxs

0Þ, viz.

x1 ¼M10ðxs
0Þ þM10ðxs

0Þ x0 � xs
0½ �

þ dM10

dx0

xs
0




 x0 � xs
0ð Þ

2
þ . . .

(24)

Clearly, the TLM [M10ðxs
0Þ] in eq. (24) provides an excellent

approximation to the state x1 when the conditions in eqs.

(15) and (16) are satisfied. This is the standard ‘linear’

result in which the size of the initial perturbation defines

the quality of the TLM’s propagation of a potentially non-

linear perturbation evolution. This property that a TLM

does not perfectly propagate a non-linear perturbation

has been discussed numerous times in the meteorological

literature (e.g. Errico et al., 1993; Errico and Raeder, 1999;

Lorenc and Payne, 2007). Nevertheless, the TLM, whether

it propagates a non-linear perturbation correctly or not,

is still the object that delivers the correct gradient for the

descent required to minimise eq. (10). If one is not in-

terested in minimising eq. (10), but is in fact interested in

obtaining a solution like the BLUE, then the use of a linear

model that more accurately propagates a non-linear per-

turbation may be advantageous. This type of linear model

is discussed in the next section.

The TLM has the computationally useful property that

successive operations of the TLM can be thought of as

propagating a perturbation through time (Le Dimet and

Talagrand, 1986; Courtier, 1997). We can see this by

defining the additional non-linear mapping that propagates

from t�1 to t�2, viz.

xs
2 ¼M21ðxs

1Þ (25)

Note that the TLM from t�0 to t�2 can therefore be

written as

M20ðxs
0Þ ¼

dx2

dx0

¼ dx2

dx1

dx1

dx0

¼M21ðxs
1ÞM10ðxs

0Þ (26)

which explicitly makes use of the ‘linearity’ of the chain rule.

One of the things we will show in the next section is that a

statistical linear model does not have this property because

it is not actually a gradient of the model and therefore the

chain rule does not give it the property [eq. (26)].

5.2. Statistical linear models

One of the main advantages obtained from using a linear

model that more accurately predicts the non-linear evolu-

tion of a perturbation than a TLM is that its variance

estimates are more like that of an ensemble of non-linear

model runs. This linear model that more accurately pro-

pagates variances than a TLM will be referred to here as a

statistical linear model (SLM).

The SLM is the best unbiased linear model (in a least

square sense) between t�0 and t�1. Hence, we make the

assumption that the mean of the transition density,

p(x1jx0), is a linear function of x0, viz.

xe
1 ¼ �x1 þMs

10 x0 � �x0ð Þ; (27)

and subsequently search for the MS
10 that minimises the

variance, viz.

Pe
1 ¼

Z 1

�1

Z 1

�1
x1 � xe

1ð Þ2p x1jx0ð Þp x0ð Þdx0dx1 (28)

This is the standard procedure to determine the regression

model in eq. (27) that minimises the distance between x1(x0)

and xe
1ðx0Þ in the sense of mean-square. The solution is

Ms
10 ¼

P10

P00

; (29)

where

Pe
1 ¼ P11 �Ms

10P00Ms
10 (30)

Equation (29) is consistent with Lorenc and Payne (2007)

and Payne (2013); our eq. (29) has been generalised though

by defining eq. (28) with respect to the joint prior density

while Lorenc and Payne (2007) and Payne (2013) defined

their SLM with respect to a centred version of the prior,

i.e. pðdx0Þ ¼ p x0 � �x0ð Þ. Their assumption is well justified

for strong constraint, but for weak-constraint, when the

transition density, p(x1jx0), has non-zero variance and a

possibly complex structure, the SLM must be defined

against the joint prior density as is done in eq. (28).

Equation (29) shows that Pe
1 � P11, which implies that xe

1

is typically a better estimate of the state x1 obtained by
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initialising the non-linear model with the specific initial

time value x0 than the prior mean �x1, which is not con-

ditioned on any particular state. Note that while the TLM

is linearised around some specific state, the SLM is more

properly thought of as calculated for some particular dis-

tribution with variance, P00. This implies that the SLM

must be recalculated for every prior distribution much like

the TLM must be linearised around different reference

states.

The SLM in eq. (29) is related to the TLM [eq. (13)]

in the following way. Because we will need to apply an

expectation operator to eq. (24) we technically must assume

that the support for p(x0) is entirely contained within the

radius of convergence for the Taylor-series in eq. (24). With

this assumption, we may apply an expectation operator to

eq. (24) to obtain an equation for the mean

�xf
1 ¼M10 xs

0ð Þ þM10 xs
0ð Þ �xf

0 � xs
0

h i
þ dM10

dx0

xs
0






�
P00 þ �xf

0 � xs
0

� �2

2
þ . . . (31)

Here we see that the mean of the marginal prior does not

follow a trajectory of the non-linear model. This is shown

explicitly by eq. (31) whose difference from a trajectory is in

fact forced by the variance of the perturbations, much like

the forcing of the mean flow from eddies in wave-mean

flow interaction theory (e.g. Pedlosky, 1987).

