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ABSTRACT 

The method of matched asymptotic expansions is applied to the determination of 
the damping of gravity waves propagating in turbulent conditions. The effect of the 
turbulence is introduced by a general system of coefficients of eddy viscosity, whilst 
the turbulence itaelf is supposed to be confined to boundary layers adjacent to a rigid 
impermeable bottom and the free surface. The lowest order damping in the system is 
found to be independent of surface turbulence and computations are made for a physi- 
cally meaningful distribution of eddy viscosity in the lower boundary layer. 

Introduction 
A boundary layer method has recently been 

given by Johns (1967) for the determination 
of viscous wave damping in highly complex 
situations. The method depends upon the use 
of matched asymptotic expansions as a means 
of solving the governing equations when the 
viscosity of the fluid is small. 

In the present paper, the method is suitably 
adapted with a view to an application to the 
determination of the spatial attenuation of 
small amplitude gravity waves propagating in 
turbulent conditions. The effect of the turbu- 
lence is introduced in a general manner by three 
independent coefficients of eddy viscosity. 
Initially, the only physical assumption made 
about the coefficients is that they be independ- 
ent of time and the horizontal spatial co- 
ordinate. 

In  the development of the theory, the turbu- 
lence is assumed to be confined to boundary 
layers adjacent to an impermeable rigid bottom 
and the free surface. Suitable perturbation 
series are proposed for the solutions in terms 
of a reference eddy viscosity and the spatial 
damping is calculated in terms of a general 
distribution of eddy viscosity. The lowest order 
damping in the system is found to be inde- 
pendent of surface turbulence in all physically 
realistic situations and results solely from energy 
dissipation in the lower boundary layer. This is 
evaluated by prescribing a suitable variation 

for the eddy viscosity in the lower boundary 
layer which is consistent with that used by 
Johns (1966) in a tidal flow problem. 

Formulation 
All spatial conditions are referred to rectangu- 

lar Cartesian axes (2, y )  fixed in the undisturbed 
free surface of an incompressible homogeneous 
fluid of constant depth with the y-axis directed 
vertically upwards. The equation of the oscil- 
lating surface is y = q  whilst the impermeable 
rigid bottom is given by y = -h. 

Assuming small amplitude two-dimensional 
gravity waves a t  the free surface, all governing 
equations are linearised and boundary condi- 
tions applied at the mean position of oscillating 
levels. Appropriately averaged velocity compo- 
nents, denoted by (u,v), and the pressure p 
are therefore solutions of 

av 
at 

where e denotes the fluid density and the t’s 
the components of stress resulting from internal 
friction and the turbulent transfer of mo- 
mentum. Although the origin of the Reynolds 
stresses lies within the neglected nonlinear 
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inertia terms, the gradients thereof are, in 
general, expected to be significant and are 
accordingly retained in the present formulation. 

The equation of continuity of mass for am 
incompressible fluid yields 

au av - + - = o .  (2.3) dx ay 

A t  this juncture, appropriate expressions 
must be proposed for the Reynolds stresses in 
order to relate them to the other averaged pro- 
perties of the flow. We therefore introduce 
coefficients of eddy viscosity by writing 

au au 

ax' aY 
T~~ = - 2eNxr -' rUu- -2eNUu--. (2.5) 

Until assumptions be made about the coeffi- 
cients of eddy viscosity (which also include 
the molecular viscosity), the above scheme 
does not involve the physics of the system. 

Upon use of (2.3), a streamfunction y~ is 
defined by writing 

and the pressure distribution eliminated be- 
tween (2.1) and (2.2). Introducing (2.4) and 
(2.5) into the resultant, the equation for y is 
readily found to be 

fully employed by Johns (1966) in a tidal 
problem. 

The boundary conditions are that both com- 
ponents of velocity vanish a.t the impermeable 
bottom: 

y - - =  a' 0 at y = - h .  (2.9) 
ay 

At the free surface, there is no applied 
tangential stress: 

t r y = O  at' y=O, (2.10) 

whilst, in the absence of surface tension, the 
normal stress must equal the atmospheric 
pressure (taken as zero): 

p - g e q + t , , = O  at y=O. (2.11) 

Finally, the kinematical condition at the free 
surface yields 

!?!I= --  a' at y-0. (2.12) 
at ax 

Solution of equations 
The present method of solution depends upon 

the existence of turbulent boundary layers 
adjacent to the rigid bottom and the free sur- 
face whilst the interior of the flow is free of 
turbulence. 