We may subtract eq. (31) from eq. (24) to obtain

e1 ¼M10 xs
0ð Þ x0 � �xf

0

h i
þ dM10

dx0

xs
0






�
x0 � xs

0ð Þ2�p00 � �xf
0 � xs

0

� �

2
þ . . . (32)

where e1 ¼ x1 � �xf
1. We might multiply eq. (32) by

e0 ¼ x0 � �xf
0, apply the expectation operator, and divide

by P00 to obtain

Ms
10 ¼M10 xs

0ð Þ þ
dM10

dx0

xs
0




 T00

2P00

þ d2M10

dx2
0

xs
0




 F00

6P00

þ . . . (33)

where T00 is the third moment of the prior and F00 is the

fourth moment of the prior. Equation (33) reveals the

conditions when this SLM differs from a TLM. Equation

(33) shows that the SLM is the explicit TLM plus in-

formation from higher order moments of the prior. These

terms reveal that asymmetry and long tails of p(x0) are

required for the explicit TLM and the SLM to differ

significantly. Another way the SLM may differ from the

explicit TLM is when the model is strongly non-linear such

that the derivatives of the TLM with respect to the state are

large. Conversely, eq. (33) shows that an SLM can be made

into a TLM if the SLM is derived in eq. (28) by using

a ‘prior’ distribution that is symmetric (such that odd

moments vanish) and has infinitesimal variance (such that

the even moments are infinitesimal). An example of an

SLM designed to mimic the TLM is presented in an

idealised model setting in Sakov et al. (2012) and Bocquet

and Sakov (2014). The use of perturbations with infinite-

simal variance has been suggested to be quite difficult in

real-world numerical weather prediction where the non-

linear model describes important physical processes using

‘if-switches’ (Lorenc and Payne 2007).

We showed above that the TLM has the computationally

useful property that successive operations of the TLM can

be thought of as propagating a perturbation through time.

Here, we test this property for SLMs. First, note that we

may reproduce the expansion in eq. (33) but for the SLM

that propagates from t�0 to t�2 as

Ms
10 ¼M20 xs

0ð Þ þ
dM20

dx0

xs
0




 T00

2P00

þ d2M20

dx2
0

xs
0




 F00

6P00

þ . . . (34)

If it were true that the SLM had the property described by

eq. (26), then eq. (34) would be equal to

Ms
21Ms

10 ¼M21 xs
1ð ÞM10 xs

0ð Þ þM10 xs
0ð Þ

dM21

dx0

xs
1




 T11

2P11

þM21 xS
1

� � dM10

dx0

xs
0




 T00

2P00

þ . . . (35)

Subtracting eq. (35) from eq. (34) reveals at leading order

the following term:

Ms
20 �Ms

21Ms
10 ¼

1

2

dM21

dx0

xs
1




 M10 xs
0ð Þ

� M10 xs
0ð Þ

T00

P00

� T11

P11

þ . . .

" # (36)

Because one cannot accurately propagate the third moment

using the TLM the difference in brackets does not vanish.

Similarly, the higher order terms in the expansion can each

be shown to suffer the same issue and therefore eq. (36)

does not vanish.

This result has important ramifications to the suggestion

to replace the TLM and adjoint in 4D-Var with localised

ensemble-based SLMs. Specifically, the result [eq. (36)]

shows that using such SLMs in a chain rule [eqs. (12) and

(13)] will not result in the SLM over many time steps.

Because this property is computationally important to the

timely solution of the 4DVar problem the Perturbation

Forecast (PF) model approach has been suggested (e.g.

Lorenc, 1997; Lorenc and Payne, 2007). In the PF model

approach, the non-linear governing equations are line-

arised, but then tuned for finite-amplitude perturbations.

8 D. HODYSS ET AL.



In this case, if one wanted to best approximate a SLM one

would need to tune this PF model to minimise

SPF ¼
Xn

i¼1

Yn

i¼1

MPF
ðiÞði�1Þ

 !
P00 � Pi0













 (37)

where n is the number of discrete times defining the

data assimilation time window of interest; the covariance

matrices pertain to the prior density and MPF
ðiÞði�1Þ is a PF

model that is applied in the sense of eq. (26). Note that this

differs from the way to tune a SLM across the same time

window:

SS ¼
Xn

i¼1

Ms
i0P00 � Pi0



 

 (38)

where the MS
i0 are separate matrices each tuned to best

deliver the covariance between time i and 0 of the prior.

For both schemes, if one were to change the length of the

time window or the amplitude of the prior variances one

would need to retune the PF model. Nevertheless, this PF

model approach makes the explicit assumption that the

property [eq. (26)] holds and therefore can never precisely

equal the performance of an SLM because SLM’s do not

have this property.

An obvious third approach is to simply localise 4D

ensemble covariances (Bishop and Hodyss, 2011; Lorenc

et al., 2015). This approach entirely circumvents the need

for a TLM and adjoint and arguably is the most promising

means of using a 4D-Var framework to obtain an appro-

ximation to the BLUE. As noted in Bishop and Hodyss

(2011), some form of adaptive localisation may signifi-

cantly enhance the accuracy of this approach.

5.3. Numerical example

We provide an example of these differences between the

TLM and SLM using our example problem of Section 2.

We linearise the TLM around a variety of reference states

and plot the value of the TLM (our TLM is a scalar) in

Fig. 2a. We note growing solutions by a value of our TLM

that is greater than 1 and decaying solutions by a value that

is less than 1. Hence we can see the effects of non-linear

saturation in our TLM by noting whether it leads to grow-

ing or decaying perturbations. In Fig. 2a, we centre our

prior on the same �xf
0 values that we linearised the explicit

TLM around, integrate an ensemble forward, and build a

SLM to compare with the TLM. In Fig. 2a, we see that the

TLM grows perturbations faster than the SLM when

linearised around a state that is less than about 1. However,

for states greater than 1 the TLM grows perturbations

more slowly than the SLM. This difference in growth rates

between the TLM and SLM may loosely be explained by

thinking of the growth rate of the SLM as approximately

10
1

10
0

10
–1

10
–2

–10

–5

0

5

0
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10

15

20

25

0 1 2 3

(a)

(b)

(c)

x0

Fig. 2. Properties of TLMs and SLMs. (a) we show the value of

the TLM (SLM) in blue (red) as a function of different reference

states. Red dashed line is the estimate of the SLM from eq. (27).

Blue line denotes the value of 1 below which the TLM decays

perturbations. In (b) is the TLM in (blue) and its first (red) and

second (green) derivative. In (c), we show the t�1 true variance

(green) and the estimates from a TLM (blue) and (red) SLM.
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an average of the growth rate of the TLM using a kernel

smoother the size of the prior. Fig. 2a also shows why we

chose �xf
0 ¼ 1:5 for our example problem as this value has

the interesting property that the SLM is unstable but the

TLM is stable.

Also shown in Fig. 2a is the sum of the first three terms

in eq. (33). The prediction of the SLM by eq. (33) is quali-

tative in nature because of the truncation of the expansion.

Nevertheless, one can see that this equation predicts the

correct behaviour in so far as it explains that the SLM

should have less growth than the TLM for states less than

1 and more growth for states greater than 1. Note that for

our example problem T00�0 and therefore the structure in

eq. (33) is determined entirely from the third term on the

right-hand side. In figure 2b we plot the associated

structure of the TLM and its first and second derivatives

as required by eq. (33). Here we can see that the change in

sign of d2M10=dx2
0 explains the change in behaviour of the

SLM from predicting less growth as compared to the TLM

for states less than 1 and more growth for states greater

than 1.

Lastly, we compare the estimates of the variance by the

TLM and the SLM. In Fig. 2c, we show the t�1 variance

obtained by centring a very large ensemble (107 members)

at different values of the state, integrating this forward to

t�1, and subsequently calculating the sample variance.

We take this as the true variance at t�1. In Fig. 2c, we

evaluate the t�1 estimate of the variance by the TLM by

evaluating the quantityM10P00M10 for different values of xs
0.

We also plot in Fig. 2c the estimate of the variance by the

SLM, i.e. MS
10P00MS

10. The point of this figure is that the

SLM produces a better estimate of the true final time

variance than the explicit TLM. Nevertheless, this does not

change the fact that the quantity obtained from the TLM

is the exact quantity required by an incremental/Gauss�
Newton method to find the mode. Further evidence that

this is so is found in Fig. 3. In Fig. 3, we show where the

incremental/Gauss�Newton method converges if the TLM

is replaced by the SLM and iterated to convergence.

The SLM leads to convergence, but to neither the poster-

ior mode nor mean. In addition, we also show in Fig. 3

where the first step of the incremental method lands using

the TLM or SLM. Note that the first step for the SLM

happens to land nearer to the true posterior mean than the

BLUE. Other choices for the value of the observation find

that the first iteration does not always land near to the true

posterior mean (not shown).

Therefore, the SLM generally delivers a state estimate

from the incremental method nearer to the BLUE than the

TLM. By contrast, however the first step of the incremental

method using the TLM does not find a reasonable ap-

proximation to the BLUE, because the estimate of the final

time variance by the TLM is not accurate (recall Fig. 2c).

Lastly, we replace the SLM derived using the true prior

with an SLM that is derived using a prior whose variance is

reduced by a factor, o�0.1, in the incremental method of

Section 4.A to find the mode. Figure 3 shows that this

method does in fact converge to the mode given that the

factor, o, is small enough. Larger values of o were found to

provide a poor convergence to the mode (not shown).

Deriving an SLM using a prior with a reduced variance can

be considered an example of the method in Sakov et al.

(2012) and Bocquet and Sakov (2014).