Prescribing the oscillatory surface in the form 

(3.1) rl = aeWr - at) 

the flow exterior to the boundary layers is 
derived from a streamfunction Y. In  the case 
of a spatially attenuated wave, we write 

The foregoing formulation is quite general, 
but we now suppose that the eddy viscosity 
k independent of time and the horizontal 
spatial coordinate and write 

where Y is a reference viscosity and F ( y )  and 
Q(y) describe the vertical structure of the 
turbulence. Such an assumption has been use- 
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where 

and 

yh= Y, 

Y;( - 1) = 1 

t 2v 
& = -< l .  

h'a 

(3.2) 

(3.3) 

(3.4) 

The wave number k is developed in the form 

k = k, -t ekl + ..., (3.5) 
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whilst the angular frequency u is prescribed. aah f (ks -o t )  
The quantity k,, therefore, will determine the 
spatial attenuation of the wave by energy 
dissipation in the system. 

quantities have significance. 

ly is 

Y == sinh y{ 'o(r )  k, h +' " I e  
(3.12) 

Throughout, only real parts of complex where y = -Ehr. (3.13) 

From (2.7) and (2.8), the basic equation for Upon introduction of (3.12) and (3.13) into 
(3.6) and identification of terms of like order, 

+ 2hau.5' a" { G(y) 21, 
axa y 

it is readily found that 

dP 
dr' 
- {F+",r)} + 2i+;(r) = 0, (n = 0, l ) ,  

- having substituted for v from (3.4). Upon 
introduction of (3.2) and (3.5) into (3.6) and 
identification of terms o(1) and O ( E )  we readily 
find that 

(3.14) 

(3.15) 

dPyo __- (k, h)' Yo = 0, 
dYa 

the prime denoting a differentiation with respect 
(3*7) to r.  

The solution of (3.7) satisfying (3.3) is 

1 day' ~- (k,h)%l=2k,k,h'Y,. (3.8) 
d Y a  Yo=Yo( - l)coshkoh(l  + Y) + -Sinhk,h(l+ Y). 

k0 h 
Within the boundary layer adjacent to (3.16) 

y = - h, i t  is well known (in the non-dimensional 
sense) that By virtue of (2.9), the solution of (3.11) must 

satisfy 
and we write VOfO) = V;(o) = 0, (3.17) 

and, characterising the outer limit of the 
boundary layer by s =aoo, the vorticity and its 
derivative must decay outwards from the im- 
permeable surface: 

Y = O ( E )  

aah 
-__ e lyo ( s )e i (kr~o t )  + o(e' ) ,  (3.9) 

ly sinh k,h 

where y + h  =&ha. (3.10) 

For a rapidly changing intensity of turbulence, 
the derivatives of F(y) and B(y) will be o ( ~ / E )  
within the boundary layers and so, on intro- 
duction of (3.9) and (3.10) into (3.6) and identi- 
fication of the lowest order terms, 

I , ,  

&'(so,) -=yo (800) = 0. (3.18) 

A single integration of (3.11) from s t-o soo there- 
fore yields 

d 
ds - {&:(8)} +%&(S) = 2iy;(800), (3.19) 

(3.11) 
whilst a further integration from o to soo gives 

the prime denoting a differentiation with respect 
to s. Within the surface boundary layer, 

w = 4 1 )  
and we write 

The boundary conditions to accompany 
(3.14) and (3.15) result from the surface re- 
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quirements (2.10) and (2.12). The first of these 
leads to layer flows 

+ ; ( O )  = 0, (n = 0,  I ) ,  (3.21) 

(3.22) +,"lo) = - ( k o h ) V 0  ( O ) ,  

Matching of the outer and boundary 

The matching technique to be used here has 
been fully described by Johns (1967). In the 
present treatment, the matching conditions are 

whilst the second yields 
( Y ) Y - - l + & s ,  =(!P)s=,,; 

1 
GO(O) = -- sinh koh, (3.23) 

kOh 

(3.24) k, 
k ,  

+l(o) = - - +o(o). 