6. On the ‘Strong-Constraint’ TLM test

Our goal in this section is to compare the strong-constraint

TLM test for TLMs and SLMs as applied to prior per-

turbations and to analysis corrections. We wish to show

that standard tests for the TLM and SLM are well-defined

for prior perturbations, but it is less clear what they mean

for analysis perturbations. This is important because it is

not uncommon for articles on strong-constraint 4D-Var

and ensemble Kalman smoother data assimilation to

attempt to test the analyses output across a data assimila-

tion window. Often the test is made to pertain to a single

observation correction or analysis increments (e.g. Tremolet,

2004; Lorenc et al., 2015). Our goal here is to show that the

analysis states that are output at different times across an

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Iteration
S

ta
te

Fig. 3. Convergence curves. The result of outer loop iterations

in the incremental method using a TLM (blue), SLM derived using

the true prior (red), and SLM derived using a reduced prior

variance (red dashed). The horizontal black line is the posterior

mode; horizontal cyan line is posterior mean; and horizontal green

line is the state estimate obtained from the BLUE of Section 3.

10 D. HODYSS ET AL.



assimilation window, whether the method is strong-constraint

4D-Var or a method attempting to calculate the BLUE,

do not follow a trajectory of the non-linear model, even

though they are referred to as ‘strong-constraint’. We will

begin with the mode-finding discussion followed by the

BLUE-finding discussion.

6.1. TLM tests using the prior

A standard measure of the linearity of a particular physical

system is to determine the relative error (e.g. Tremolet,

2004):

r ¼
M10ðx0Þ �M10ðxs

0Þ½ � �M10ðx0 � xs
0Þ



 


M10ðx0Þ �M10ðxs

0Þ


 

 (39)

where, because the quantities here are scalars, we take the

norm in eq. (39) represented by the vertical bars to simply

be the absolute value. Using eq. (24), we immediately find

that eq. (39) can be approximated by

r � 1

2

1

M10ðxs
0Þ














dM10

dx0






xs

0













 x0 � xs
0½ �



 

 (40)

which is a recapitulation of the conditions [eqs. (14)�(16)].
Therefore, if the TLM, M10, used in eq. (39) is the true

TLM then the test in eqs. (39 and 40) is a measure of the

linearity of the model dynamics [eq. (2)] and therefore

the smallness of r is determined by the conditions [eqs. (15)

and (16)].

The test [eq. (39)] is typically used in two different ways

to measure the quality of the TLM and SLM. In the first

way, one might use a flawed TLM, M
f
10, in eq. (39). This

would result in an additional term in eq. (40) such that

r �
M10 �M

f
10

� �
x0 � xs

0½ �









M10ðxs

0Þ x0 � xs
0½ �



 

 þ 1

2

1

M10ðxs
0Þ














dM10

dx0




xs

0














� x0 � xs

0½ �


 

 (41)

Therefore, the magnitude of r is now determined by both

the linearity of the physical system as well as the quality of

the flawed TLM. Tuning the TLM to minimise eq. (41)

should result in a better TLM.

The second way relative error measures like eq. (40) are

used is to assess the quality of SLMs. To assess the quality

of the SLM, we must translate eq. (28) into a relative error

measure by redefining the vertical bars in eq. (39) as

meaning the square of the quantity (and of course integrate

with respect to the joint prior) such that

r ¼
M10ðx0Þ � M10ðx0Þð Þ �Ms

10 x0 � �xf
0

� �








M10 x0ð Þ � M10 x0ð Þh ij j
(42)

where

M01 x0ð Þh i ¼ �x1 (43)

Note that in the derivation of eq. (42) from eq. (43) we have

made the strong-constraint assumption in the transition

density in order to arrive at relative error measures con-

sistent with those presented in Lorenc and Payne (2007)

and Payne (2013). If the SLM [eq. (29)] is used in the

relative error norm [eq. (42)], then

r ¼ 1�Ms
10P00Ms

10

p11

¼ 1� P10

P00P11

P10 (44)

which should be compared to eq. (9) with R�0. If the

SLM’s prediction, MS
10P00MS

10, of the t�1 prior variance,

P11, is accurate, the relative error norm is small. In Section 5,

we showed that the SLM generally does a good job of

predicting the final time variance and therefore a reason-

able method to tune a SLM is on the smallness of eq. (42)

with respect to prior perturbations.

6.2. TLM tests using the analysis

6.2.1. Mode-finding methods. A typical ratio test requires

that we output analysis states for at least two different

times, which we will refer to as �xtest
0 and �xtest

1 , and use in an

equation of the form:

r ¼
M10 �xtest

0ð Þ �M10ðxs
0Þ½ � � �xtest

1 � xs
1ð Þ



 


M10 �xtest

1ð Þ �M10ðxs
0Þ



 

 (45)

where xs
0 and xs

1 is typically taken to be the prior mean or

background forecast. The issue we wish to discuss here for

mode-finding methods is how to write out the state �xtest
1 and

what does it mean when we do.