Characterising the outer limit of the boundary 
layer by r =roo, the appropriate vorticity require- 
ments demand that 

Integrating (3.14) from r to roo and using (3.25), 

d 
dr 
- ( F ' b z ( ~ ) }  +2i'bA(r) =2&A(rO0), (3.27) 

Application of these conditions will determine 
the unknown factors in the solutions of sec. 

whilst a second integration from r to roo gives 

&",r) + 2i+&) = 2&Jro0) + 2i91,(roo) (T -roo). (3) .  
Upon use of (4.3) in (3.16) and (3.20), 

(3.28) 
1 

Yo = -- sinh k,h( 1 + Y )  
kOh The solution of (3.28) may therefore be written 

in the form 
i 

YO(800)  =a00 - - ~ s = o v ; ( O ) .  
+n=+n(roo)  ++1,(roo) (r-roo) + f n ( r ) t  (3.29) and 2 

(3*30) Putting n=O in (3.29) and using (3.23 where Ff'A(r) c 2if,(r) = 0. 

(4.5). Integrating (3.15) from o to roo and using 1 

(4.9) 

4.10) 

and 

- + = 2- sinh koh + f o ( r ) ,  (4.11) 
koh (3.26), 

dF 
P,,,+;"(o)+2i+;(o) = - G) +i'(O) where 

For physically acceptable functions P, i t  is 
shown in the appendix that the only solution 
for f. is 

fO(O) = fo(r00) = r;c.oo, = 0. 
r =O 

+ 2i+i(roO) - 24k0h)a 

," 

+ ( k , , h ) a / r ' o F ~ ~ ( r ) d r +  ( k o h ) a [ ~ { F + o ( r ) } ] r '  
f ,  = 0, (4.12) 

andso + =-- sinh k,, h. (4.13) 
- 4(koh)"[G+i(r)]:"'. (3.31) koh 

0 1 
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Putting n =  1 in (3.29) using (3.24) and (4.7), stress condition (2.11). Eliminzting p ,  7 and tug 
through use of (2.1), (2.4), (2.5) and (2.12), it  

k is readily established that 
kzh 

qJ = -1 sinh k,h-r cosh k,h+f,(r), (4.14) 

where f,W =fl(ro,) =f;(TO0) = O .  

Again, the only solution for f ,  is 

f, =o, (4.15) 

(5.1) 

Introducing ( 3 4 ,  (3.12) and (3.13) into (5.1) 
and expressing v in terms of E ,  the identification 
of quantities o(1) gives 

a'v -9--,= 0 at y=O. and so 
k ax 
kih 

qJ = -1 sinh k,h - r cosh k,h. (4.16) 

Upon introduction of (3.22), (4.8), (4.13) and 
(4.16) into (3.31) we therefore obtain 

1",=09;"(o) + 2iqJi(O) = - 2iYl(O) 

(5.2) +k,h sinh k,h ($) . (4.17) 
r-rm 

Substituting from (4.13) and (4.16), 
Upon use of (4.4), (4.6), (4.9), (4.10) and 

(4.16) it is readily seen that the solution of a'= gk, tank koh ,  (5.3) 
(3.8) must satisfy 

in accordance with established theory for a per- 
i fect fluid. 

2 

k .  
ko h 

Y,( - 1)  = - - P,=,v~(O),  (4-18) The identification of terms O ( E )  yields 

'!';(O) - - i Fr=,qJ6"(0) - - ("3 - W ( 0 )  
and Y,(O) = - -+ s d  k,h. (4.19) 2 2 d r r o  

+ 2i(k0h)2Gr2,,~;(0) 
It follows, therefore, that 

Y, = -F,=,$(O) - cosch k,h sinh k,hY 

i 
- - 2 (k,h)' [ fr  {F+,(r))] r = O  

(5.4) 
k0 $. 9h 7 {k~qJ l (0 )+2k ,k ,qJo(O) }==0 .  {; k 1  

k CJ 
- ~~ 51 sinh k,h(l + Y) t Y cosh koh(l + Y), 

Substituting the various quantities in this 
equation from (3.22), (4.13) and (4.16) it redu- 
ces to  