We begin by noting that the 4D forecast error covariance

matrix implied by the gain matrix for the mode in eq. (19) is

the prior covariance matrix from the TLM [eq. (23)]. The

prior covariance matrix from the TLM [eq. (23)] also gives

the 4D covariance matrix that would be used by an EKS.

Again, this is different from that in eq. (4). Clearly, in the

prior covariance matrix from the TLM [eq. (23)] the second

element in each column is the first element in that same

column propagated forward using the TLM. This implies

that a single observation increment from a 4DVar scheme

can be thought of as being propagated from time 0 to

time 1 using the TLM. Moreover, the increment from

many observations can be thought of as a weighted, linear

combination of the columns of eq. (23) each of which can

be thought of as connected through time by the TLM.

Equation (19) only produces a state estimate at t�0.

How then can one apply the relative error norm [eq. (19)],

which requires the state at time t�1? This analysis
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correction through time is apparently produced by analogy

with the Kalman smoother formula:

�xtest
0

�xtest
1

� �
¼

�xf
0

�xf
1

" #
þ P̂

TLM
HT HP̂

TLM
HT þ R

h i�1

� y1 � x1 xmin
0

� �
þM xmin

0 � �xf
0

h i� � (46)

A single observation increment of eq. (46), which simply

makes use of one column of eq. (19), is not connected through

time by the non-linear model. It is connected through time

by the linearised model. This begs the question: if the mode

is a trajectory from t�0 to t�1 of the non-linear model

and the result of eq. (46) is not, then is eq. (46) delivering

anything of significance at t�1? If not, then what is being

measured by comparing non-linear model simulations

with analysis corrections from eq. (46) in the relative error

measure [eq. (45)]?

To answer these questions, we must return to the

fundamental Bayesian framework that we operate from.

We begin by writing Bayes’ rule for the joint posterior

p x0; x1jy1ð Þ ¼ pðx0Þpðx1jx0Þpðy1jx1Þ
pðy1Þ

; (47)

where we recall that p(x0) is N(1.5,1), p(y1jx1) is N(x1,R),

and p(x1jx0) is the transition density for the model [eq. (3)].

Note that the transition density for the model in eq. (3) is

a Dirac delta function because we have assumed that

the model is deterministic. When the transition density is

a Dirac delta it becomes unclear how to extract a cost

function from eq. (47). Therefore the standard procedure of

minimising the negative logarithm to find the mode of the

joint posterior will not work.

How then does the standard cost function [eq. (4)] relate

to eq. (47)? The answer is through the marginalisation

process. To marginalise the joint density for t�0, one

would integrate with respect to x1 to find the marginal

density

pðx0jy1Þ ¼
Z 1

�1
pðx0; x1jy1Þdx1 ¼

pðx0Þ
pðy1Þ

pðy1jx0Þ; (48)

where we note that

p y1jx0ð Þ ¼
Z 1

�1
pðy1jx1Þpðx1jx0Þdx1: (49)

The object p(y1jx0) is Gaussian with mean x1(x0) and

variance equal to R. Using this fact and taking the negative

logarithm of eq. (49) obtains eq. (10). Hence, the minimum

we obtained in Section 3 was the mode of eq. (48), and

therefore the solution to eq. (10) obtains the mode of the

marginal posterior at t�0.

By contrast, the PDF of the marginal posterior at time

1 is

pðx1jy1Þ ¼
Z 1

�1
pðx0; x1jy1Þdx0 ¼

pðy1jx1Þ
pðy1Þ

pðx1Þ; (50)

where we note that

p x1ð Þ ¼
Z 1

�1
pðx1jx0Þpðx0Þdx0: (51)

Even though p(x0) is Gaussian, p(x1) is not when the model

is non-linear. Therefore, because p(x1) is in general non-

Gaussian the quantity referred to in eq. (46) and denoted

by �xtest
1 is an incorrect formula for the mode of the joint or

the marginal posteriors at time 1; in fact it is only equal to

the mode at time 1 when the model dynamics are linear.

This implies that there can be no expectation that the non-

linear model will propagate �xtest
0 to the quantity �xtest

1 defined

in eq. (46); whether this is true or not depends only on

whether or not the model [eq. (2)] is linear and not

necessarily on the quality of our data assimilation system

or even on the quality of the TLM.

Let’s make these ideas more concrete by comparing the

marginal to the joint posterior for our simple example

problem. In Fig. 4a, we plot the prior joint density which is

equal to

p x0; x1ð Þ ¼ p x0ð Þp x1jx0ð Þ (52)

Because the transition density is the Dirac delta we find

that the joint density is non-zero only precisely along the

line defined by the model [eq. (2)]. Technically, eq. (52) has

an infinite value along this line because the Dirac delta is

infinite along this line. The value of the PDF denoted in

Fig. 4a can be thought of as a kind of coefficient that we

attach to a Dirac delta in this plane and is determined by

the structure of p(x0) and the structure of our non-linear

model. The mode of this joint density, identified in this

way, is a trajectory of the model and denoted in this figure.

Given eq. (52), we may evaluate eq. (47) for the joint

posterior and this is evaluated in Fig. 4b for our example

observation of y1�2.5. Here we see that the mode has

moved towards the observation and the spread of colours

along the line denoting the model has contracted indicating

that the variance has decreased because we assimilated an

observation.

We may also calculate the marginal prior and posterior

and compare these to the joint densities. The marginal

densities are plotted in Fig. 4c and d. Note that the mode of

the marginal density at t�0 is identical to the mode of the

joint density at t�0. However, the mode at t�1 of the

marginal density is not equal to the mode of the joint at

t�1. By contrast, note that the mode of the joint at t�1 is

connected to the mode of the joint at t�0 by the non-linear

12 D. HODYSS ET AL.



model. The mode of the marginal is not connected by the

non-linear model because of the integration we per-

formed to derive the marginal. One way to understand

the impact of this integration on the structure of the

marginal is to write the marginal at t�1 using a variable

transformation, viz.

pðx1Þ ¼ p x0 x1ð Þð Þ dx0

dx1










; (53)
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Fig. 4. The joint prior and posterior are shown in (a) and (b), respectively. The black line shows how the model links x0 with x1. The

colours represent the density. The horizontal and vertical lines denote the location of the mode of the joint posterior. The marginal prior

and posterior are shown in (c) and (d), respectively. Blue (red) is t�0 (t�1). In (d), the vertical black (dashed) line is the mode at t�0

(t�1). The vertical green line is the estimate of the mode at t�1 using eq. (11). In (e) is plotted the TLM as a function of different reference

states in blue and its inverse in red.
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where we have used the fact that the model [eq. (3)] has a

known‘ inverse in order to calculate x0(x1). The quantity

jdx0/dx1j is the determinant of the Jacobian (inverse of the

TLM) and is plotted in Fig. 4e. Equation (53) shows that

the mode of p(x1) is not simply the mode of p(x0) mapped

forward in time, because of the multiplication by the

determinant of the Jacobian whose structure modifies the

location of the mode. This multiplication by the determi-

nant of the Jacobian accounts for the convergence/diver-

gence of the models trajectories through state space in the

marginalisation process.
We have therefore shown that the only object in this

framework that is connected through time by the non-

linear model is the modes of the prior and posterior joint

densities. However, eq. (46) is not the formula for either of

these objects.

6.2.2. BLUE-finding methods. All of these same notions

seen in the previous section also apply to the BLUE of

Section 3. One cannot create the BLUE at two different

times and expect that they are connected precisely by the

non-linear model, even in the strong-constraint case. Note

that the analysis for the BLUE at both t�0 and t�1 for

our example problem is from eq. (6):

�xtest
0 ¼ �xf

0 þ P01

1

P11 þ R
y1 � �xf

0

� �
; (54)

�xtest
1 ¼ �xf

1 þ P11

1

P11 þ R
y1 � �xf

1

� �
: (55)

If we use these analyses in eq. (45), we would be assuming

that BLUE analyses are connected through time by the

non-linear model. In this section, we will be testing whether

or not this assumption is valid.

In eqs. (54) and (55), we see that the observation in-

crements at the two times are simply a number times the

elements of the second column of eq. (4). Therefore, if one

expects that the BLUE is connected through time by the

non-linear model this implies that one also expects that the

second column of eq. (4) could be created using the non-

linear model. This is proportional to a single observation

increment for an observation at time 1 and a state update

at time 0, and we would be expecting that this single

observation increment would be linked through time by the

non-linear model.

The way we will test this is to use the covariance through

time, P01, as a perturbation at the initial time of the prior

mean. We then integrate this new state under the dynamics

of the non-linear model [eq. (3)] and subtract this state at

t�1 from the unperturbed state also integrated forward to

t�1. The resulting quantity is supposed to be the correct

final time variance, P11, or equivalently proportional to the

single observation correction at time 1. If this were true,

then the ratio test in eq. (45) would vanish, implying that

BLUE state estimates are trajectories of the non-linear

model in the strong-constraint problem.

We can test if this is so in our simple example model

problem. The perturbed state consists of �xtest
0 ¼ �xf

0þ
aP01 ¼ 3:06, where we have added the covariance through

time to the prior mean at t�0 [as in eq. (54)] and have set

the constant a�1. Setting a�1 results in a state xtest
0 that is

identical to that which would be obtained from a single

observation BLUE correction in the case that the innova-

tion divided by the innovation variance was equal to unity.

Next, we propagate this state forward in time using the

non-linear model [eq. (3)]. This obtains M10 �xtest
0ð Þ ¼ 4:98.

The unperturbed state is �xf
0 ¼ 1:5 and when propagated

with the non-linear model yields x
f
1 ¼M10 �xf

0

� �
¼ 4:5.