Fr:="4.1"(O)+2i+;(0) = - T s i n h  kok. (5.5) 

Calculating the left hand side by use of (4.21), 
the condition reduces to an equation for k, 

ko h k0 
(4.20) 

use of which in (4.17) yields 

F,=o+,l"(O) + 2iMO) Zigk, 
CJ 

= k,h F,_o&'(O) + 21:- cosch k, h 
k0 { "3 

+k,h sinh k,h . (4.21) yielding r = r m  

F , = o ~ ~ ( 0 ) + s i n h a  k,h - 

2k0 h + sinh 2k, h 
Determination of the damping k, = 

The relation which determines the wave 
number and spatial attenuation factor is the (5.6) 
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The assumed boundary layer structure at 
the free surface indicates, in physically realistic 
situations, that dF/dr will vanish at the outer 
edge of the layer. This reveals, to the present 
order, that the spatial attenuation will be 
unaffected by surface turbulence and results 
from energy dissipation in the lower boundary 
layer. The value of the damping factor will 
depend upon that of $ ( O )  which in turn depends 
upon the solution of (3.19) subject to (3.17) 
and (4.3). Consequently, a numerical evaluation 
is only possible if the functional form of F 
be prescribed within the lower boundary layer. 
Appeal is made at this stage to the arguments 
advanced by Johns (1966) concerning this 
variation and, in the present treatment, we 
suppose that v denotes the kinematical viscosity 
of the fluid whilst F is defined by 

for 8>8, 

This form of variation is consistent with a 
scale of turbulence which increases with height 
above the impermeable bottom and, after at- 
taining a prescribed maximal value, decreases 
towards the edge of the boundary layer. More- 
over, the necessary integrations are readily 
performed by the method used by Johns (1966) 
therefore avoiding the familiar complications 
associated with the numerical solution of a 
two-point boundary value problem. The quanti- 
ties a, a1 and are disposable parameters 
which determine the overall intensity of the 
turbulence and the geometrical scale of the 
boundary layer. 

The details of the integration of (3.19) with 
F given by (5.7) are described briefly in the 
appendix whilst we give here the results of the 
numerical computations. 

In  the work of Biesel (1949), and others, the 
value of k, for a homogeneous fluid in which 
the oscillatory motion is laminar (with kine- 
matical viscosity v )  is given by 

kih( 1 +i) 
2k,h+sinh 2k,h’ k, = (5.8) 

and so, in order to determine the damping effect 
of the turbulence, it is sufficient to compute the 
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Table 1 

s1 = 2.0 
10 

100 
500 

1000 

10 
100 
500 

1000 

10 
100 
500 

1000 

8, = 4.0 

a1 = 6.0 

0.9835 
1.370 
1.961 
2.046 

0.9750 
0.7906 
0.6455 
0.5834 

0.9926 
0.8215 
0.5360 
0.431 1 

1.691 
4.645 

10.86 
15.58 

1.288 
2.648 
5.634 
7.930 

1.188 
1.928 
3.799 
5.309 

value of iw;(O) with the distribution (5.7). 
Denoting the maximum value of the function 
F in the lower boundary layer by Fm,,, the real 
and imaginary parts of the required quantity 
have been computed as functions of Fmax for 
8, = 10 with 8,  =2,  4, 6. The results are pre- 
sented in Table 1. 

With the exception of 81 =2, it is apparent 
that the turbulence results in a decrease of the 
real wave number in comparison with its 
laminar significance. That is, the turbulence 
produces a small lengthening of the waves 
when the maximum eddy viscosity is attained 
at a point well within the boundary layer. 

The most important conclusions are con- 
cerned with the effect of the turbulence on the 
spatial damping of the wave amplitude. This ia 
significantly increased in comparison with 
energy dissipation by molecular proceases. 
If ,  for example, 8, = 4, F- = 500, i t  is seen that 
for a laminar flow to result in the same damping 
it would be necessary for the kinematical 
viscosity to be enhanced by a factor of 31. 

In  conclusion, it is interesting to observe that 
a small value of Fmm attained close to the 
bottom is as efficient as regards energy dissipa- 
tion as a large value of Fmax attained further 
from the boundary. 