Therefore, this test of the covariance matrix results in the

value 0.48 for the final time state estimate, even though the

correct value is 3.49 as revealed by eq. (4). Additionally,

one may use these values in eq. (45) to evaluate the ratio

test, which obtains r�6.3, which is a very poor result for a

ratio test. Note however that the analysis determined from

eq. (54) and (55) is the exact BLUE with no approxima-

tions. Therefore, one cannot test BLUE-finding methodol-

ogies using the ratio test in eq. (45).

This analysis shows that this technique to test the quality

of one’s 4D covariance matrix, or equivalently the quality

of the corrections to the prior forecast by a data assimila-

tion algorithm that is constructed to approximate the

BLUE, is a test of the linearity of one’s physical system

but has nothing to do with revealing whether one has the

correct covariance matrix to obtain the BLUE. The reason

is that a non-linear model implies that (1) computing a

covariance and applying the model/observation operator

do not commute; and (2) that superposition does not hold.

In other words, one must propagate forward an ensemble

(i.e. the distribution under consideration) from the initial

time to the final time to calculate the final time variance.

One cannot calculate the covariance between time levels,

P01, and then, after the covariance calculation, apply the

non-linear model. This is essentially a reversal of the order

of the steps of the calculation of the final time variance and

this kind of reversal can only work when the physical

system under consideration is linear and therefore the

model operator commutes.

7. Summary and conclusions

The 4D forecast covariance matrix used to find the BLUE

is not the same covariance matrix required to find the mode

using an incremental/Gauss�Newton method. We showed

that, while the algorithm (either Gauss�Newton or incre-

mental) appears similar in form to an ensemble Kalman

smoother, in the presence of non-linear error dynamics, the
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forecast covariance matrix within it is an entirely different

object from the one within an ensemble Kalman smoother.

This has important ramifications to not only the design of

the data assimilation algorithm but also to its tuning and

validation.

We showed that standard methods find different state

estimates and the algorithm designer must be cognizant of

this fact:

(1) To find the mode, one needs the 4D forecast error

covariance matrix obtained by propagating the prior

distribution using purely linear dynamics and then

taking the covariance of the resulting 4D perturba-

tions. A 4DVar outer loop is required to obtain the

mode of the posterior distribution; this also means

one must use a modified innovation as in eq. (19).

(2) To find the BLUE, one needs to propagate the prior

distribution using the full non-linear model and then

take the covariance. Given this covariance matrix

for the true prior one evaluates eq. (6) and does not

use an outer loop. 4DEnVar with no outer loop and

the ensemble Kalman smoother find an approxima-

tion to the BLUE.

(3) Regardless of whether a 4DVar scheme employs a

hybrid static/ensemble covariance matrix or not,

4DVar algorithms do not find the BLUE if those

schemes make use of the TLM for the 4D covariance

structure. They can, however, be used to find the

mode of the posterior at the beginning of the window

for strong constraint if they employ an outer loop.

(4) The use of an SLM can be used to find a better

estimate of the BLUE than the use of the TLM, but

the SLM cannot be used to determine the mode of

the posterior unless it is re-derived using a ‘prior’

distribution with infinitesimal error variance (as in

Sakov et al., 2012). We see no obvious reason for

performing outer loops with a non-infinitesimal

SLM because the iteration would lead to a state

that was neither the BLUE nor the mode. Further

research is required to understand what it means to

perform an outer loop in this case.

(5) Lastly, we showed that for mode-finding methods

one cannot, in general, expect the linear trajectory

of states obtained by propagating the most likely

analysis state through time using the linear model to

be the same as the corresponding sequence obtained

from the non-linear model. Similarly, one should not

expect a sequence of states obtained from BLUE-

finding methods to correspond to a non-linear model

trajectory either. This calls into question the practice

of testing data assimilation algorithms using ratio

tests on single observation corrections and analysis

increments.

Some numerical weather prediction centres do not per-

form an outer loop in their variational data assimilation

schemes. Without an outer loop, the 4DVar apparatus

employed at these centres will better approximate an EKS

analysis than a mode when non-linearity is present. A pri-

mary reason that an outer loop is not performed at these

centres is that the computational cost of the outer loop

has been found to outweigh its benefits. For the reasons

discussed above, the analysis given by 4DVar without an

outer loop would be more similar to the BLUE estimate if

the TLM was replaced by an SLM. This suggests that if

ensemble-based SLMs could be derived that provided good

approximations to the true SLM at an affordable compu-

tational cost, then centres that perform 4DVar without an

outer loop might actually realise accuracy gains by repla-

cing their TLMs with SLMs and re-focusing their efforts

towards finding the BLUE.