Appendix 
The results of the foregoing sections depend 

critically upon the solution of the system 
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Ffc(r) + 2if,(r) = O  (6.1) 

f n ( o )  =/n(roo) =rl,(roa) -0. (6.2) 

subject to 

It is shown here that if F be bounded and non- 
zero for 0 < r  <roo, then the only solution is 

f ,  =o. (6.3) 

Writing f, =P +iQ,  

and separating (6.1) into real and imaginary 
parts, 

FP"-2Q=O, (6.4) 

FQ" +2P =O. (6.5) 

Multiplying (6.4) b y P  and (6.5) by Q and adding 

F {P"P + Q"Q} = 0,  

and, since F + O ,  

P"P + Q"Q = 0. (6.6) 

Integrating by parts from r = 0 to r =roo, 

[P'P + Q'Q11;"' - joroo (P" + Q")dr = 0.  (6.7) 

The first term in (6.7) vanishes 
(6.2) and so 

jar" ( P ' 2 + Q ' P ) d r = 0 ,  

P f 2  + Q f P  = 0,  
whereupon 

by virtue of 

(6.8) 

(6.9) 

since the integrand can never be negative. 
We therefore obtain 

p'=Q'=O (6.10) 

and, since both P and Q must vanish at r -0, 
the result is established. 

The second objective of the appendix is to 
indicate the method of solution of the equation 

(6.11) 

with F given by (5.7), subject to 

y i = o  at 8 = 0 ,  

& = 1  at 
(6.12) 

For 0<8<8 , ,  i t  is readily shown that 

where 5, = 1 i- us, 

1 2i  + 
and m L , m ~ = - i ~ ' ( ~ - ~ )  I (6.14) 

and n,,n,=-)k 

whilst for 8 &  aa the appropriate "boundary layer 
type solution" is 

& = 1 + c e -  (1 - *)S. (6.17) 

The various constants in (6.13), (6.15) and 
(6.17) arre determined by using (6.12) and en- 
forcing the continuity of y; and ii a t  8 =a1 and 
8 =aa. The numerical scheme for this process 
has been programmed for automatic computa- 
tion. 

Finally, upon use of (6.13), it  follows that 

Y m  = a(A,m, +Azm,), (6.18) 

which, together with (5.6), determines the 
damping. 
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BATYXAHME I’PABMTAqMOHHbIX BOJIH B MEJIICOX BOAE BCJIEACTBME 
flkfCCMnA~kfkf 3HEPrkfM B TYPEYJIEHTHOM KIOrPAHWIHOM CJIOE 

H R e T c R  H onpeneneswo s a ~ y x a ~ m  rpaama- c B o 6 o ~ H o f i  n o B e p x a o c r w .  H a f i A e H o ,  YTO a a ~ y -  
q n o H H b i x  n o m ,  p a c n p o c T p a H R m q a x c R  B TYP- xame c a M o r o  H u a K o r o  n o p R n K a  n c u c T e M e  H e  

&TO& aCHMllTOTkiYeCKMX p a 3 J I O x t e H U f i  n p U M e -  WUMR K T B e p A O M y  HeI lpOHHqaeMOMJ’  AHJ’ H K 

6J’JIeHTHHX J’CJIOBMRX. 3 @ @ e H T  TYP6J’JIeHTHOCTM 3aBMCUT OT TJ’PbJ’JIeHTHOCTK J’ IIOBepXHOCTH. 
BBOAMTCR obwett CMCTeMOfi KOa@@HqMeHTOB n p 0 A e n a H b I  BbIYMCJIeHMK RJIR @M3MYeCKM I I p a B -  
T y p b y J I e H T H O f i  BR3KOCTII, B TO H(e B p e M R  IIpeA- 
I l O J I a r a e T C R ,  q T O  C a M a  TYp6YJIeHTHOCTb O r p a -  BR3KOCTH B HIIH(HeM I lOrpaHAYHOM CJIOe. 
HMYeHa  TYp6J’JIeHTHbIMH CJIORMM, n p M J I e r a I 0 -  

AOnOAObHOrO P a C n p e A e J I e H M R  TJ’pbyJIeHTHOfi 
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