Another approach to getting 4D variational data assim-

ilation schemes that were originally designed to find modes

to find the BLUE is to simply incorporate within them 4D

ensemble covariance matrices. Unlike the SLM approach,

this approach enables the prior ensemble covariances to

define the forecast error covariance through time. This

feature makes this approach more like the BLUE than

that which would be obtained by using a SLM because it

is directly based on the 4D covariances of an ensemble of

non-linear forecasts. The key practical challenges of this

approach include how the covariances should be localised

through time (Bishop and Hodyss, 2011) and how to accom-

modate a hybrid covariance matrix that blends climatolo-

gical error covariance information with error covariance

information from the ensemble. Future research will be

needed to tell whether SLMs or those based on localised

4D ensemble covariance matrices would best enable a

4DVar type scheme to find the BLUE, and whether find-

ing the mode or the BLUE of the posterior is best for

geophysical applications.

8. Appendix A

A.1. The Gauss�Newton algorithm

One way to solve eq. (10) for its minimum is the Gauss�
Newton algorithm. This requires access to the Jacobian

matrix of the cost function [eq. (10)], which for our

problem is simply a scalar,

dJ

dx0

¼ � y1 � x1ðx0Þð Þ
R

M10 þ
x0 � �xf

0

P00

; (A1)

as well as the Hessian matrix, which is again here a scalar,

d2J

dx2
0

¼M10

1

R
M10 þ

1

P00

� y1 � x1ð Þ
R

dM10

dx0

(A2)
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The basic assumption of the Gauss�Newton algorithm

is that the last term on the right-hand side of (A2) can

be neglected. This assumption is valid when the model

dynamics is only weakly non-linear and/or the state x1 is

close to the observation y1 at the minimum. Note that both

these assumptions are equivalent to the assumptions in eqs.

(15) and (16), respectively. The result of this assumption is

that convergence is not guaranteed.
In any event, the minimum of eq. (10), which we denote

as xmin
0 , is found iteratively through the following formula:

xiþ1
0 ¼ xi

0 �
dJ=dx0

d2J=dx2
0

; (A3)

where the superscripts in (A3) denote the ith iteration, and

we remind the reader that we use the approximate Hessian

neglecting the last term in (A2). Equation (A3) is simply

obtained by writing a Taylor-expansion around xi
0 for

dJ/dx0 at xiþ1
0 and then finding the value of xiþ1

0 that makes

dJ/dx0�0. Inserting (A1) and (A2) into (A3) obtains

eq. (19).

9. Appendix B

B.1.The posterior variance about the mode

In this appendix, we briefly discuss how the posterior vari-

ance about the mode relates to the structure of the cost

function. The posterior variance calculated about the mode is

Pmode
00 ¼

Z 1

�1
x0 � xmin

0

� �2
p x0jy1ð Þdx0; (B1)

where we note for completeness that

Pmode
00 ¼ Ptrue

00 y1ð Þ þ �xa
0 � xmin

0

� �2
; (B2)

Ptrue
00 ¼

Z 1

�1
x0 � �xa

0ð Þ2p x0jy1ð Þdx0; (B3)

and �xa
0 ¼ �xa

0ðy1Þ is the true posterior mean at t�0. Note

that given eq. (10) that we may represent the posterior

density in (B1) as

pðx0jy1Þ ¼ Nexp �Jðx0Þ½ �; (B4)

where N is simply a normalisation constant. We may make

use of the representation in (B4) to understand (B1) by

writing the cost function as a Taylor-series about the

mode, viz.

Jðx0Þ ¼ J xmin
0

� �
þ d2J

dx2
0

x0 � xmin
0ð Þ2

2
þ d2J

dx3
0

x0 � xmin
0ð Þ3

6
þ . . . ;

(B5)

where it is understood that the derivatives in (B5) are

evaluated at the mode. Note that the term proportional to

the first derivative is absent as it vanishes when evaluated at

the mode. Furthermore, because the cost function is a

minimum at the mode we know that d2J=dx2
0 > 0. Lastly,

the presence of the cubic term in (B5) implies an asymmetry

in the cost function such that the posterior (B4) will be

left (right) skewed when d3J=dx3
0 > 0 (d3J=dx3

0B0). This

skewness of the posterior as well as any other non-

Gaussian structure is always a result of non-linearity in

the model or the observation operators.

As an example, when the cost function in eq. (4) is

quadratic, which implies a linear model or observation

operator, all derivatives higher than the second vanish in

(B5). Hence, eq. (B1) becomes

Pmode
00 ¼

Z 1

�1
x0 � xmin

0

� �2
Nexp � d2J

dx2
0

x0 � xmin
0ð Þ2

2

" #
dx0; (B6)

where the term J xmin
0ð Þ has been absorbed into the normal-

isation constant, N. In this case, we know that the result

of (B6) is that the variance is equal to the inverse of the

Hessian. By contrast, whenever the cost function differs

from quadratic (i.e. a non-linear model or observation

operator) the derivatives higher than the second no longer

vanish in (B5) and therefore the inverse Hessian is no

longer equal to the posterior variance. As we have shown in

Section 3, this effect is not small as the estimate of the

posterior variance about the mode (B1) by the inverse

Hessian is in error by an order of magnitude.
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